Àmbit de les matemàtiques, de la ciència i de la tecnologia M14 Operacions numèriques UNITAT 2 LES FRACCIONS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Àmbit de les matemàtiques, de la ciència i de la tecnologia M14 Operacions numèriques UNITAT 2 LES FRACCIONS"

Transcripción

1 M1 Operacions numèriques Unitat Les fraccions UNITAT LES FRACCIONS 1

2 M1 Operacions numèriques Unitat Les fraccions 1. Concepte de fracció La fracció es representa per dos nombres enters que s anomenen numerador i denominador. Numerador Denominador Una fracció pot representar una part d un conjunt o d una unitat. Exemple Expressa en forma de fracció l expressió: de cada 0 persones són rosses. 0 és el nombre total de persones. 0 es posa en el denominador. és el nombre de persones que són rosses de les 0 del total. es posa en el numerador. La fracció s escriu: 0 Activitat d aprenentatge 1 En la fracció b a el terme b (denominador) expressa en quantes parts iguals s ha dividit la unitat i el terme a (numerador) expressa quantes de les parts ens interessa destacar. 1. Per fer dos entrepans dividim la barra de pa en parts iguals i agafem. Aquest fet s expressa matemàticament de la forma.. Som cinc persones per menjar una truita de patates. Com la repartim? Podem dividir la truita en parts iguals i agafar-ne. La fracció que representa la part de truita que agafem és. La part de truita que sobra és la fracció 1 perquè de les parts fetes n hem deixat una. Activitats d aprenentatge i

3 M1 Operacions numèriques Unitat Les fraccions Representació gràfica de fraccions Es pot fer una representació gràfica que ajuda a entendre millor el concepte de fracció. Per representar la fracció sobre un rectangle es fan parts iguals i es destaquen dues parts. En aquest cas s han destacat de color gris. Per fer la representació gràfica de la fracció sobre un segment es divideix el segment en parts iguals i se senyalen. Activitats d aprenentatge,, i Per fer el càlcul numèric d una fracció es divideix la quantitat per les vegades que diu el denominador i el resultat es multiplica pel numerador 1. Tenim 00. En fem parts iguals i agafem parts. Quina fracció d euros hem agafat? Quants euros és la fracció? La fracció és. Hem de calcular les parts de : = = 00 Les de 00 són 00.. Calcula les parts d un mes. Un mes són 0 dies, per tant, hem de calcular de 0. 0 : = = 0 Les parts d un mes són 0 dies.

4 M1 Operacions numèriques Unitat Les fraccions Activitats d aprenentatge i Una fracció és el quocient de dividir el numerador pel denominador. L escriptura b a és una manera d expressar divisions. = 0, =, a En una fracció : b El numerador pot ser més petit que el denominador. a<b. El quocient és més petit que la unitat. = 0, El numerador pot ser més gran que el denominador. a>b. El quocient és més gran que la unitat. = 1, Si el numerador és igual que el denominador. a = b. El quocient és la unitat. = 1 El denominador no pot ser zero. = 0 divisió. El símbol vol dir infinit. Hi ha infinits valors que són solució de la El numerador i el denominador són nombres enters i per tant poden ser nombres 1 positius i negatius. = = 0. = 1, Activitats d aprenentatge 10,11,1,1 i 1. Fraccions equivalents.1. Concepte de fraccions equivalents Dibuixa segments de cm un a sota de l altre. En el primer segment representa la 1 fracció, en el segon segment la fracció i en el tercer la fracció.

5 M1 Operacions numèriques Unitat Les fraccions (Fes aquí el gràfic) Les fraccions 1, i són fraccions equivalents perquè representen la mateixa porció del segment. A més, el valor numèric d aquestes fraccions és 0, i és el mateix per totes. 1 = 0, = 0, =0, Per indicar que són equivalents, s escriu: 1 = = Les fraccions que representen el mateix s anomenen fraccions equivalents. El conjunt de fraccions equivalents a una fracció donada s anomena nombre racional... Com saber si dos fraccions són equivalents? Per saber si dos fraccions són equivalents es pot fer el quocient de cada una d elles i comprovar si s obté el mateix resultat. Exemple Són equivalents les fraccions i? Fem les divisions: =, i =, Per tant, són equivalents perquè el quocient de les dues és, També hi ha una altra manera de saber si dos fraccions són equivalents: Dos fraccions són equivalents si quan es multiplica el numerador d una pel denominador de l altra s obté el mateix resultat. 1. Les fraccions de l exemple anterior = = i són equivalents, perquè

6 M1 Operacions numèriques Unitat Les fraccions. Les fraccions 1 i són equivalents, perquè 0 0 = 10 1 = 10 1 Recorda que l equivalència s escriu: = 0 La fracció b a és equivalent a la fracció d c si a d = b c S escriu: a = b c d Activitats d aprenentatge 1,1 i 1.. Com obtenir fraccions equivalents? Per obtenir fraccions equivalents cal multiplicar o dividir el numerador i el denominador pel mateix nombre. b) Escriu una fracció equivalent a 10 Es pot multiplicar el numerador i el denominador per qualsevol nombre, positiu o 1 negatiu, en aquest cas ho fem per i s obté la fracció que és una fracció 0 més gran. També es pot dividir per i s obté una fracció més petita,. Activitats d aprenentatge 1,1,0,1 i. Simplificar fraccions Simplificar una fracció és convertir-la en una altra equivalent, més senzilla. Per simplificar es divideix el numerador i el denominador pel mateix nombre.

7 M1 Operacions numèriques Unitat Les fraccions Exemple Per simplificar la fracció es pot dividir per. 1 = La nova fracció es pot tornar a simplificar dividint una altra vegada per. 1 1 = La nova fracció es pot tornar a simplificar dividint, en aquest cas, per. 1 = Activitats d aprenentatge. Fracció irreductible Fracció irreductible és la fracció que no es pot simplificar més. Per obtenir la fracció irreductible es descomponen el numerador i denominador en factors primers i després se suprimeixen els factors comuns. Exemple 0 Troba la fracció irreductible de 10 Primer es fa la descomposició en factors primers. Descomposició en factors primers: b) 1 Després es col loquen els factors primers de 0 en el numerador i els de 10 en el denominador. Per últim se suprimeixen els factors comuns, en aquest cas són el i. Queden el i el. 0 = = 10 La fracció irreductible és Activitats d aprenentatge i

8 M1 Operacions numèriques Unitat Les fraccions. Reducció de fraccions a mínim comú denominador Reduir fraccions a mínim comú denominador és convertir-les en d altres equivalents a cadascuna d elles amb el mateix denominador i que aquest sigui el més petit possible. Per reduir fraccions a mínim comú denominador: 1r. Es troba el mcm dels denominadors. Per calcular-lo es pot utilitzar la següent regla pràctica: a) Es descomponen els nombres en factors primers. b) S agafen els factors comuns i no comuns dotats de l exponent més gran i es fa el seu producte. n. El mcm es divideix pel denominador i el resultat es multiplica pel numerador. 1. Volem reduir a mínim comú denominador les fraccions i 1. 1r. Calculem el mcm de i = 1 = mcm (, 1) = = 0 n. En la fracció el mcm el dividim per i el resultat el multipliquem per. 0 : = = La fracció queda 0 Fem el mateix amb la segona fracció 1 0 : 1 = = La nova fracció és 0 10 Les fraccions i reduïdes a mínim comú denominador són les fraccions i

9 M1 Operacions numèriques Unitat Les fraccions. Redueix a mínim comú denominador les fraccions següents:, i 1 = 1 = = El mcm de (, 1 i ) és = : = 1 ; 1 = 1 : 1 = ; = 0 : = 1 ; 1 = 0 0 Les noves fraccions que tenen el mínim comú denominador són:, i Activitats d aprenentatge i. 1. Comparació de fraccions. Quan dues fraccions tenen el mateix denominador, com per exemple i és 1 1 més gran la fracció 1 perquè de 1 parts hem destacat i en la primera fracció només en destaquem. Per tant, és més gran la fracció que té el numerador més gran. En el cas de les fraccions i primer cal aconseguir igualar els denominadors. 1 1 i i després es comparen els nous numeradors. En aquest cas és mes gran 0 0 la fracció. Per comparar fraccions: a) Es redueixen a mínim comú denominador. b) El numerador més gran determina la fracció més gran..

10 M1 Operacions numèriques Unitat Les fraccions 1. Compara les fraccions i ordena-les i 1 Es calcula el mcm dels denominadors (1 i ) 1 = = El mcm de (1 i ) és 1 Les noves fraccions són: 1 : 1 = 1; 1 = 1 : = ; = Es comparen els numeradors. La fracció és més gran que 1. S escriu : > Compara les fraccions i ordena-les, i 1 = 1 = = El mcm de (,1 i ) és = Les noves fraccions equivalents són: : = ; (-11) = - : 1 = ; () = : = ; () = > > 11 Per tant, > > 1 Activitats d aprenentatge i 10

11 M1 Operacions numèriques Unitat Les fraccions Activitats d aprenentatge 1. Expressa en forma de fracció: a) de cada 10 alumnes són nois b) De cada 0 vegades que vaig a la platja em cremo la pell vegades c) He fet a peu Km dels 0 Km de l etapa d) En un pom de roses són de color blanc e) 1 de cada 100 turistes venen d Itàlia. Quina fracció d euro representen 0 cèntims. (Recorda que 1 són 100 cèntims.). Quina fracció d hora representen 1 minuts.. Representa gràficament sobre el rectangle la fracció.. Representació de fraccions sobre un segment A D C H B AC = 1 AD = 1 Quina fracció representa HB?. Representa sobre un segment la fracció. Representa sobre un segment la fracció. Cacula: a) de 1 b) de 10. Les parts dels 0 gr de castanyes que hem comprat per fer la castanyada han sortit dolentes. Quants grams de castanyes eren dolents? 10. Calcula el quocient de les fraccions: 10 = = =

12 M1 Operacions numèriques Unitat Les fraccions 11. Digues quines de les expressions següents no són fracció i per què?, 10, 0 1. De l activitat anterior calcula el valor numèric de les que creus que són fraccions. (Això vol dir, fer el quocient. Per saber el signe s aplica la regla de la divisió d enters.) 1. Calcula el valor de les fraccions següents. Quina és la més gran? Quina és la més petita? 1 1. Calcula el valor de les fraccions següents i ordena-les de mes gran a més petita. Utilitza els signes (> major que) i (< menor que). 1. Comprova si és cert que =. Per què? 1. Comprovar si són equivalents les fraccions següents: a) b) c) 1 1. Comprova si són equivalents les fraccions. Tingues en compte el signe. = 1 1. Escriu una fracció equivalent a que sigui més gran. 1. Escriu una fracció equivalent a 1 que sigui més petita. 0. Escriu tres fraccions equivalents a 0 que siguin més grans i més petites. 1. Completa el valor que falta: 1 1 a) = b) = 0. Completa els valors que falten. 1 a) = = = = b) 1 0 = 1 = = = 1 1

13 M1 Operacions numèriques Unitat Les fraccions. Simplifica tant com puguis les fraccions següents: 1 a) b). Calcula la fracció irreductible de. Calcula la fracció irreductible de les fraccions següents: 1 a) b). Redueix a mínim comú denominador les fraccions següents: 10 0 a) i b) i Redueix a mínim comú denominador les fraccions següents: 1 a), i b), i Ordena de més petita a més gran les fraccions següents: a), i 1 b), i 0 1. Una persona triga d hora a llegir el diari i una altra d hora. Quina triga més? 1

UNITAT 3 OPERACIONS AMB FRACCIONS

UNITAT 3 OPERACIONS AMB FRACCIONS M Operacions numèriques Unitat Operacions amb fraccions UNITAT OPERACIONS AMB FRACCIONS M Operacions numèriques Unitat Operacions amb fraccions Què treballaràs? En acabar la unitat has de ser capaç de

Más detalles

operacions inverses índex base Per a unificar ambdues operacions, es defineix la potència d'exponent fraccionari:

operacions inverses índex base Per a unificar ambdues operacions, es defineix la potència d'exponent fraccionari: Potències i arrels Potències i arrels Potència operacions inverses Arrel exponent índex 7 = 7 7 7 = 4 4 = 7 base Per a unificar ambdues operacions, es defineix la potència d'exponent fraccionari: base

Más detalles

UNITAT 3: SISTEMES D EQUACIONS

UNITAT 3: SISTEMES D EQUACIONS UNITAT 3: SISTEMES D EQUACIONS 1. EQUACIONS DE PRIMER GRAU AMB DUES INCÒGNITES L equació x + y = 3 és una equació de primer grau amb dues incògnites : x i y. Per calcular les solucions escollim un valor

Más detalles

TEMA 3: Polinomis 3.1 DEFINICIONS:

TEMA 3: Polinomis 3.1 DEFINICIONS: TEMA 3: Polinomis 3.1 DEFINICIONS: Anomenarem monomi qualsevol expressió algèbrica formada per la multiplicació d un nombre real i d una variable elevada a un exponent natural. El nombre es diu coeficient

Más detalles

Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera:

Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera: Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera: ax + by = k a x + b y = k Coeficients de les incògnites: a, a, b, b. Termes independents:

Más detalles

Activitats de repàs DIVISIBILITAT

Activitats de repàs DIVISIBILITAT Autor: Enric Seguró i Capa 1 CRITERIS DE DIVISIBILITAT Un nombre és divisible per 2 si acaba en 0 o parell (2,4,6,8). Ex: 10, 24, 62, 5.256, 90.070,... Un nombre és divisible per 3 si la suma de les seves

Más detalles

8. Reflexiona: Si a<-3, pot se a<0?

8. Reflexiona: Si a<-3, pot se a<0? ACTIVITATS 1. Expressa amb nombres enters: a) L avió vola a una altura de tres mil metres b) El termòmetre marca tres graus sota zero c) Dec cinc euros al meu germà 2. Troba el valor absolut de: -4, +5,

Más detalles

Les Arcades. Molló del terme. Ermita la Xara. Esglèsia Sant Pere

Les Arcades. Molló del terme. Ermita la Xara. Esglèsia Sant Pere Les Arcades Molló del terme Ermita la Xara Esglèsia Sant Pere Pàg. 2 Monomi Un monomi (mono=uno) és una expressió algebraica de la forma: *+,-=/, 1 on R N., rep el nom d indeterminada o variable del monomi,

Más detalles

POLINOMIS i FRACCIONS ALGEBRAIQUES

POLINOMIS i FRACCIONS ALGEBRAIQUES POLINOMIS i FRACCIONS ALGEBRAIQUES. Polinomis: introducció.. Definició de polinomi.. Termes d un polinomi.. Grau d un polinomi.. Polinomi reduït..5 Polinomi ordenat..6 Polinomi complet..7 Polinomi oposat..8

Más detalles

Els polinomis. Un polinomi és una expressió algebraica amb una única lletra, anomenada variable. Exemple: 9x 6 3x 4 + x 6 polinomi de variable x

Els polinomis. Un polinomi és una expressió algebraica amb una única lletra, anomenada variable. Exemple: 9x 6 3x 4 + x 6 polinomi de variable x Els polinomis Els polinomis Un polinomi és una expressió algebraica amb una única lletra, anomenada variable. Exemple: 9x 6 3x 4 + x 6 polinomi de variable x Elements d un polinomi Els termes: cadascun

Más detalles

EXERCICIS POLINOMIS I FRACCIONS ALGEBRAIQUES

EXERCICIS POLINOMIS I FRACCIONS ALGEBRAIQUES EXERCICIS POLINOMIS I FRACCIONS ALGEBRAIQUES Suma de monomis. 1. Realitza les següents operacions: + 8 4 9 9 6 + 4 5 5 1 + 4 4 4 11 7 f) 6 7 1 8. Realitza les següents operacions: 1 + 5 5 + 1 y + y + y

Más detalles

Unitat didàctica 2. Polinomis i fraccions algebraiques

Unitat didàctica 2. Polinomis i fraccions algebraiques Unitat didàctica. Polinomis i fraccions algebraiques Refleiona L Andrea té una bona col lecció d espelmes que decoren la seva habitació. Totes les espelmes cilíndriques tenen la mateia alçària: cm. Epressa,

Más detalles

SOLUCIONARI Unitat 1

SOLUCIONARI Unitat 1 SOLUCIONARI Unitat Comencem En un problema de física es demana el temps que triga una pilota a assolir una certa altura. Un estudiant, que ha resolt el problema correctament, arriba a la solució t s. La

Más detalles

POLINOMIS. Divisió. Regla de Ruffini.

POLINOMIS. Divisió. Regla de Ruffini. POLINOMIS. Divisió. Regla de Ruffini. Recordeu: n Un monomi en x és una expressió algebraica de la forma a x on a és un nombre real i n és un nombre natural. A s anomena coeficient i n s anomena grau del

Más detalles

ACTIVITATS. a) b) c) d) INS JÚLIA MINGUELL 2n Batxillerat. dv, 18 de març Alumne:

ACTIVITATS. a) b) c) d) INS JÚLIA MINGUELL 2n Batxillerat. dv, 18 de març Alumne: INS JÚLIA MINGUELL 2n Batxillerat Matemàtiques Tasca Continuada 4 «Matrius i Sistemes d equacions lineals» Alumne: dv, 18 de març 2016 LLIURAMENT: dm, 5 d abril 2016 NOTA: cal justificar matemàticament

Más detalles

SOLUCIONS DE LES ACTIVITATS D APRENENTATGE

SOLUCIONS DE LES ACTIVITATS D APRENENTATGE 30 SOLUCIONS DE LES ACTIVITATS D APRENENTATGE Activitat 1 Completa la taula següent: Graus Minuts Segons 30º 30 x 60 = 1.800 1.800 x 60 = 108.000 45º 2.700 162.000 120º 7.200 432.000 270º 16.200 972.000

Más detalles

ÍNDEX 1 DEFINICIÓ 2 PER A QUÈ SERVEIX 3 COM ES REPRESENTA 4 PRIMER CONCEPTE 5 ESCALA DE REDUCCIÓ I ESCALA D AMPLIACIÓ 6 PROCEDIMENT DE CÀLCUL

ÍNDEX 1 DEFINICIÓ 2 PER A QUÈ SERVEIX 3 COM ES REPRESENTA 4 PRIMER CONCEPTE 5 ESCALA DE REDUCCIÓ I ESCALA D AMPLIACIÓ 6 PROCEDIMENT DE CÀLCUL Francesc Sala, primera edició, abril de 1996 última revisió, desembre de 2007 ÍNDEX 1 DEFINICIÓ 2 PER A QUÈ SERVEIX COM ES REPRESENTA 4 PRIMER CONCEPTE 5 ESCALA DE REDUCCIÓ I ESCALA D AMPLIACIÓ 6 PROCEDIMENT

Más detalles

4.- Expressa en forma de potència única indicant el signe resultant.

4.- Expressa en forma de potència única indicant el signe resultant. Pàgina 1 de 8 EXERCICIS PER LA RECUPARACIÓ 1A Avaluació 1.- Calcula de dues maneres (TP i RP): a) 25 + (-1+7) (18 9 + 15)= TP= RP= 9 (-12 + 5 8 = TP= RP= 2.- Treu factor comú i calcula: a) 5.(-3) + (-7).

Más detalles

avaluació diagnòstica educació secundària obligatòria

avaluació diagnòstica educació secundària obligatòria curs 2011-2012 avaluació diagnòstica educació secundària obligatòria competència matemàtica Nom i cognoms Grup INSTRUCCIONS Llegeix atentament cada pregunta abans de contestar-la. Si t equivoques, ratlla

Más detalles

Els nombres enters són els que permeten comptar tant els objectes que es tenen com els objectes que es deuen.

Els nombres enters són els que permeten comptar tant els objectes que es tenen com els objectes que es deuen. Els nombres enters Els nombres enters Els nombres enters són els que permeten comptar tant els objectes que es tenen com els objectes que es deuen. Enters positius: precedits del signe + o de cap signe.

Más detalles

8 Geometria analítica

8 Geometria analítica Geometria analítica INTRODUCCIÓ Els vectors s utilitzen en diverses branques de la física que fan servir magnituds vectorials, per això és important que els alumnes en coneguin els elements i les operacions.

Más detalles

ELS NOMBRES REALS. MATEMÀTIQUES-1

ELS NOMBRES REALS. MATEMÀTIQUES-1 ELS NOMBRES REALS. MATEMÀTIQUES- ELS NOMBRES REALS.. Els nombres reals.. Intervals de la recta real.. Valor absolut d un nombre real. 4. Notació científica.. Aproximacions i errors. 6. Potències i radicals.

Más detalles

L essencial. 1. CÀLCUL DE TOTS ELS DIVISORS D UN NOMBRE Calcula tots els divisors de RECONEIXEMENT DE SI UN NOMBRE

L essencial. 1. CÀLCUL DE TOTS ELS DIVISORS D UN NOMBRE Calcula tots els divisors de RECONEIXEMENT DE SI UN NOMBRE 2 DIVISIBILITAT NOM: CURS: DATA: L essencial 1. CÀLCUL DE TOTS ELS DIVISORS D UN NOMBRE Calcula tots els divisors de 63. PRIMER. Dividim 63 entre 1, 2, 3 fins que el quocient sigui més petit que el divisor.

Más detalles

420 MATEMÀTIQUES 1r ESO MATERIAL FOTOCOPIABLE GRUP PROMOTOR / SANTILLANA EDUCACIÓN, S. L. AVALUACIÓ INICIAL

420 MATEMÀTIQUES 1r ESO MATERIAL FOTOCOPIABLE GRUP PROMOTOR / SANTILLANA EDUCACIÓN, S. L. AVALUACIÓ INICIAL NOMBRES NATURALS Escriu en xifres i lletres. a) Un nombre que sigui deu mil unitats més gran que.08.7. b) Un nombre que sigui un milió d unitats més petit que 0.0.. Troba el valor posicional de la xifra.

Más detalles

Programa Grumet Èxit Fitxes complementàries

Programa Grumet Èxit Fitxes complementàries MESURA DE DENSITATS DE SÒLIDS I LÍQUIDS Activitat 1. a) Digueu el volum aproximat dels següents recipients: telèfon mòbil, un cotxe i una iogurt. Teniu en compte que un brik de llet té un volum de 1000cm3.

Más detalles

Fraccions. Objectius. Abans de començar

Fraccions. Objectius. Abans de començar Fraccions Objectius En aquesta quinzena aprendràs a: Conèixer el valor d'una fracció. Identificar les fraccions equivalents. Simplificar una fracció fins trobar la fracció irreductible. Passar fraccions

Más detalles

avaluació educació primària

avaluació educació primària avaluació educació primària ENGANXEU L ETIQUETA IDENTIFICATIVA EN AQUEST ESPAI curs 2015-2016 competència matemàtica instruccions Per fer la prova utilitza un bolígraf. Aquesta prova té diferents tipus

Más detalles

Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera:

Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera: Dossier de sistemes d'equacions lineals. / Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera: k b a k b a Coeficients de les incògnites:

Más detalles

DIVISIBILITAT. Amb els nombres 5, 7 i 35 podem escriure diverses expressions matemàtiques: 5x7= 35 35 5 35

DIVISIBILITAT. Amb els nombres 5, 7 i 35 podem escriure diverses expressions matemàtiques: 5x7= 35 35 5 35 ESO Divisibilitat 1 ESO Divisibilitat 2 A. El significat de les paraules. DIVISIBILITAT Amb els nombres 5, 7 i 35 podem escriure diverses expressions matemàtiques: 5x7= 35 35 = 7 5 35 = 5 7 35 7 0 5 35

Más detalles

Departament d Educació SES Pla Marcell. Departament de Matemàtiques.

Departament d Educació SES Pla Marcell. Departament de Matemàtiques. Departament d Educació Departament de Matemàtiques. La Calculadora Departament d Educació Les fraccions a la calculadora. Curs 009-00 FULL DE TREBALL A : DESCRIPCIÓ DE LA CALCULADORA Departament d Educació

Más detalles

Bloc I. ARIMÈTICA. Tema 6: POTÈNCIES I ARREL QUADRADA TEORIA

Bloc I. ARIMÈTICA. Tema 6: POTÈNCIES I ARREL QUADRADA TEORIA 1. INTRODUCCIÓ. IES L ASSUMPCIÒ d El http://ww w.ieslaasuncion.org Observa l arbre genealògic de Lluïsa: Rebesavis Besavis Iaios Pares Lluïsa Hi ha ocasions en les que per a resoldre un problema es necessari

Más detalles

2. Operacions amb polinomis: la suma, la resta i el producte de polinomis.

2. Operacions amb polinomis: la suma, la resta i el producte de polinomis. POLINOMIS I FUNCIONS POLINÒMIQUES. 1. Els polinomis.. Operacions amb polinomis: La suma, la resta i el producte de polinomis. 3. Identitats notables. El binomi de Newton. 4. Divisió de polinomis. Regla

Más detalles

COM ÉS DE GRAN EL SOL?

COM ÉS DE GRAN EL SOL? COM ÉS DE GRAN EL SOL? ALGUNES CANVIS NECESSARIS. Planetes Radi Distància equatorial al Sol () Llunes Període de Rotació Òrbita Inclinació de l'eix Inclinació orbital Mercuri 2.440 57.910.000 0 58,6 dies

Más detalles

FUNCIONS I FÓRMULES TRIGONOMÈTRIQUES

FUNCIONS I FÓRMULES TRIGONOMÈTRIQUES FUNCIONS I FÓRMULES TRIGONOMÈTRIQUES Pàgina 8. Encara que el mètode per a resoldre les preguntes següents se sistematitza a la pàgina següent, pots resoldre-les ara: a) Quants radiants corresponen als

Más detalles

Resultat final, sense desenvolupar, dels exercicis i problemes proposats de cada unitat i de l apartat Resolució de problemes. En queden exclosos

Resultat final, sense desenvolupar, dels exercicis i problemes proposats de cada unitat i de l apartat Resolució de problemes. En queden exclosos DE S L U S RE S I V I C LES Resultat final, sense desenvolupar, dels exercicis i problemes proposats de cada unitat i de l apartat Resolució de problemes. En queden exclosos aquells exercicis que requereixen

Más detalles

POLINOMIS. p(x) = a 0 + a 1 x + a 2 x a n x n,

POLINOMIS. p(x) = a 0 + a 1 x + a 2 x a n x n, POLINOMIS Un monomi és una expressió de la forma ax m, on el coeficient a és un nombre real o complex, x és una indeterminada i m és un nombre natural o zero. Un polinomi és una suma finita de monomis,

Más detalles

Hi ha successions en que a partir del primer terme tots els altres es troben sumant una quantitat fixa al terme anterior, aquí hi ha alguns exemples:

Hi ha successions en que a partir del primer terme tots els altres es troben sumant una quantitat fixa al terme anterior, aquí hi ha alguns exemples: 2 PROGRESSIONS 9.1 Progressions aritmètiques Hi ha successions en que a partir del primer terme tots els altres es troben sumant una quantitat fixa al terme anterior, aquí hi ha alguns exemples: La successió

Más detalles

1. SISTEMA D EQUACIONS LINEALS

1. SISTEMA D EQUACIONS LINEALS 1. SISTEMA D EQUACIONS LINEALS 1.1 Equacions lineals Una equació lineal està composta de coeficients (nombres reals) acompanyats d incògnites (x, y, z,t..o ) s igualen a un terme independent, i les solucions

Más detalles

Fem un correu electrónic!! ( )

Fem un correu electrónic!! ( ) Fem un correu electrónic!! (E-mail) El correu electrònic es un dels serveis de Internet més antic i al mateix temps es un dels més populars i estesos perquè s utilitza en els àmbits d'oci i treball. Es

Más detalles

UNITAT 8. FIGURES PLANES

UNITAT 8. FIGURES PLANES 1. Fes servir aquests punts per traçar dues línies poligonals més de cada tipus, apart de les dels exemples: Línia poligonal oberta Línia poligonal oberta creuada Línia poligonal tancada Línia poligonal

Más detalles

Àmbit de les Matemàtiques, de la Ciència i de la Tecnologia M14 Operacions numèriques UNITAT 1 OPERACIONS AMB ENTERS

Àmbit de les Matemàtiques, de la Ciència i de la Tecnologia M14 Operacions numèriques UNITAT 1 OPERACIONS AMB ENTERS UNITAT 1 OPERACIONS AMB ENTERS 1 Què treballaràs? En acabar la unitat has de ser capaç de... Sumar, restar, multiplicar i dividir nombres enters. Entendre i saber utilitzar les propietats de la suma i

Más detalles

La Lluna, el nostre satèl lit

La Lluna, el nostre satèl lit F I T X A 3 La Lluna, el nostre satèl lit El divendres 20 de març tens l oportunitat d observar un fenomen molt poc freqüent: un eclipsi de Sol. Cap a les nou del matí, veuràs com la Lluna va situant-se

Más detalles

MÚLTIPLES I DIVISORS

MÚLTIPLES I DIVISORS MÚLTIPLE D UN NOMBRE MÚLTIPLES I DIVISORS El múltiple d un nombre és el resultat de multiplicar aquest nombre per 0, per 1, per 2, per 3, per 15, per 52 per qualsevol nombre natural. Per exemple: Escriu

Más detalles

Polinomis. Objectius. Abans de començar. 1.Expressions algebraiques pàg. 64 Dels enunciats a les expressions Valor numèric Expressió en coeficients

Polinomis. Objectius. Abans de començar. 1.Expressions algebraiques pàg. 64 Dels enunciats a les expressions Valor numèric Expressió en coeficients 4 Polinomis Objectius En aquesta quinzena aprendràs: A treballar amb expressions literals per obtenir valors concrets en fórmules i equacions en diferents contextos. La regla de Ruffini. El teorema del

Más detalles

28 Sèries del Quinzet. Proves d avaluació

28 Sèries del Quinzet. Proves d avaluació Sèries del Quinzet. Proves d avaluació INSTRUCCIONS Les proves d avaluació de l aprenentatge del Quinzet estan dissenyades per fer l avaluació interna del centre. Aquestes proves, seguint les directrius

Más detalles

Objectius. Crear expressions algebraiques. MATEMÀTIQUES 2n ESO 83

Objectius. Crear expressions algebraiques. MATEMÀTIQUES 2n ESO 83 5 Expressions algebraiques Objectius Crear expressions algebraiques a partir d un enunciat. Trobar el valor numèric d una expressió algebraica. Classificar una expressió algebraica en monomi, binomi,...

Más detalles

Matemàtiques 1r d'eso Professora: Lucía Clar Tur DOSSIER DE REPÀS

Matemàtiques 1r d'eso Professora: Lucía Clar Tur DOSSIER DE REPÀS DOSSIER DE REPÀS 1. Ordena els nombres de més petit a més gran: 01 0 01 101 0 001 0 001 0 1. Converteix els nombres fraccionaris en nombres decimals i representa ls en la recta: /4 1/ 8/ 11/10. Efectua

Más detalles

Veure que tot nombre cub s obté com a suma de senars consecutius.

Veure que tot nombre cub s obté com a suma de senars consecutius. Mòdul Cubs i nombres senars Edat mínima recomanada A partir de 1er d ESO, tot i que alguns conceptes relacionats amb el mòdul es poden introduir al cicle superior de primària. Descripció del material 15

Más detalles

Dossier d estiu de Matemàtiques. 5è d Educació Primària.

Dossier d estiu de Matemàtiques. 5è d Educació Primària. MATEMÀTIQUES 5è 1. Encercla el nombre que s indica: a) quaranta mil vuit: 48.000 40.080 40.008 408.000 b) un milió dotze mil: 1.000.012 1.120.000 1.012.000 1.000.120 c) tres milions tres-cents mil 300.300

Más detalles

FUNCIONS EXPONENCIALS I LOGARÍTMIQUES. MATEMÀTIQUES-1

FUNCIONS EXPONENCIALS I LOGARÍTMIQUES. MATEMÀTIQUES-1 FUNCIONS EXPONENCIALS I LOGARÍTMIQUES. 1. Funcions exponencials. 2. Equacions exponencials. 3. Definició de logaritme. Propietats. 4. Funcions logarítmiques. 5. Equacions logarítmiques. 1. Funcions exponencials.

Más detalles

Àmbit de les Matemàtiques, de la Ciència i de la Tecnologia M14 Operacions numèriques UNITAT 4 POTÈNCIES I ARRELS

Àmbit de les Matemàtiques, de la Ciència i de la Tecnologia M14 Operacions numèriques UNITAT 4 POTÈNCIES I ARRELS M Operacios umèriques Uitat Potècies i arrels UNITAT POTÈNCIES I ARRELS M Operacios umèriques Uitat Potècies i arrels Què treballaràs? E acabar la uitat has de ser capaç de... Resoldre operacios amb potècies.

Más detalles

MATEMÀTIQUES CURS En vermell comentaris per al professorat Construcció d una escultura 3D

MATEMÀTIQUES CURS En vermell comentaris per al professorat Construcció d una escultura 3D En vermell comentaris per al professorat Construcció d una escultura 3D 1/8 Es disposen en grups de tres o quatre i se ls fa lliurament del dossier. Potser és bona idea anar donant per parts, segons l

Más detalles

10 Àlgebra vectorial. on 3, -2 i 4 són les projeccions en els eixos x, y, y z respectivament.

10 Àlgebra vectorial. on 3, -2 i 4 són les projeccions en els eixos x, y, y z respectivament. 10 Àlgebra vectorial ÀLGEBR VECTORIL Índe P.1. P.. P.3. P.4. P.5. P.6. Vectors Suma i resta vectorial Producte d un escalar per un vector Vector unitari Producte escalar Producte vectorial P.1. Vectors

Más detalles

DIAGRAMA DE FASES D UNA SUBSTANCIA PURA

DIAGRAMA DE FASES D UNA SUBSTANCIA PURA DIAGRAMA DE FASES D UNA SUBSTANCIA PURA Que es una fase? De forma simple, una fase es pot considerar una manera d anomenar els estats: sòlid, líquid i gas. Per exemple, gel flotant a l aigua, fase sòlida

Más detalles

L essencial 1. COMPARACIÓ DE NOMBRES DECIMALS 2. SUMA I RESTA DE NOMBRES DECIMALS NOMBRES DECIMALS FES-HO AIXÍ NOM: CURS: DATA:

L essencial 1. COMPARACIÓ DE NOMBRES DECIMALS 2. SUMA I RESTA DE NOMBRES DECIMALS NOMBRES DECIMALS FES-HO AIXÍ NOM: CURS: DATA: 4 NOMBRES DECIMALS NOM: CURS: DATA: L essencial 1. COMPARACIÓ DE NOMBRES DECIMALS Ordena de més petit a més gran: 1,9; 1,901; 11,901. PRIMER. Comparem la part entera dels nombres. El més gran és el que

Más detalles

Semblança. Teorema de Tales

Semblança. Teorema de Tales Semblança. Teorema de Tales Dos polígons són semblants si el angles corresponents són iguals i els costats corresponents són proporcionals. ABCDE A'B'C'D'E' si: Â = Â',Bˆ = Bˆ', Ĉ = Ĉ', Dˆ = Dˆ', Ê = Ê'

Más detalles

MATEMÀTIQUES Versió impresa POTÈNCIES I RADICALS

MATEMÀTIQUES Versió impresa POTÈNCIES I RADICALS MATEMÀTIQUES Versió impresa POTÈNCIES I RADICALS 1. IDEA DE POTÈNCIA I DE RADICAL Al llarg de la història, han aparegut molts avenços matemàtics com a solucions a problemes concrets de la vida quotidiana.

Más detalles

Funcions polinomiques

Funcions polinomiques H. Itkur funcions-ii -1/13 Funcions polinomiques Definició Un polinomi amb coeficients reals és una expressió de la forma p(x) = a 0 + a 1 x + a 2 x 2 +... + a n x n on a 0, a 1,..., a n són nombres reals

Más detalles

Com és la Lluna? 1 Com és la Lluna? F I T X A D I D À C T I C A 4

Com és la Lluna? 1 Com és la Lluna? F I T X A D I D À C T I C A 4 F I T X A 4 Com és la Lluna? El divendres 20 de març tens l oportunitat d observar un fenomen molt poc freqüent: un eclipsi de Sol. Cap a les nou del matí, veuràs com la Lluna va situant-se davant del

Más detalles

Unitat 9. Els cossos en l espai

Unitat 9. Els cossos en l espai Unitat 9. Els cossos en l espai Pàgina 176. Reflexiona Si et fixes en la forma dels objectes del nostre entorn, descobriràs els cossos geomètrics. Els cossos geomètrics sols existeixen en la nostra ment.

Más detalles

Càlcul d'àrees i volums.

Càlcul d'àrees i volums. Càlcul d'àrees i volums. Exemple 1. Donada la figura següent: Calcula'n: superfície volum Resolució: Fixem-nos que la superfície està formada per tres objectes.: 1. la base del cilindre 2. la paret del

Más detalles

SISTEMES D EQUACIONS. MÈTODE DE GAUSS

SISTEMES D EQUACIONS. MÈTODE DE GAUSS UNITAT SISTEMES D EQUACIONS. MÈTODE DE GAUSS Pàgina Equacions i incògnites. Sistemes d equacions. Podem dir que les dues equacions següents són dues dades diferents? No és cert que la segona diu el mateix

Más detalles

GEOMETRÍA ANALÍTICA PLANA

GEOMETRÍA ANALÍTICA PLANA GEOMETRÍA ANALÍTICA PLANA Un vector fijo es un segmento orientado que va del punto A (origen) al punto B (extremo). Módulo del vector : Es la longitud del segmento AB, se representa por. Dirección del

Más detalles

z 2 4z + 5 = 0, z = x + iy, i 1,

z 2 4z + 5 = 0, z = x + iy, i 1, Àlgebra i Geometria I Tema I NOMBRES COMPLEXOS 1- Necessitat dels nombres complexos i definició (a) Les solucions de les equacions polinòmiques El nombre imaginari i 1 Els enters Z, els racionals Q i els

Más detalles

1R ESO CAPÍTOL 3: POTÈNCIES I ARRELS

1R ESO CAPÍTOL 3: POTÈNCIES I ARRELS 48 48 1R ESO CAPÍTOL 3: POTÈNCIES I ARRELS Matemàtiques 1r d'eso. Capítol 3: i arrels 49 49 Índex 1. POTÈNCIES 1.1. CONCEPTE DE POTÈNCIA: BASE I EXPONENT 1.2. QUADRATS I CUBS 1.3. LECTURA DE POTÈNCIES

Más detalles

Polinomis i fraccions. algèbriques BLOC 1. ARITMÈTICA I ÀLGEBRA. 1. Polinomis 1.1. Valor numèric d un polinomi 1.2. Arrels d un polinomi

Polinomis i fraccions. algèbriques BLOC 1. ARITMÈTICA I ÀLGEBRA. 1. Polinomis 1.1. Valor numèric d un polinomi 1.2. Arrels d un polinomi # BLOC. ARITMÈTICA I ÀLGEBRA Polinomis i fraccions algèbriques q. Polinomis.. Valor numèric d un polinomi.. Arrels d un polinomi q. Operacions amb polinomis.. Suma.. Resta.3. Multiplicació.. Divisió.5.

Más detalles

6. Calcula l obertura de l angle que falta. Digues de quin tipus d angles es tracta. 6

6. Calcula l obertura de l angle que falta. Digues de quin tipus d angles es tracta. 6 Geometria dossier estiu 2012 2C 1. Dibuixa dues rectes, m i n, que siguin: a) Paral leles horitzontalment. c) Paral leles verticalment. b) Secants. d) Perpendiculars. 6 2. Dibuixa una recta qualsevol m

Más detalles

Iniciació a les Matemàtiques per a l enginyeria

Iniciació a les Matemàtiques per a l enginyeria Iniciació a les Matemàtiques per a l enginyeria Els nombres naturals 8 Què és un nombre natural? 11 Quins són les operacions bàsiques entre nombres naturals? 11 Què són i per a què serveixen els parèntesis?

Más detalles

Iniciació a les Matemàtiques per a l enginyeria

Iniciació a les Matemàtiques per a l enginyeria Iniciació a les Matemàtiques per a l enginyeria Els nombres naturals 8 Què és un nombre natural? 11 Quins són les operacions bàsiques entre nombres naturals? 11 Què són i per a què serveixen els parèntesis?

Más detalles

VECTORS EN EL PLA. EQUACIÓ VECTORIAL DE LA RECTA ESQUEMA 1. VECTORS EN EL PLA 2. OPERACIONS AMB VECTORS 3. EQUACIONS PARAMÈTRIQUES DE LA RECTA

VECTORS EN EL PLA. EQUACIÓ VECTORIAL DE LA RECTA ESQUEMA 1. VECTORS EN EL PLA 2. OPERACIONS AMB VECTORS 3. EQUACIONS PARAMÈTRIQUES DE LA RECTA VECTORS EN EL PL. EQUCIÓ VECTORIL DE L RECT ESQUEM 1. VECTORS EN EL PL 2. OPERCIONS M VECTORS 3. EQUCIONS PRMÈTRIQUES DE L RECT 1. VECTORS EN EL PL En un sistema d eixos cartesians, cada punt es descriu

Más detalles

Geometria. Àrees i volums de cossos geomètrics

Geometria. Àrees i volums de cossos geomètrics Geometria. Àrees i volums de cossos geomètrics Àrea de figures planes... Àrea dels paral lelograms... Àrea del quadrat... Àrea del rectangle... 3 Àrea del rombe... 4 Àrea del paral lelogram... 4 Àrea dels

Más detalles

1.4 Derivades: Unitat de síntesi (i repàs)

1.4 Derivades: Unitat de síntesi (i repàs) 1.4 Derivades: Unitat de síntesi (i repàs) 11. Problemes de: optimització, extrems ( ), punts d inflexió ( ), rectes tangents (T) i interpretació de gràfiques (G): A.- Considereu tots els prismes rectes

Más detalles

Nombres decimals. Objectius. Abans de començar. 1.Nombres decimals... pàg. 44 Elements d un nombre decimal Arrodoniment i truncament d un decimal

Nombres decimals. Objectius. Abans de començar. 1.Nombres decimals... pàg. 44 Elements d un nombre decimal Arrodoniment i truncament d un decimal 3 Nombres decimals Objectius En aquesta quinzena aprendràs a: Identificar els diferents elements d'un nombre decimal. Aproximar nombres decimals fent arrodoniments i truncaments. Sumar i restar nombres

Más detalles

Generalitat de Catalunya Departament d Ensenyament Institut Obert de Catalunya. Avaluació contínua. Cognoms. Centre: Trimestre: Tardor 11

Generalitat de Catalunya Departament d Ensenyament Institut Obert de Catalunya. Avaluació contínua. Cognoms. Centre: Trimestre: Tardor 11 Generalitat de Catalunya Departament d Ensenyament Institut Obert de Catalunya valuació contínua Qualificació prova TOTL Cognoms una lletra majúscula a cada casella: Nom: Centre: Trimestre: Tardor 11 M4

Más detalles

ANÀLISI. MATEMÀTIQUES-2

ANÀLISI. MATEMÀTIQUES-2 1. ANÀLISI. Caldrà repassar alguns temes de cursos anteriors, com el tema de Funcions polinòmiques i, els de Funcions reals i Límits de funcions, caldrà recordar també els gràfics i propietats més importants

Más detalles

Nom. ACTIVITAT 2. Massa + ingredients = pizza. 1. Ves a la secció de plats precuinats. Agafa una pizza i anota les següents dades: a) Nom

Nom. ACTIVITAT 2. Massa + ingredients = pizza. 1. Ves a la secció de plats precuinats. Agafa una pizza i anota les següents dades: a) Nom Nom ACTIVITAT 2. Massa + ingredients = pizza 1. Ves a la secció de plats precuinats Agafa una pizza i anota les següents dades: a) Nom b) Ingredients c) Pes i preu d) % massa = % ingredients = e) % de

Más detalles

GEOMETRIA PLANA 1. ELS ANGLES 1.1. DEFINICIÓ 1.2. CLASSIFICACIÓ

GEOMETRIA PLANA 1. ELS ANGLES 1.1. DEFINICIÓ 1.2. CLASSIFICACIÓ GEOMETRIA PLANA 1. ELS ANGLES 1.1. DEFINICIÓ Representem un punt A en un pla i tracem dues semirectes amb origen en aquest punt. El punt A serà el vèrtex de l angle i cada semirecta serà el costat. 1..

Más detalles

QUÍMICA 2 BATXILLERAT. Unitat 1 CLASSIFICACIÓ DE LA MATÈRIA LES SUBSTÀNCIES PURES

QUÍMICA 2 BATXILLERAT. Unitat 1 CLASSIFICACIÓ DE LA MATÈRIA LES SUBSTÀNCIES PURES QUÍMICA 2 BATXILLERAT Unitat 1 CLASSIFICACIÓ DE LA MATÈRIA LES SUBSTÀNCIES PURES Les substàncies pures dins la classificació de la matèria Les SUBSTÀNCIES PURES (també anomenades espècies químiques) només

Más detalles

IDENTIFICAR LA RELACIÓ DE PROPORCIONALITAT ENTRE MAGNITUDS

IDENTIFICAR LA RELACIÓ DE PROPORCIONALITAT ENTRE MAGNITUDS OBJECTIU IDENTIICAR LA RELACIÓ DE PROPORCIONALITAT ENTRE MAGNITUDS NOM: CURS: DATA: Per multiplicar un nombre per 0, 00,.000..., es desplaça la coma a la dreta tants llocs com zeros tingui la unitat:,,...,

Más detalles

= T. Si el període s expressa en segons, s obtindrà la freqüència en hertz (Hz). 2) Fem servir la relació entre el període i la freqüència i resolem:

= T. Si el període s expressa en segons, s obtindrà la freqüència en hertz (Hz). 2) Fem servir la relació entre el període i la freqüència i resolem: Període i freqüència Per resoldre aquests problemes utilitzarem la relació entre el període T (temps necessari perquè l ona realitzi una oscil lació completa) i la freqüència (nombre d oscil lacions completes

Más detalles

Construcció d una escultura 3D

Construcció d una escultura 3D 1/8 Construcció d una escultura 3D L'ajuntament de Sant Boi ens ha encarregat construir una escultura geomètrica de ferro. Decidim una com la que figura a continuació, de forma que tota ella està feta

Más detalles

MINIGUIA RALC: REGISTRE D UN NOU ALUMNE (Només per a ensenyaments no sostinguts amb fons públics)

MINIGUIA RALC: REGISTRE D UN NOU ALUMNE (Només per a ensenyaments no sostinguts amb fons públics) MINIGUIA RALC: REGISTRE D UN NOU ALUMNE (Només per a ensenyaments no sostinguts amb fons públics) Índex Registre d un nou alumne Introducció de les dades prèvies Introducció de les dades del Registre:

Más detalles

UNITAT DIDÀCTICA MULTIMÈDIA Escola Origen del aliments. Objectius:

UNITAT DIDÀCTICA MULTIMÈDIA Escola Origen del aliments. Objectius: UNITAT DIDÀCTICA MULTIMÈDIA Escola Origen del aliments Objectius: Conèixer quin és l origen dels aliments. Veure els ingredients de diferents menús infantils. Informar-se sobre el valor energètic de diferents

Más detalles

EXERCICIS MATEMÀTIQUES 1r BATXILLERAT

EXERCICIS MATEMÀTIQUES 1r BATXILLERAT Treball d estiu/r Batillerat CT EXERCICIS MATEMÀTIQUES r BATXILLERAT. Aquells alumnes que tinguin la matèria de matemàtiques pendent, hauran de presentar els eercicis el dia de la prova de recuperació.

Más detalles

TEMA 4: Equacions de primer grau

TEMA 4: Equacions de primer grau TEMA 4: Equacions de primer grau Full de preparació Aquest full s ha de lliurar el dia de la prova Nom:... Curs:... 1. Expressa algèbricament les operacions següents: a) Nombre de rodes necessàries per

Más detalles

2.5. La mesura de les forces. El dinamòmetre

2.5. La mesura de les forces. El dinamòmetre D11 2.5. La mesura de les forces. El dinamòmetre Per mesurar forces utilitzarem el dinamòmetre (NO la balança!) Els dinamòmetres contenen al seu interior una molla que és elàstica, a l aplicar una força

Más detalles

Generalitat de Catalunya Departament d Educació Institut Pla Marcell

Generalitat de Catalunya Departament d Educació Institut Pla Marcell Generalitat de Catalunya Departament d Educació Generalitat de Catalunya Nombres amb signe: els enters 1 Full de treball A LES TEMPERATURES VENEN DONADES PER NOMBRES AMB UN SIGNE + O - Estats per sobre

Más detalles

Les funcions que apliquen a tots els elements del domini la mateixa imatge es diu funció constant, evidentment han d ésser del tipus f(x) = k (k R)

Les funcions que apliquen a tots els elements del domini la mateixa imatge es diu funció constant, evidentment han d ésser del tipus f(x) = k (k R) 1 1 3 FUNCIONS LINEALS I QUADRÀTIQUES 3.1- Funcions constants Les funcions que apliquen a tots els elements del domini la mateixa imatge es diu funció constant, evidentment han d ésser del tipus f(x) k

Más detalles

La Terra i el Sistema Solar Seguim la Lluna Full de l alumnat

La Terra i el Sistema Solar Seguim la Lluna Full de l alumnat La Lluna canvia La Terra i el Sistema Solar Seguim la Lluna Full de l alumnat De ben segur que has vist moltes vegades la Lluna, l hauràs vist molt lluminosa i rodona però també com un filet molt prim

Más detalles

XXXV OLIMPÍADA MATEMÀTICA

XXXV OLIMPÍADA MATEMÀTICA XXXV OLIMPÍADA MATEMÀTICA Primera fase (Catalunya) 10 de desembre de 1999, de 16 a 0h. 1. Amb quadrats i triangles equilàters de costat unitat es poden construir polígons convexos. Per exemple, es poden

Más detalles

Treball. Per resoldre aquests problemes utilitzarem l equació:

Treball. Per resoldre aquests problemes utilitzarem l equació: Treball Per resoldre aquests problemes utilitzarem l equació: W = F d cosα Aquesta equació expressa el treball en termes de la força aplicada, del desplaçament que aquesta força provoca i del cosinus de

Más detalles

REPÀS. Nom: Data: Curs: < 1 = 1 > 1. Tres onzenes parts són de color blau. Dues onzenes parts són de color verd. Blau

REPÀS. Nom: Data: Curs: < 1 = 1 > 1. Tres onzenes parts són de color blau. Dues onzenes parts són de color verd. Blau REPÀS Completa la taula. representació numerador denominador s escriu es llig set dotzens dos novens cinc huitens Uneix amb fletxes segons corresponga. < > Pinta el mosaic segons les indicacions. Després,

Más detalles

Els nombres complexos

Els nombres complexos Els ombres complexos Els ombres complexos Defiició Oposat Represetació Forma bioòmica z = a + bi, o bé z = (a, b) esset a la part real i b, la part imagiària. a = r cos α b = r si α z = a bi Cojugat z

Más detalles

FEINA DE MATEMÀTIQUES 4t ESO SETEMBRE. Fer un resum-esquema de cadascú dels apartats següents:

FEINA DE MATEMÀTIQUES 4t ESO SETEMBRE. Fer un resum-esquema de cadascú dels apartats següents: EINA DE MATEMÀTIQUES t ESO SETEMBRE er un resum-esquema de cadascú dels apartats següents: Càlcul amb nombres enters, fraccions i decimals. Exemples d aplicació. Potenciació i radicació. Propietats i operacions.

Más detalles

EQUACIONS DE PRIMER GRAU

EQUACIONS DE PRIMER GRAU 1.- Resol les equacions següents: a) x 6x + 10 b) 6x + 1 + 4x c) 5x + -10 d) 6(x 1) 4(x ) e) 1-4x + 6x f) 5(x ) + 4 (5x 1) + 1 g) 8( 10 x ) -6 h) 11 (x + 7) x (5x 6) i) 6( 7 x ) 8( 6 x ) j) ( 1) + 5x 1

Más detalles

EQUACIONS. 4. Problemes d equacions.

EQUACIONS. 4. Problemes d equacions. EQUACIONS 1. Conceptes bàsics. 1.1. Definició d igualtat algebraica. 1.. Propietats de les igualtats algebraiques. 1.. Definició d identitat. 1.4. Definició d equació. 1.5. Membres i termes d una equació.

Más detalles

TEORIA I QÜESTIONARIS

TEORIA I QÜESTIONARIS ENGRANATGES Introducció Funcionament Velocitat TEORIA I QÜESTIONARIS Júlia Ahmad Tarrés 4t d ESO Tecnologia Professor Miquel Estruch Curs 2012-13 3r Trimestre 13 de maig de 2013 Escola Paidos 1. INTRODUCCIÓ

Más detalles

Tema 6. MOLS I REACCIONS QUÍMIQUES

Tema 6. MOLS I REACCIONS QUÍMIQUES Tema 6. MOLS I REACCIONS QUÍMIQUES 6.1. El mol 6.1.1. Mols i nombre de partícules: el nombre d Avogadro 6.1.2. Mols i massa: massa molar 6.2. Càlculs amb mols 6.3. Canvis físics i canvis químics 6.4. Reaccions

Más detalles

ESTUDI D UNA FACTURA PREU PER UNITAT D UN PRODUCTE

ESTUDI D UNA FACTURA PREU PER UNITAT D UN PRODUCTE ESTUDI D UNA FACTURA PREU PER UNITAT D UN PRODUCTE i 1-Observa la factura 2-Tria un producte 3-Mira quin és l IVA que s aplica en aquest producte i calcula l 4-Mira el descompte que s aplica en aquest

Más detalles

INS QUADERN Núm. 3 NOM: DATA: / / Polinomis. Trobar l expressió en coeficients d un polinomi i fer-ne operacions.

INS QUADERN Núm. 3 NOM: DATA: / / Polinomis. Trobar l expressió en coeficients d un polinomi i fer-ne operacions. Polinomis Continguts 1. Polinomis Grau. Expressió en coeficients Valor numèric d un polinomi 2. Operacions amb polinomis Suma, diferència, producte Divisió. 3. Identitats notables (a+b) 2 (a-b) 2 (a+b)

Más detalles