Límite y Continuidad de Funciones.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Límite y Continuidad de Funciones."

Transcripción

1 Límite Cotiuidad de Fucioes. Eleazar José García. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por la derecha.. Fucioes que crece si límite. 8. Fucioes que decrece si límite. 9. Límites idetermiados. 0. Cotiuidad de ua fució. Límite de ua fució. La oció de límite de ua fució e u úmero (u puto de la recta real) se presetará mediate el siguiete ejemplo: Supogamos que se os pide dibujar la gráfica de la fució f ( ), Para todo puto podemos trazar la gráfica por los métodos coocidos por todos osotros. Ahora, para teer idea del comportamieto de la gráfica de f cerca de, usamos dos cojutos de valores, uo que se aproime al por la izquierda otro por la derecha. La siguiete tabla muestra los correspodietes valores de f (). se acerca al por la izquierda se acerca al por la derecha 0,9 0,99 0,999,00,0, f ( ),,90,9900?,0000,00, f () se acerca al f () se acerca al Figura f ( ) (,) La figura es la gráfica de la fució f ( ), como podemos observar, e dicha gráfica ha u salto e el puto (; ), esto se debe a que la fució f o está defiida e el úmero. Es de otar que ésta gráfica es la de la fució g( ) + + meos el puto (; ). La fució g se obtiee a partir de la fució f, factorizado el umerador simplificado. La discusió aterior coduce a la siguiete descripció iformal: Si f() se aproima arbitrariamete a u úmero L cuado se aproima a a por ambos lados, decimos que el límite de f() cuado tiede a a es L, escribimos lím f ( ) L. a

2 Defiició de límite de ua fució. Sea f ua fució defiida e todo úmero de algú itervalo abierto I que cotiee a a ecepto posiblemete e el úmero a mismo. El límite de f() cuado se aproima a a es L, lo cual se escribe como lím f ( ) L, si para cualquier ε > 0, o importa que ta pequeña sea, eiste ua δ > 0 tal que a si 0 < a < δ etoces f ( ) L < ε Esta defiició idica que los valores de f() se aproima al límite L coforme se aproima al úmero a, si el valor absoluto de la diferecia f ( ) L puede hacerse ta pequeña como de desee tomado suficietemete cerca de a pero o igual a a. E la defiició o se mecioa ada acerca del valor de f() cuado a; recordemos que la fució o ecesita estar defiida e a para que lím f ( ) eista. a Ejemplos. ) Utilicemos la defiició para demostrar que lím( ). Como la fució está defiida e todo itervalo abierto que cotiee a, etoces podemos utilizar la defiició para hacer la demostració. Se debe demostrar que para cualquier ε > 0 eiste ua δ > 0 tal que si 0 < < δ etoces ( ) < ε (A) si 0 < < δ etoces 8 < ε si 0 < < δ etoces < ε ε si 0 < < δ etoces < Etoces, si tomamos ε δ se cumple la proposició (A). Esto demuestra que lím( ). Tomado ε 0, 0, δ 0,00, luego, para esos valores de ε δ, los úmeros que perteece al itervalo abierto (,99; ) ( ;,00) verifica la proposició(a). E efecto, tomado cualquier e el itervalo aterior, por ejemplo,99 se tiee: 0 <,99 0,00 0,00 < 0,00 etoces (,99 ), , 009 0, 009 < 0, 0 Esto verifica la proposició (A) para el valor específico tomado para. ) Demostrar usado la defiició de límite que lím.

3 Como la fució está defiida e cualquier itervalo abierto que cotega al, ecepto e el úmero, podemos aplicar la defiició para realizar la demostració. E efecto, si 0 < < δ etoces si 0 < < δ etoces < ε ( )( + + ) si 0 < < δ etoces + < ε si 0 < < δ etoces ( )( + ) < ε si 0 < < δ etoces + < ε < ε Ahora, cuado se acerca a, + se acerca a, luego, < +, etoces, ε + < ε, por lo tato, <. De la proposició (B) se obtiee que, si ε ε 0 < < δ etoces <. Si tomamos δ se cumple la proposició (B), lo que demuestra que. Ejercicios propuestos. ) ) ) ) Demuestre, aplicado la defiició que el límite es el úmero idicado. lím ( ) lím + lím ( + ) lím( + ) 8 Co la fialidad de calcular los límites de fucioes de ua maera más fácil eficaz, que aplicado la defiició, so empleados los teoremas. al.0. (B) Teorema. Límite de ua fució lieal. Sea f ( ) m + b dode m b so dos úmeros reales cualesquiera, etoces Ejemplo. lím f ( ) lím( m + b) ma + b a a lím( ) Teorema. Límite de ua fució costate. Si c es ua costate (u úmero real cualquiera), etoces

4 Ejemplo. lím lím c c a Teorema. Límite de ua fució idetidad. Sea f ( ), etoces lím a a Ejemplo. lím Teorema. Límite de la suma de la diferecia de fucioes. Si lím f ( ) L lím g( ) M, etoces a Ejemplo. Sea, a lím( ) lím 9, [ ] lím f ( ) ± g( ) lím f ( ) ± lím g( ) L ± M a a a (( ) ( )) ( ) lím lím lím 9 etoces, (( ) ( )) ( ) Teorema. Límite de la suma de diferecia de fucioes. Si a a a lím + lím + lím + 9 lím f ( ) L, lím f ( ) L,, lím f ( ) L, etoces: [ ] lím f ( ) ± f ( ) ± ± f ( ) lím f ( ) ± lím f ( ) ± ± lím f ( ) L ± L ± ± L a a a a Teorema. Límite del producto de dos fucioes. Si lím f ( ) L lím g ( ) M, etoces a a Ejemplo. Sea, [ ] lím f ( ) g( ) lím f ( ) lím g( ) L M a a a lím( ) lím 9, etoces, () ( ) lím lím lím 9 8.

5 Teorema. Límite del producto de fucioes. f ( ) L, f ( ) L,, f ( ) L, etoces Si lím lím lím a a a [ ] lím f ( ) f ( ) f ( ) lím f ( ) lím f ( ) lím f ( ) L L L a a a a Teorema 8. Límite de la -ésima potecia de ua fució. Si f ( ) L es cualquier úmero etero positivo, etoces a Ejemplo. lím[ f ( ) ] lím f ( ) L a a Sea, lím ( 0) 0, etoces, lím ( ) lím ( ) ( ) ( ) Teorema 9. Límite del cociete de dos fucioes. Si lím f ( ) L lím g ( ) M, etoces a a Ejemplo 8. Sea, lím ( ) f ( ) lím f ( ) a L lím si M 0 a g( ) lím g( ) M a lím 9, etoces, lím 9 lím lím ( ) Teorema 0. Límite de la raíz -ésima de ua fució. Si es u úmero etero positivo lím f ( ) L, etoces a lím f ( ) lím f ( ) L co la restricció que si es par, L > 0. a a Ejemplo 9. Sea, ( ) lím + 0, etoces ( ) ( ) lím + lím + lím + lím

6 Teorema. Límite del logaritmo de ua fució. Ejemplo 0. Sea: b u úmero real positivo distito de, lím f ( ) L > 0, Calcule: l ( e) e a ( ) ( ) lím logb f log b f. a lím a lím aplicado el teorema.. Apliquemos el teorema eigido: Si aplicar el teorema: etoces ( e) ( e) e ( e e) ( e) lím l l l l l e lím lím lím e e e ( e) ( e e) ( e) lím l l l. e Teorema. Uicidad del límite de ua fució. Si lím f ( ) L lím f ( ) L, etoces, L L. a a Este teorema asegura que si el límite de ua fució eiste éste es úico. Ifiitésimo. La fució f es u ifiitésimo e el puto a si sólo si lím f ( ) 0. Ejemplos 0. ) La fució f () es u ifiitésimo e 0 pues 0 a lím 0. ) La fució g () es u ifiitésimo e porque lím ( ) ) La fució h () se es u ifiitésimo e 0 a que 0 0. lím se 0. ) La fució m() - es u ifiitésimo e pues lím ( ) ) La fució r() cos es u ifiitésimo e π porque 0. lím cos 0. Ifiitésimos equivaletes. Dos ifiitésimos e u mismo puto so equivaletes, cuado el límite de su cociete es la uidad. π f ( ) f ( ) g( ) lím a g( )

7 Cuado e u límite, u ifiitésimo esté multiplicado o dividido se le puede sustituir por otro ifiitésimo equivalete. La suma de varios ifiitésimos de distito orde se puede reducir al ifiitésimo de meor orde. Ifiitésimos más frecuetes e 0. se arcse tg arctg cos l ( + ) e a l a + + ( ) Ejemplos. ) se lím se lím 0 0 lím lím lím 0 lím lím arctg lím arctg lím 0 0 ) lím lím lím 0 arcse lím arcse lím ) ) ( ) ( e ) ( + se ) 0 lím 0 lím l0 l0 0 0 lím ( l0) 0 lím lím e 0 0 lím lím se lím límse lím lím lím lím lím lím lím Ejercicios propuestos. Calcule los siguietes límites: ) ) lím se. ) 0 + ( cos ) se + arctg 0. lím 8) se + tg ( e ) lím. ) 0 l ( + ) Límite por la izquierda. e lím. ) 0 se ( cos ) l lím. ) lím. 9) 0 tg l lím. ) + lím. ) 0 m + ( + ) + l0 se + lím 0 cos l arcse tg lím 0. 0) + ( cos ) l ( + ) lím. ) 0 arcse tg ( ) lím 0 +..

8 Sea f defiida e cada úmero del itervalo abierto ( c; a ). El límite de f (), cuado se acerca al úmero a por la izquierda es L, lo cual se escribe lím f ( ) L, si para cualquier ε > 0, si importar que ta pequeña sea, eiste ua δ > 0 tal que a si 0< a < δ etoces f ( ) L < ε Límite por la derecha. Sea f ua fució defiida e cada úmero del itervalo abierto ( ) a; c. El límite de f(), cuado se acerca al úmero a por la izquierda es L, lo cual se escribe lím f ( ) L, si para cualquier ε > 0, si importar que ta pequeña sea, eiste ua δ > 0 tal que si 0 < a < δ etoces f ( ) L < ε Teorema. El lím f ( ) eiste es igual a L, si sólo si, lím f ( ) lím f ( ) eiste so iguales a L. a a + a + a lím f ( ) lím f ( ) lím f ( ) L a + a a Fucioes que crece si límite. Sea f ua fució defiida e algú itervalo abierto que cotiee al úmero a, ecepto posiblemete e a mismo. La fució f () crece si límite, cuado se aproima al úmero a, lo cual se escribe f ( ) + si para cualquier N > 0 eiste ua δ > 0 tal que: a si 0 < a < δ etoces f () > N Ejemplo. Supogamos que f es la fució defiida por f ( ). La gráfica de esta fució se muestra e la figura siguiete. Figura f ( )

9 El comportamieto de la fució f es que crece si límite cuado se acerca al úmero cero por la izquierda o por la derecha. Cuado esto sucede decimos que el límite de f() es meos ifiito cuado tiede al úmero 0, lo que se idica mediate la siguiete otació: + 0 Fucioes que decrece si límite. Sea f ua fució defiida e algú itervalo abierto que cotiee al úmero a, ecepto posiblemete e a mismo. La fució f () decrece si límite, cuado se aproima al úmero a, lo cual se escribe f ( ) si para cualquier N < 0 eiste ua δ > 0 tal que a si 0 < a < δ etoces f () < N Ejemplo. Supogamos que f es la fució defiida por la ecuació f ( ). La gráfica de f se muestra e la figura siguiete. Figura f ( ) A partir de la gráfica se observa que el comportamieto de la fució f es que decrece si límite cuado se acerca a 0 por la izquierda o por la derecha. Este comportamieto lo epresamos diciedo que el límite de f () es meos ifiito cuado tiede a cero, lo que se escribe de la siguiete maera:. 0 Ahora cosideremos la fució h defiida por la ecuació h( ). La gráfica de h se preseta e la figura.

10 Figura h( ) El comportamieto de h cuado se acerca al úmero por la izquierda es diferete a su comportamieto cuado se acerca al por la derecha. Cuado se acerca al por la izquierda h() decrece si límite, mietras que cuado se acerca al por la derecha h() crece si límite. Estos comportamietos de h lo escribimos de las siguietes maeras: +. + Ejemplos. Determie el límite aalíticamete apoe la respuesta trazado la gráfica de la fució. + ). + t + + Solució: La gráfica de la fució g ( ) + es mostrada a cotiuació. Figura ( ) g + E la gráfica se observa que cuado se acerca al úmero por la derecha g() crece si límite.

11 0 + ). 0 Solució ( ) La gráfica de la fució + f ( ) es mostrada e la figura. f( ) + Figura Observemos que f () decrece si límite cuado se acerca al 0 por la izquierda. ) + + t +. Solució: ( + ) ( ) ( ) t La gráfica de la fució f ( ) + + se muestra e la figura :

12 Figura + f( ) Observado la gráfica podemos verificar que cuado se acerca al úmero - por la derecha, f () decrece si límite. Límites idetermiados. Los límites idetermiados que estudiaremos e éste capítulo so: La forma idetermiada 0. 0 Si f g so dos fucioes tales que f ( ) 0 g( ) 0, etoces la fució f g tiee la forma idetermiada 0 0 e a. a La maera de resolver los límites idetermiados 0, será eplicada mediate dos: 0 Ejemplos. ) Calcular. 0 Se tiee que ( ) 0 ( ) 0, etoces,. 0 Para eiar la idetermiació, factorizamos el umerador el deomiador, simplificamos resolvemos el límite obteido, así: ( )( + ) a Por lo tato, ) Calcular. +. Aquí teemos:

13 ( ) + ( ) 0 0, luego, E éste caso procedemos de la siguiete maera: multiplicamos el umerador el deomiador por la cojugada de resultate, así: +, dicha cojugada es: ( ) ( ) ( ) + +, luego se resuelve el límite ( ) Por lo tato, La forma idetermiada. + Si f g so dos fucioes tales que f ( ) g( ), etoces la fució f g es idetermiada co la forma. La forma de resolver éstos límites será eplicada mediate dos ejemplos. Ejemplos ) Calcular Es evidete que ( ) + ( ) +, por lo tato, Para resolver éste límite dividimos el umerador el deomiador etre la de maor epoete, así: Por lo tato, ) Calcular. +

14 E este caso ( + ) + ( ) +, por lo tato, Para resolver, dividamos el umerador el deomiador etre pues éste es la potecia de de maor epoete, así: Por lo tato, 0. + La forma idetermiada. Si f g so dos fucioes tales que f ( ) g( ), etoces la fució f g es idetermiada de la forma. La maera de resolver éstos límites será eplicado co ejemplos. Ejemplos 8 ) Calcular ( ) +. + Como +, + + límite racioalizamos, así: ( ) ( ) + + etoces, ( ) +. Para resolver éste + ( + )( + + ) ( + ) , Hemos trasformado el límite e otro idetermiado de la forma, que se resuelve + dividiedo el umerador el deomiador etre, así: Por lo tato, ( ) + ) Calcular ( ) Como: , + Para resolver éste límite racioalizamos, así: + etoces, ( ). +

15 ( ) ( ) ( ) ( ) + ( ) + ( ) + + ( ) + ( ) + ( ) El límite se trasformó e otro idetermiado de la forma, que se resuelve dividiedo el + umerador el deomiador etre la potecia de de maor epoete, que e el caso que os ocupa es, así: Por lo tato, ( ) +. + Teorema. Teorema de estricció o del ecaje. h( ) f ( ) g para todo e u itervalo abierto que cotiee a a, ecepto e el propio Si ( ) a si h( ) L g( ), etoces f ( ) L. a a a Ejemplo.9. Sea f, g h las fucioes defiidas por g( ) +. Las gráficas de estas fucioes está trazadas e la figura 8. h( ) +, f ( ) + 9 Figura 8 g () f () h ()

16 Las gráficas de h, f g so parábolas que tiee sus vértices e el puto (; ). Las tres h( ) f ( ) g. Además, fucioes está defiidas e. Tambié se observa que ( ) ( + ) ( ) f ( ). Ejercicios propuestos Calcule los siguietes límites. razó. ) ) ) ) 8) 9 + ) +, +. Por lo tato, de acuerdo al teorema de estricció + + ) ) t 0 recuerde que: a b a b a + ab + b + +, recuerde que: + 9) ) ) ( + ) ) ( ) + a b a + b ab 9 t t a b a + ab + b ab + + ) ( ) + Dadas las fucioes idicadas, calcule el límite señalado si eiste, sio eiste establezca la si < ) f si si < ( a) f ( ); ( b) f ( ). ( ) si ) g( ) si < si < ( a) g( ); ( b) g( ). Utilice el teorema de estricció para determiar el límite. ) ) 8) f ( ), f ( ), π 0 si ( ) f ( ) + < para toda dado que si f ( ) si, f ( ), dado que cos f ( ), + para toda e el itervalo ( ) π ;0. para toda e el itervalo ( π π ) ;.

17 Cotiuidad de ua fució. Fució cotiua e u úmero. Ua fució f es cotiua e u úmero a si sólo si se satisface las tres codicioes siguiete: i) f (a) eiste; ii) f ( ) eiste; a iii) f ( ) f ( a). a Si por lo meos ua de estas tres codicioes o se cumple e a, etoces se dice que la fució f es discotiua e a. Ejemplos 0. ) La fució defiida por f ( ), es discotiua e, pues dicha fució o está defiida e el. Veamos como es su comportamieto gráficamete, mostrado e la figura 9. Figura 9 - f () - (; ) La gráfica muestra u salto e el puto (; ), esto se debe a la discotiuidad de la fució e, por lo tato, f() o eiste. Observado la gráfica se sospecha que f ( ) eiste es igual a. Veamos si esto es cierto: ( + )( ) ( + ). Cuado ua fució f preseta las características ateriores, es decir, o está defiida e u úmero a pero f ( ) eiste, se dice que f preseta ua discotiuidad removible o eiable, a

18 porque si f es redefiida e a de maera que f ( a) f ( ), la ueva fució es cotiua e a. Si ua discotiuidad o es removible se dice que es ua discotiuidad esecial. La discotiuidad de la fució f ( ), es removible, porque si se redefie e, se obtiee la siguiete fució: a si F( ) si La fució F es cotiua e, puesto que, F (). F( ) 0. ) Sea g la fució defiida por g( ). La gráfica de la fució es mostrada e la figura g () - Figura La gráfica de g se rompe e el puto dode pues la fució o está defiida e dicho puto. Además, i) ( ) g( ) + ( ) g o está defiida. ii) g( ) o eiste., g( ), luego, g( ) o eiste. Por lo tato, + ( ) Etoces, la fució g es discotiua e, la discotiuidad es esecial porque g( ) o eiste. La discotiuidad de éste ejemplo recibe el ombre de discotiuidad ifiita. ) Sea h la fució defiida por si h( ) si La gráfica de h es mostrada e la siguiete figura:

19 8 Figura Veamos que sucede co las codicioes de cotiuidad de la fució h e. i) g() ii) h( ) h( ) +, por lo tato, h( ) o eiste. + Como la codició ii) o se cumple, h es discotiua e. La discotiuidad es ifiita, desde luego esecial. Bibliografía [] Rabuffetti Hebe T. Itroducció al Aálisis Matemático, décima edició. [] Apostol Tom M. Calculus, seguda edició. Autor: Eleazar José García Profesió: Liceciado e Matemática País: Veezuela

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos.

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos. CAPÍTULO VIII CONVERGENCIA DE SUCESIONES SECCIONES A Criterios de covergecia B Ejercicios propuestos 347 A CRITERIOS DE CONVERGENCIA Ua fució cuyo domiio es el cojuto de los úmeros aturales se dice sucesió

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54

Más detalles

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

Objetivos partir de su. nte de una función, Relacionar ASÍN CON CLA 11.4.

Objetivos partir de su. nte de una función, Relacionar ASÍN CON CLA 11.4. CONTENIDOS.- MAPA CONCEPTUAL DE LA UNIDAD....- CONCEPTO DE LÍMITE DE UNA FUNCIÓNN EN UN PUNTO....- LÍMITES LATERALES: CARACTERIZACIÓN....- LÍMITES Y OPERACIONES CON FUNCIONES: ÁLGEBRA DE LÍMITES... 5.-

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG Covolució Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció... Aálisis de Sistemas Discretos Lieales e Ivariates e el Tiempo.... Técicas

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números.

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números. Capítulo 3 Sucesioes 3 Defiicioes Geerales El tema de este capítulo es el estudio de las sucesioes de úmeros reales Ua sucesió o es más que u cojuto ordeado de úmeros Por ejemplo, 2, 4, 6, 8, 0, 2,, 2,

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna,

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna, Tema 9 El plao complejo 9. Números complejos E IR, las operacioes suma producto de úmeros reales so operacioes iteras (el resultado de operar es otro úmero real) que permite la existecia de operacioes

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

Funciones de variable compleja

Funciones de variable compleja Tema 10 Fucioes de variable compleja 10.1 Fucioes complejas de variable compleja Defiició 10.1 Ua fució compleja de variable compleja es ua aplicació f: A C dode A C. Para cada z A, fz) C, luego fz) =

Más detalles

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

INTEGRALES DE RIEMANN

INTEGRALES DE RIEMANN NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES DE RIEMANN Ig. Jua Sacerdoti Departameto de Matemática Facultad de Igeiería Uiversidad de Bueos Aires 00 INDICE.- INTEGRAL..- INTRODUCCIÓN..-

Más detalles

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales.

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales. Sucesioes Sucesió Se deomia sucesió a ua fució cuyo domiio es el cojuto de los úmeros aturales. Para deotar el -ésimo elemeto de la sucesió se escribe a e lugar de f(). Ejemplo: a = 1/ a 1 = 1, a 2 = 1/2,

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a)

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a) Aproimació de ua fució mediate u poliomio Cuado yf tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

TEMA 25 (Oposiciones de Matemáticas)

TEMA 25 (Oposiciones de Matemáticas) TEMA 25 (Oposicioes de Matemáticas) LÍMITES DE FUNCIONES. CONTINUIDAD Y DISCONTINUIDAD. TEOREMA DE BOLZANO.. Itroducció. 2. Límites de fucioes. 2.. Límite de ua fució e u puto. 2.2. Límites laterales.

Más detalles

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC.

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC. APLICACIONES INFORMÁTICAS EN QUÍMICA Problemas Tema 2.3: Series, represetació de fucioes y costrucció de tablas e HC Grado e Química º SEMESTRE Uiversitat de Valècia Facultad de Químicas Departameto de

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18 Los úmeros reales.. Los úmeros reales El cojuto de los úmeros reales está formado por los úmeros racioales y los irracioales. Se represeta por la letra Los úmeros racioales so los úmeros eteros, los decimales

Más detalles

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007 CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y

Más detalles

Tema 1: Números Complejos

Tema 1: Números Complejos Números Complejos Tema 1: Números Complejos Deició U úmero complejo es u par ordeado (x, y) de úmeros reales Éste puede iterpretarse como u puto del plao cuya abscisa es x y cuya ordeada es y El cojuto

Más detalles

Resolución de ecuaciones no lineales

Resolución de ecuaciones no lineales Resolució de ecuacioes o lieales Solucioa ecuacioes o lieales tipo f()= Normalmete cada método tiee sus requisitos Métodos so iterativos Métodos iterativos para resolver f()= E geeral métodos iterativos

Más detalles

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES.

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES. Tema 6 Derivada de ua ució e u puto Fució derivada Derivadas sucesivas Aplicacioes TEMA 6 DERIVADA DE UNA FUNCIÓN EN UN PUNTO FUNCIÓN DERIVADA DERIVADAS SUCESIVAS APLICACIONES ÍNDICE INTRODUCCIÓN DERIVADA

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

La sucesión de Lucas

La sucesión de Lucas a sucesió de ucas María Isabel Viggiai Rocha Cosideramos la sucesió umérica { } defiida por: - - si 3 y y 3. Esta sucesió es coocida como la sucesió de ucas y a sus térmios se los llama úmeros de ucas.

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució LITERATURA Y MATEMÁTICAS El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía cuidadosamete los

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució L I T E R A T U R A Y M A T E M Á T I C A S El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía

Más detalles

Problemas de Sucesiones

Problemas de Sucesiones Capítulo Problemas de Sucesioes Problema. Calcular los siguietes ites: l se i e + 3 ii 5 iii l iv + + + Solució: l se i [ escala de iitos se acotada ] 0 acotada 0. e + e ii 5 + [ úmero meor que uo 5 ]

Más detalles

PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14

PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14 GUIA DE TRABAJO PRACTICO Nº 4 PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 4 OBJETIVOS: Lograr que el Alumo: Resuelva correctamete aritmos y aplique sus propiedades. Resuelva ecuacioes epoeciales.

Más detalles

1 EXPRESIONES ALGEBRAICAS

1 EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS E el leguaje matemático, se deomia expresioes algebraicas a toda combiació de letras y/o úmeros viculados etre si por las operacioes de suma, resta, multiplicació y poteciació de

Más detalles

3. Volumen de un sólido.

3. Volumen de un sólido. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

MODULO PRECALCULO QUINTA UNIDAD

MODULO PRECALCULO QUINTA UNIDAD www.mateladia.org MODULO PRECALCULO QUINTA UNIDAD Límites Cotiuidad y Derivada.... y cotiuó Alicia:

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos

Más detalles

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series.

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series. CÁLCULO Igeiería Idustrial. Curso 2009-200. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Lecció 5. Series. Resume de la lecció. 5.. Sucesioes y series. Sucesió covergete. Se de e ua sucesió

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

Mó duló 21: Sumatória

Mó duló 21: Sumatória INTERNADO MATEMÁTICA 16 Guía del estudiate Mó duló 1: Sumatória Objetivo: Coocer y aplicar propiedades para el cálculo de sumatorias. Para calcular alguas sumatorias es ecesario coocer sus propiedades

Más detalles

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx .7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

MC Fco. Javier Robles Mendoza Primavera 2009

MC Fco. Javier Robles Mendoza Primavera 2009 1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN APUNTES CURSO: ALGEBRA SUPERIOR INGENIERIA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Medoza Primavera 2009 2

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

CAPÍTULO V. SUCESIONES Y SERIES

CAPÍTULO V. SUCESIONES Y SERIES (Aputes e revisió para orietar el apredizaje) CAPÍTULO V. UCEIONE Y ERIE DEFINICIÓN. Ua sucesió ifiita, o simplemete sucesió, es ua fució cuyo domiio está costituido por el cojuto de los úmeros aturales

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

CÁLCULO DIFERENCIAL. 1.- Estudia la continuidad de las siguientes funciones:

CÁLCULO DIFERENCIAL. 1.- Estudia la continuidad de las siguientes funciones: ejerciciosyeamees.com CÁLCULO DIFERENCIAL.- Estudia la cotiuidad de las guietes fucioes: - + f() = ; g()= ; h()= + - ( - )(+) + - - - - - < < 0 i()= e j()= - k()= - > cos 0 = 0 + se l()= m()= = 0 = 0 Sol:

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1

Más detalles

TEMA 19 Cálculo de límites de sucesiones*

TEMA 19 Cálculo de límites de sucesiones* CURSO -6 TEMA 9 Cálculo de límites de sucesioes* Propiedades aritméticas de los límites de sucesioes. b tales que : a = a b = b, dode ab, R Sea las sucesioes { } a y { } Etoces podemos obteer su suma,

Más detalles

Cálculo de límites Criterio de Stolz. Tema 8

Cálculo de límites Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

Números naturales, enteros y racionales

Números naturales, enteros y racionales Tema 2 Números aturales, eteros y racioales Estudiamos e este tema los úmeros reales que podemos ver como los más secillos e ituitivos. Empezamos detectado detro de R a los úmeros aturales, a partir de

Más detalles

EJERCICIOS RESUELTOS. t +

EJERCICIOS RESUELTOS. t + BXX5744_07 /6/09 4: Págia 49 EJERCICIOS RESUELTOS Calcula la tasa de variació media de la fució f() = + e los itervalos [, 0] y [0, ], aalizado el resultado obteido y la relació co la fució. La fució f()

Más detalles

1. Calcular, aplicando mentalmente la definición de raíz (no usar calculadora):

1. Calcular, aplicando mentalmente la definición de raíz (no usar calculadora): EJERCICIOS de RADICALES º ESO académicas FICHA : Cocepto de raíz -ésima RECORDAR: Defiició de raíz -ésima: Caso particular de simplificació: a x x a x x (Añadir estas fórmulas al formulario, juto co la

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas Semiario Uiversitario Matemática Módulo Expresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo y o la de estudio,

Más detalles

2 CARTAS DE CONTROL POR ATRIBUTOS

2 CARTAS DE CONTROL POR ATRIBUTOS 2 CARTAS DE CONTROL POR ATRIBUTOS Cualquier característica de calidad que pueda ser clasificada de forma biaria: cumple o o cumple, fucioa o o fucioa, pasa o o pasa, coforme o discoforme defectuoso, o

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Sucesiones y series de números reales 1. Sucesiones de números reales

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Sucesiones y series de números reales 1. Sucesiones de números reales - Ferado Sáchez - - 7 Sucesioes Cálculo I y series de úmeros reales Sucesioes de úmeros reales 20 205 De maera similar a como se hizo para sucesioes de úmeros racioales, se defie ua sucesió de úmeros reales

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el

Más detalles

Tema 5 Series numéricas

Tema 5 Series numéricas Tema 5 Series uméricas Objetivos 1. Defiir series co wxmaxima. 2. Calcular sumas parciales de ua serie. 3. Iterpretar la defiició de suma de ua serie. 4. Calcular la suma de ua serie geométrica. 5. Calcular

Más detalles

PROGRESIONES ARITMÉTICAS.-

PROGRESIONES ARITMÉTICAS.- PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.

Más detalles

Funciones, límites y continuidad.

Funciones, límites y continuidad. Fucioes, límites y cotiuidad. Guillermo Sáchez () Departameto de Ecoomia e Hª Ecoómica. Uiversidad de Salamaca. Actualizado : -- Sobre el estilo utilizado Mathematica las salidas (Ouput) por defecto las

Más detalles

SUCESIONES Y SERIES DE FUNCIONES

SUCESIONES Y SERIES DE FUNCIONES CAPÍTULO XV. SUCESIONES Y SERIES DE FUNCIONES SECCIONES A. Campo de covergecia. Covergecia uiforme. B. Series de potecias. Itervalos de covergecia. C. Desarrollo de fucioes e series de potecias. D. Aplicacioes

Más detalles

INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS

INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Capítulo INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Problema Calcula las partes real e imagiaria de los siguietes úmeros complejos: a) i + + i, b) + i i + i + i + i, c) d) + i), + ), + i e) f) ) + i 04, i +

Más detalles

Profr. Efraín Soto Apolinar. Área bajo una curva

Profr. Efraín Soto Apolinar. Área bajo una curva Profr. Efraí Soto Apoliar. Área bajo ua curva Nosotros coocemos muchas fórmulas para calcular el área de diferetes figuras geométricas. Por ejemplo, para calcular el área A de u triágulo co base b altura

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito.

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito. MATEMÁTICAS 24, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES JOHN GOODRICK. Para cada sucesió ifiita abajo, determie si coverge o o a u valor fiito. (a) {! } e = (a): No coverge. El úmero e está etre

Más detalles

Tema 4 Sucesiones numéricas

Tema 4 Sucesiones numéricas Tema 4 Sucesioes uméricas Objetivos 1. Defiir sucesioes co wxmaxima. 2. Calcular elemetos de ua sucesió. 3. Realizar operacioes co sucesioes. 4. Iterpretar la defiició de límite de ua sucesió. 5. Calcular

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 005 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( putos) Dibuje el recito defiido por las siguietes iecuacioes: + y 6; 0 y; / + y/3 ; 0; ( puto) Calcule

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

Números naturales, enteros y racionales

Números naturales, enteros y racionales Tema 2 Números aturales, eteros y racioales Estudiamos e este tema los úmeros reales que podemos ver como los más secillos e ituitivos. Empezamos detectado detro de R a los úmeros aturales, a partir de

Más detalles

Tema 4.4: Teorema de Riemann de singularidades evitables. Ceros de una función holomorfa. Principio de identidad

Tema 4.4: Teorema de Riemann de singularidades evitables. Ceros de una función holomorfa. Principio de identidad Tema 4.4: Teorema de Riema de sigularidades evitables. Ceros de ua fució holomorfa. Pricipio de idetidad Facultad de Ciecias Experimetales, Curso 2008-09 E. de Amo Comeamos e este tema extrayedo las primeras

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2) Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos

Más detalles

8 Funciones, límites y continuidad

8 Funciones, límites y continuidad Solucioario 8 Fucioes, límites y cotiuidad ACTIVIDADES INICIALES 8.I. Copia y completa la siguiete tabla, epresado de varias formas los cojutos uméricos propuestos. Gráfica Itervalo Desigualdad Valor absoluto

Más detalles

Señales y sistemas discretos (1) Transformada Z. Definiciones

Señales y sistemas discretos (1) Transformada Z. Definiciones Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas

Más detalles

Aplicaciones del cálculo integral vectorial a la física

Aplicaciones del cálculo integral vectorial a la física Aplicacioes del cálculo itegral vectorial a la física ISABEL MARRERO epartameto de Aálisis Matemático Uiversidad de La Lagua imarrero@ull.es Ídice 1. Itroducció 1 2. Itegral doble 1 2.1. Motivació: el

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

R. Urbán Ruiz (notas de clase)

R. Urbán Ruiz (notas de clase) R. Urbá Ruiz (otas de clase) Fucioes E las ciecias Ecoómicas las fucioes so de mucho valor para resolver problemas dode haya que relacioar variables; como por ejemplo, la producció, la oferta, la demada,

Más detalles

1. Sucesiones página 217. 2. Idea intuitiva de límite de una sucesión página 222. 3. Operaciones con sucesiones. página 224

1. Sucesiones página 217. 2. Idea intuitiva de límite de una sucesión página 222. 3. Operaciones con sucesiones. página 224 Límite y cotiuidad E S Q U E M A D E L A U N I D A D.. Térmio geeral de ua sucesió págia 7.. Progresioes aritméticas y geométricas págia 7. Sucesioes págia 7. Idea ituitiva de límite de ua sucesió págia..

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE:

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE: Ua progresió es geométrica, si cada termio después del primero se obtiee multiplicado el aterior por u valor costates Este valor costate se llama razó geométrica (q) E geeral: a a : a......... a ; 3 Si

Más detalles

Los números complejos ( )

Los números complejos ( ) Los úmeros complejos (15.06.016) 1. Itroducció Estas otas se propoe u doble objetivo. Co los apartados a 8 se pretede dar uas ocioes básicas sobre los úmeros complejos que ayude a fijar los coceptos expuestos

Más detalles

3.1 DEFINICIÓN DE PENDIENTE DE RECTA

3.1 DEFINICIÓN DE PENDIENTE DE RECTA Cap. La derivada. DEFINICIÓN DE PENDIENTE DE RECTA TANGENTE.. VELOCIDAD INSTANTÁNEA. DEFINICIÓN DE DERIVADA. FORMA ALTERNATIVA.5 DIFERENCIABILIDAD.6 DERIVACIÓN.6. FÓRMULAS DE DERIVACIÓN.6. REGLAS DE DERIVACIÓN.6.

Más detalles

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: Progresioes aritméticas y geométricas Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 005 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 3 (1 puto) Sea las matrices A= 0 1 y B = 1-1 - 0 1 1 De las siguietes operacioes, alguas o se puede

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0

FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0 DEPARTAMENTO DE FÍSICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS Y DE MONTES UNIVERSIDAD DE CÓRDOBA FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0 1. Itroducció al cálculo de

Más detalles

Tema 7 (IV). Aplicaciones de las derivadas (2). Representación gráfica de curvas y fórmula de Taylor

Tema 7 (IV). Aplicaciones de las derivadas (2). Representación gráfica de curvas y fórmula de Taylor Tema 7 (IV) Aplicacioes de las derivadas () Represetació gráfica de curvas y fórmula de Taylor Aplicacioes de la derivada primera El sigo de la derivada primera de ua fució permite coocer los itervalos

Más detalles