Energía. Reactivos. Productos. Coordenada de reacción

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Energía. Reactivos. Productos. Coordenada de reacción"

Transcripción

1 CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III) s ha rprsntado una racción catalizada y la misma sin catalizar. Sñáls n la figura cuáls son la E A y l ΔH n l primr supusto y cuáls n l sgundo. c) Por qué l mplo d un catalizador no s un procdiminto válido para lograr qu una racción no spontána s produzca? 2 - Dadas trs raccions spontánas cualsquira, razon: a) Cuál s l signo d ΔG para cada una? b) Qué datos sría prciso conocr para sabr si al producirs las raccions aumnta l grado d dsordn y cuál d llas transcurriría a mayor vlocidad? 3 - Tnindo n cunta la gráfica adjunta: a) Indiqu si la racción s xotérmica o ndotérmica. b) Rprsnt l valor d ΔH d racción. c) Rprsnt la curva d racción al añadir un catalizador positivo. d) Qué fctos produc l hcho d añadir un catalizador positivo? Enrgía Ractivos Productos Coordnada d racción

2 4 - Contst a las siguints prguntas: a) Cuál s l concpto d vlocidad d racción? b) En qué unidads s xprsa? c) Qué factors incluyn n la vlocidad d racción? d) Por qué un catalizador aumnta la vlocidad d racción? 5 - Los siguints datos dscribn cuatro raccions químicas dl tipo: A + B C + D: Enrgía d activación (kj mol 1 ) ΔG (kj mol 1 ) ΔH (kj mol 1 ) Racción I 1 2 0,2 Racción II 0,5 5 0,8 Racción III 0,7 0,7 0,6 Racción IV 1,5 0,5 0,3 S dsa sabr: a) Cuál s la racción más rápida? b) Cuál o cuáls d stas raccions son spontánas? c) Cuál s la racción más ndotérmica? d) Qué valors d la tabla podrían modificars por la prsncia d un catalizador n cualquira d las situacions antriors? Justifiqu las rspustas. 6 - Razon si la vlocidad d racción dpnd d: a) Si l procso s xotérmico; b) Si l procso s spontáno; c) Si los nlacs qu s rompn son más furts qu los qu s forman; d) La tmpratura y la prsión a la qu s raliza l procso. 7 - Mdiant un diagrama d nrgía coordnada d racción justifiqu n cada caso si la vlocidad d racción dpnd d la difrncia d nrgía ntr: a) Ractivos y productos, n cualquir stado d agrgación; b) Ractivos y productos, n su stado stándar; c) Ractivos y stado d transición; d) Productos y stado d transición. 8 - Razon si son corrctas o incorrctas las siguints afirmacions: a) En una racción química no pud sr nunca ΔG = 0. b) ΔG s indpndint d la tmpratura. c) La racción no s spontána si ΔG > 0. d) La racción s muy rápida si ΔG < Para la racción n fas gasosa idal: A + B C + D cuya cuación cinética o ly d vlocidad s: v = k [A], indiqu cómo varía la vlocidad d racción: a) Al disminuir l volumn dl sistma a la mitad; b) Al variar las concntracions d los productos, sin modificar l volumn dl sistma; c) Al utilizar un catalizador; d) Al aumntar la tmpratura.

3 10 - La racción n fas gasosa: A + B C + D s ndotérmica y su cuación cinética s: v = k [A] 2. Justifiqu si las siguints afirmacions son vrdadras o falsas: a) El ractivo A s consum más dprisa qu l B. b) Un aumnto d la prsión total produc un aumnto d la vlocidad d la racción. c) Una vz iniciada la racción, la vlocidad d racción s constant si la tmpratura no varía. d) Por sr ndotérmica, un aumnto d tmpratura disminuy la vlocidad d racción La cuación d vlocidad para l procso d rducción d HCrO 4 con HSO 3 n mdio ácido s: v = k [HCrO 4 ] [ HSO 3 ] 2 [H + ]. a) Indiqu las unidads d la constant d vlocidad (k). b) Indiqu l ordn total d la racción y los órdns parcials corrspondints a las trs spcis. c) Expliqu los factors qu influyn n la constant d vlocidad d la racción. D Indiqu d qué forma s pud aumntar la vlocidad d racción, sin variar la tmpratura y la composición La racción: A + B C s un procso lmntal. Rsponda razonadamnt a las siguints custions: a) Cuáls son las unidads d la vlocidad d racción?. b) Escriba la xprsión d vlocidad n función d las concntracions. c) Indiqu la molcularidad y los órdns parcials d racción. d) S modifica la vlocidad d racción si las concntracions inicials d A y B s mantinn constants pro cambia la tmpratura dl xprimnto? Para la racción n fas gasosa: CO + NO 2 CO 2 + NO la cuación d vlocidad s: v = k [NO 2 ] 2. Justifiqu si son vrdadras o falsas las siguints afirmacions: a) La vlocidad d dsaparición dl CO s igual qu la vlocidad d dsaparición dl NO 2. b) La constant d vlocidad no dpnd d la tmpratura porqu la racción s supon n fas gasosa. c) El ordn total d la racción s dos. d) Las unidads d la constant d vlocidad srán: mol L 1 s La racción n fas gasosa: 2 A + B 3C s una racción lmntal y, por tanto, d ordn dos rspcto d A y d ordn uno rspcto d B. a) Formul la xprsión para la cuación d vlocidad. b) Indiqu las unidads d la vlocidad d racción y d la constant cinética. c) Justifiqu cómo afcta a la vlocidad d racción un aumnto d la tmpratura a volumn constant. d) Justifiqu cómo afcta a la vlocidad d racción un aumnto dl volumn a tmpratura constant.

4 15 - S dtrminó xprimntalmnt qu la racción: 2 A + B P sigu la cuación d vlocidad: v = k [B] 2. Contst razonadamnt si las siguints proposicions con vrdadras o falsas: a) La vlocidad d dsaparición d B s la mitad d la vlocidad d formación d P. b) La concntración d P aumnta a mdida qu disminuyn las concntracions d los ractivos A y B. c) El valor d la constant d vlocidad s función solamnt d la concntración inicial d B. d) El ordn total d racción s trs La racción: 2 X + Y X 2 Y tin órdns d racción dos y uno rspcto a los ractivos X Y, rspctivamnt. a) Cuál s l ordn total d la racción?. Escriba la cuación d la vlocidad dl procso. b) Qué rlación xist ntr la vlocidad d dsaparición d X y la d aparición d X 2 Y?. c) En qué unidads s pud xprsar la vlocidad d sta racción?; y la constant d vlocidad?. d) D qué factor dpnd l valor d la constant d vlocidad d sta racción?. Razon la rspusta La vlocidad d la racción: A + 2 B C n fas gasosa solo dpnd d la tmpratura y d la concntración d A, d tal manra qu si s duplica la concntración d A la vlocidad d racción también s duplica. a) Justifiqu para qué ractivo cambia más dprisa la concntración. b) Indiqu los órdns parcials rspcto d A y B y scriba la cuación cinética. c) Indiqu las unidads d la vlocidad d racción y d la constant cinética. d) Justifiqu cómo afcta a la vlocidad d racción una disminución d volumn a tmpratura constant Considrando l diagrama d nrgía qu s mustra, para la racción: A B + C contst razonadamnt a las siguints prguntas: a) Cuál pud sr la causa d la difrncia ntr la curva 1 y la 2? b) Para cuál d las dos curvas la racción transcurr a mayor vlocidad?. c) Qué l sucdrá a las constants d vlocidad d racción si s aumnta la tmpratura?. d) La racción s xotérmica o ndotérmica?.

5 19 - Una racción química dl tipo A (g) B (g) + C (g) tin a 25 ºC una constant cinética K = 5, L. mol -1. s -1. Contsta razonadamnt a las siguints prguntas: a) Cuál s l ordn d la racción antrior? b) Cómo s modifica l valor d la constant k si la racción tin lugar a una tmpratura infrior? c) Por qué no coincid l ordn d racción con la stquiomtría d la racción? d) Qué unidads tndría la constant cinética si la racción fus d ordn 1?

6 Solucions 1 - Solución. a) S supon qu la racción I s más lnta qu la racción II. Qu la racción I no sa spontána, mintras qu la racción II sí lo s b) Enrgía d activación: nrgía dl stado d transición (máximo d la curva) mnos nrgía d los ractivos. La racción catalizada positivamnt s la qu prsnta mnor nrgía d activación. Variación d ntalpía d racción: nrgía d los productos mnos nrgía d los ractivos. Es igual, tanto si hay como si no hay catalizador. c) Un catalizador positivo incrmnta la vlocidad d racción rducindo la nrgía d activación, pro dja inaltrada la variación d nrgía libr d Gibbs. 2 - Solución. a) Para todas: ΔG < 0. b) Si aumnta l grado d dsordn: ΔS > 0. La racción qu transcurr a mayor vlocidad s la qu pos mnor nrgía d activación. 3 - Solución a) La racción s xotérmica d) Al añadir un catalizador positivo disminuy la nrgía d activación. Esa disminución d la nrgía d activación incrmnta la vlocidad d racción. 4 - Solución: Tórica 5 - Solución a) La racción II b) Las raccions I y IV c) La racción III d) La nrgía d activación. 6 Solución: d) 7 - Solución La vlocidad d racción no dpnd d la difrncia d nrgía ntr ractivos y productos, dpnd d la difrncia d nrgía ntr ractivos y stado d transición (nrgía d activación). 8 - Solución a) Falsa b) Falsa c) Vrdadra d) Falsa 9 - Solución: a) Al disminuir l volumn a la mitad, aumnta la concntración d los ractivos al dobl, lo qu produc un aumnto d vlocidad ya qu aumnta l numro d choqus La vlocidad s duplica. b) No varía, ya qu la vlocidad s función d las concntracions d los ractivos c) Aumnta, ya qu disminuy la E A, sto hac qu aumnt k y por tanto la vlocidad. O disminuy (catalizador ngativo), ya qu aumnta la E A, disminuy K y por tanto la vlocidad d) Aumnta. S pud dmostrars a partir d k = A RT vlocidad Si T aumnta, aumnta la

7 10 - Solución: a) Falso. v = b) Vrdadro. [A] = [ A] [ B] t = n V A t n A. P = lugo un aumnto d prsión produc un aumnto n R. T T d la [A] y por tanto la vlocidad c) Falso. La vlocidad d la racción dpnd d la tmpratura y d la [A]. Si la [A] disminuy, la vlocidad disminuy d) Falso. Los aspctos trmodinámicos no influyn n la cinética. También s pud dmostrar a partir d k = A aumnto d vlocidad RT un aumnto d T supon un 11 - Solución a) mol 3 L 3 s 1. b) Ordn parcial rspcto a HCrO 4 : 1 Ordn parcial rspcto a HSO 3 : 2 Ordn parcial rspcto a H + : 1 Ordn total d racción: 4. c) Enrgía d activación y tmpratura d) Mdiant la adición d un catalizador (si ést s positivo, la nrgía d activación disminuy, aumnta k y la vlocidad d racción aumnta) Solución a) mol L 1 s 1 b) v = k [A] [B]. lmntal c) Racción bimolcular molcularidad 2. Órdns parcials: 1 rspcto a A y 1 rspcto a B. d) Sí, ya qu k dpnd d la tmpratura Solución. a) Vrdadra v = [ CO] [ NO ] 2 t = t b) Falsa. El stado físico d los ractivos no influy n la constant k. k = A RT c) Vrdadra. d) Falsa. L mol -1 s Solución. a) v = k [A] 2 [B]. b) Vlocidad d racción: mol L 1 s 1 : constant cinética: mol 2 L 2 s 1. c) Una subida d tmpratura a volumn constant incrmnta la constant d vlocidad y, con lla, también aumnta la vlocidad d racción. k = A RT d) Un aumnto dl volumn a tmpratura constant disminuy las concntracions d los ractivos y, con llas, también rbaja la vlocidad d racción Solución. a) Falso. Por cada mol d B qu dsaparc, s forma 1 mol d P b) Vrdadra. Al formars P s consum A y B c) Falso. No dpnd d la concntración sino d la tmpratura d) Falso. Dos

8 16 - Solución. a) Ordn total: 3 ; v = k [X] 2 [Y]. b) La vlocidad d dsaparición d X s l dobl d la vlocidad d aparición d X 2 Y. c) Vlocidad d racción: mol L 1 s 1 : constant d vlocidad: mol 2 L 2 s 1. d) Dpnd d la nrgía d activación y la tmpratura Solución a) La concntración d B cambia a dobl vlocidad qu la d A. b) Órdns parcials d racción: 1 rspcto a A y 0 rspcto a B ; v = k [A]. c) Vlocidad d racción: mol L 1 s 1 : constant cinética: s 1. d) Incrmnta la vlocidad d racción al aumntar la concntración d A Solución. a) En l procso 2 s ha añadido un catalizador positivo. Una pquña cantidad d catalizador positivo, disminuy la vlocidad. Sin altrar las variacions d las funcions d stado b) La curva 2. A mnor E A aumnta l numro d choqus ficacs, aumnta la vlocidad d racción. k = A RT al disminuir E A, K aumnta y por tanto la vlocidad d la racción c) Al incrmntars la tmpratura aumntan las constants d vlocidad y, con llo, las vlocidads d racción. k = A RT d) El contnido nrgético d los productos s mnor qu l d los ractivos. Por tanto s dsprnd nrgía Exotérmica -ΔH R < Solución a) α = 2 b) Si la tmpratura disminuy k = A RT k disminuy y la vlocidad también disminuy c) Solo n las raccions lmntals l ordn d racción coincid con los coficints stquiométricos En procsos no lmntals, qu transcurrn n varias tapas (mcanismo) l ordn d la racción nunca coincid con los coficints stquiométricos d los ractivos. d) s -1

2º BACHILLERATO CINETICA QUÍMICA

2º BACHILLERATO CINETICA QUÍMICA VELOCIDAD DE REACCIÓN 1.- Escrib la xprsión d la vlocidad d racción n función d la concntración d cada una d las spcis qu intrvinn n l procso d obtnción d amoniaco. N + 3 H NH 3 d 1 v = [N] = 3 d 1 [H]

Más detalles

EQUILIBRIO QUIMICO. aa + bb cc + Dd

EQUILIBRIO QUIMICO. aa + bb cc + Dd EQUILIBRIO QUIMICO Una racción rvrsibl s aqulla n qu los productos d la racción intractúan ntr sí y forman nuvamnt los raccionants. En la siguint rprsntación d una racción rvrsibl aa + bb cc + Dd los raccionants

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL INSTITUTO POLITECNICO NACIONAL UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGIA PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL ELABORO: PROF. MARIO CERVANTES CONTRERAS DICIEMBRE DE 7 EJERCICIOS DE

Más detalles

Tema 3 La elasticidad y sus aplicaciones

Tema 3 La elasticidad y sus aplicaciones Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 3 La lasticidad

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS.

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS. FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS. 1.- En ausncia d autoabsorción, la intnsidad d fluorscncia d una mustra s proporcional a la concntración, solo a concntracions bajas. Calcular

Más detalles

Tema 2 La oferta, la demanda y el mercado

Tema 2 La oferta, la demanda y el mercado Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la

Más detalles

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x . Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)

Más detalles

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA CÓDIGO TÉCNICO DE LA EDIFICACIÓN ACONDICIONAMIENTO TÉRMICO E HIGROMÉTRICO: CÁLCULO SEGÚN CTE El acondicionaminto térmico higrométrico s rcog n l Documnto Básico HE Ahorro d Enrgía, cuyo índic s: HE 1 Limitación

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador

Más detalles

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

98 EJERCICIOS de DERIVABILIDAD 2º BACH.

98 EJERCICIOS de DERIVABILIDAD 2º BACH. 98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios

Más detalles

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES Marclo Romo Proaño Escula Politécnica dl Ejército - Ecuador Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES 5. CONDICIONES DE FRONTERA: Dbido a qu muchos problmas

Más detalles

XVI.- COMBUSTIÓN pfernandezdiez.es

XVI.- COMBUSTIÓN pfernandezdiez.es XVI.- COMBUSTIÓN XVI.1.- INTRODUCCIÓN S ntind por combustión a toda racción química qu va acompañada d gran dsprndiminto d calor; pud sr sumamnt lnta, d tal manra qu l fnómno no vaya acompañado d una lvación

Más detalles

Anexo V "Acuerdos de Sistemas para la Facturación' del Convenio poro la Comercialización o Reventa de Servicios

Anexo V Acuerdos de Sistemas para la Facturación' del Convenio poro la Comercialización o Reventa de Servicios Anxo V "Acurdos d Sistmas para la Facturación' dl Convnio poro la Comrcialización o ANEXO V ACUERDOS DE SISTEMAS PARA LA FACTURACIÓN QUE SE ADJUNTA AL CONVENIO PARA LA COMERCIALIZACIÓN O REVENTA DE SERVICIOS

Más detalles

COMPUTACIÓN. Práctica nº 2

COMPUTACIÓN. Práctica nº 2 Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros

Más detalles

TEMAS 3-6: EJERCICIOS ADICIONALES

TEMAS 3-6: EJERCICIOS ADICIONALES TEMAS 3-6: EJERCICIOS ADICIONALES Asignatura: Economía y Mdio Ambint Titulación: Grado n cincias ambintals Curso: 2º Smstr: 1º Curso 2010-2011 Profsora: Inmaculada C. Álvarz Ayuso Inmaculada.alvarz@uam.s

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

Tema 5 El Mercado y el Bienestar. Las externalidades

Tema 5 El Mercado y el Bienestar. Las externalidades Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 5 El Mrcado

Más detalles

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A. PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.. CONCEPTO DE DOSADO. PARÁMETROS GEOMÉTRICOS 3. PARÁMETROS INDICADOS 4. PARÁMETROS EFECTIVOS 5. PARÁMETROS DE PÉRDIDAS MECÁNICAS 6. RESUMEN DE PARÁMETROS 7. OTROS

Más detalles

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ Capítulo Nº 8: La rntabilidad n monda nacional d una invrsión n monda xtranjra Marco Antonio Plaza Vidaurr APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN

Más detalles

si x 0 ( 1) es discontinua en x=2. Calcula b. tiene una solución comprendida entre 1 y 2. Por qué?. x 1 x si x (

si x 0 ( 1) es discontinua en x=2. Calcula b. tiene una solución comprendida entre 1 y 2. Por qué?. x 1 x si x ( ANÁLISIS MATEMÁTICO Continuidad y drivabilidad d funcions si = 0 - Estudia la continuidad d la función f ( ) = si o sn si (, π / ) si π / < 0 - Dtrmina los valors d a y d b para qu sa continua la función:

Más detalles

RESUMEN MOTORES CORRIENTE CONTINUA

RESUMEN MOTORES CORRIENTE CONTINUA RESMEN MOTORES CORRENTE CONTNA Los motors léctricos convirtn la nrgía léctrica n nrgía mcánica. Así, la corrint léctrica tomada d la rd rcorr las bobinas o dvanados dl motor, n cuyo intrior s cran campos

Más detalles

FIZIKA SPANYOL NYELVEN

FIZIKA SPANYOL NYELVEN Fizika spanyol nylvn középszint 08 ÉRETTSÉGI VIZSGA 010. május 18. FIZIKA SPANYOL NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Los xámns

Más detalles

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía Ecuación para cirquitons n ínas d transmisión con carga éctrica discrta. K. J. Candía Dpartamnto d Ectrónica, Univrsidad d Tarapacá, Arica, Chi Emai: kchandia@uta.c Rsumn En sta Chara s mustra un mcanismo

Más detalles

RADIO CRÍTICO DE AISLACIÓN

RADIO CRÍTICO DE AISLACIÓN DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría

Más detalles

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA DISPERSIÓN - ESPECTRÓMETRO DE PRISMA OBJETIVOS Invstigación d la rgión visibl dl spctro dl átomo d Hidrógno y dtrminación d la constant d Ridbrg. Calibración d la scala dl spctrómtro d prisma. Dtrminación

Más detalles

EJERCICIOS UNIDAD 2: DERIVACIÓN (II)

EJERCICIOS UNIDAD 2: DERIVACIÓN (II) IES Padr Povda (Guadi) EJERCICIOS UNIDAD : DERIVACIÓN (II) 3 (03-M4-B-) (5 puntos) Condra la función f : R R dada por f ( ) = + a + b+ c Dtrmina a, b y c sabindo qu la rcta normal a la gráfica d f n l

Más detalles

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional.

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional. Sistmas d control: Elmntos componnts, variabls, función d transfrncia y diagrama funcional. Introducción Los sistmas d control automático han jugado un papl vital n l avanc d la cincia y d la ingniría.

Más detalles

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx.

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx. Albrto Entro Cond Mait Gonzálz Juarrro Intgral indfinida Cálculo d primitivas Calcula las siguints intgrals Solucions A d A d + + + ln( + + ) A d arctan + A sn sn d A d ln ( ) 6A d cos tan + arctan + ln(

Más detalles

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I Solucions a los jrcicios propustos Unidad. El conjunto d los númros rals Matmáticas aplicadas a las Cincias Socials I NÚMEROS RACIONALES Y NÚMEROS IRRACIONALES. Dtrmina si los siguints númros son o no

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

TAMAÑO DE LA MUESTRA

TAMAÑO DE LA MUESTRA Rv. Epidm. Md. Prv. (003), : 8-4 TAMAÑO DE LA MUESTRA Enric Matu, Jordi Casal CRSA. Cntr d Rcrca n Sanitat Animal / Dp. Sanitat i Anatomia Animals, Univrsitat Autònoma d Barclona, 0893-Bllatrra, Barclona

Más detalles

VI. JUSTICIA. i. - JUSTICIA CRIMINAL.

VI. JUSTICIA. i. - JUSTICIA CRIMINAL. VI. JUSTICIA. i. - JUSTICIA CRIMINAL. Utilizando la d la Administración d Justicia n l o años di 883, i 884 y i 885, publicada por l Ministrio d Graci a minto d lo prvnido n cl Ral dcrto d 18 d marzo d

Más detalles

91 EJERCICIOS de DERIVABILIDAD 2º BACH.

91 EJERCICIOS de DERIVABILIDAD 2º BACH. 9 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad:. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

LIMITES DE FUNCIONES EN 1D

LIMITES DE FUNCIONES EN 1D LIMITES DE FUNCIONES EN D Límits d funcions n D Autor: Patrici Molinàs Mata (pmolinas@uoc.du), José Francisco Martínz Boscá (jmartinzbos@uoc.du) ESQUEMA DE CONTENIDOS Dfinición Límits latrals LÍMITE DE

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 8

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 8 Matmáticas II (Bacillrato d Cincias) Solucions d los problmas propustos Tma 8 7 TEMA 8 Drivadas Tormas Rgla d L Hôpital Problmas Rsultos Drivada d una función n un punto Utilizando la dfinición, calcula

Más detalles

Fenómenos nucleares. Partículas nucleares y reacciones nucleares

Fenómenos nucleares. Partículas nucleares y reacciones nucleares Ej tmático: Química: Fnómnos nuclars Polímros Procsos químicos industrials Contnido: tipos d partículas nuclars qu forman part d la radiactividad Nivl: Cuarto mdio Fnómnos nuclars. Partículas nuclars y

Más detalles

LA ORGANIZACIÓN DEL DEPARTAMENTO FINANCIERO

LA ORGANIZACIÓN DEL DEPARTAMENTO FINANCIERO LA ORGANIZACIÓN DEL DEPARTAMENTO FINANCIERO 1. INTRODUCCIÓN No importa l tamaño d la mprsa n la qu dsarrollmos nustra labor profsional. No importa l númro d prsonas qu compongan l dpartamnto al qu nos

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA AIAIÓN DE IMPEDANIAS ON A FEUENIA EN IUITOS DE OIENTE ATENA Fundamnto as impdancias d condnsadors bobinas varían con la frcuncia n los circuitos d corrint altrna. onsidrarmos por sparado circuitos simpls.

Más detalles

ANÁLISIS. Junio 94. cosx si x Dada la función. f(x) a 2x si 0 x 1. b si x 1 x

ANÁLISIS. Junio 94. cosx si x Dada la función. f(x) a 2x si 0 x 1. b si x 1 x ANÁLISIS Junio 9.. Dada la función cos si 0 b si f() a si 0 a) [ punto] Calcular los valors d a y b para qu la función f() sa continua n b) [ punto] Es drivabl la función obtnida n = 0?. En =?. Razona

Más detalles

Tema 4 La política económica: impuestos y subvenciones por unidad vendida y controles de precios

Tema 4 La política económica: impuestos y subvenciones por unidad vendida y controles de precios Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl ilar Osorno dl Rosal Olga María Rodríguz Rodríguz http://bit.ly/8l8u

Más detalles

EJERCICIOS DE TERMOQUÍMICA

EJERCICIOS DE TERMOQUÍMICA EJERCICIOS DE TERMOQUÍMICA En los exámenes de Acceso a la Universidad se proponen una serie de cuestiones (más teóricas) y problemas (prácticos) para resolver. En estos apuntes vamos a resolver ambos tipos

Más detalles

RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD

RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL Una unción ral d variabl ral s una aplicación d un subconjunto D d los númros rals n un subconjunto I d los númros

Más detalles

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición.

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición. DERIVADAS Dinición d drivada Ejrcicio nº.- Las gráicas A, B y C son las uncions drivadas d las gráicas, y, pro n otro ordn. Cuál s la drivada d cual? Justiica tus rspustas. Ejrcicio nº.- Calcula la drivada

Más detalles

CUANTO TARDA UNA PELOTA EN DEJAR DE BOTAR? Guillermo Becerra Córdova. Área de Física, Dpto. Preparatoria Agrícola, Universidad Autónoma Chapingo,

CUANTO TARDA UNA PELOTA EN DEJAR DE BOTAR? Guillermo Becerra Córdova. Área de Física, Dpto. Preparatoria Agrícola, Universidad Autónoma Chapingo, CUANTO TARDA UNA PELOTA EN DEJAR DE BOTAR? Guillrmo Bcrra Córdova Ára d Física, Dpto. Prparatoria Agrícola, Univrsidad Autónoma Chapingo, Chapingo, Txcoco, Estado d México, México, E-mail: gllrmbcrra@yahoo.com

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DEIVADA Ecucación d la rcta tangnt Ejrcicio nº.- Halla las rctas tangnts a la circunrncia: y y 6 n Ejrcicio nº.- Dada la unción abscisa., scrib la cuación d su rcta tangnt n l punto

Más detalles

Respuestas y adaptaciones funcionales a la actividad física

Respuestas y adaptaciones funcionales a la actividad física Rspustas y adaptacions funcionals a la actividad física Sistma cardiovascular Introducción Hay qu difrnciar las adaptacions a un stímulo concrto aislado y a un ntrnaminto constant ESTÍMULO RESPUESTA AL

Más detalles

ANEXO 6.7.8. PONDERADORES Y GRADOS DE RIESGO ASOCIADOS A OTRAS CONTRAPARTES Y GARANTÍAS

ANEXO 6.7.8. PONDERADORES Y GRADOS DE RIESGO ASOCIADOS A OTRAS CONTRAPARTES Y GARANTÍAS ANEXO 6.7.8. PONDERADORES Y GRADOS DE RIESGO ASOCIADOS A OTRAS CONTRAPARTES Y GARANTÍAS Las opracions a las qu s rfir la fracción II d la Disposición 6.7.4, así como las garantías rals financiras o prsonals

Más detalles

Paso de los diagramas de grafos a los diagramas de bloques

Paso de los diagramas de grafos a los diagramas de bloques Capíítullo T Paso d los diagramas d graos a los diagramas d bloqus.. INTODUCCIÓN Uno d los lnguajs d simulación más antiguo y más utilizado s l d los diagramas d bloqus. D hcho, aún n la actualidad s l

Más detalles

ANÁLISIS. a) Derivabilidad de la función en los puntos x = -1, x = 1, x = 2. Calcular la derivada en cada uno de los puntos

ANÁLISIS. a) Derivabilidad de la función en los puntos x = -1, x = 1, x = 2. Calcular la derivada en cada uno de los puntos Matmáticas II Prubas d Accso a la Univrsidad ANÁLISIS Junio 9.. Dada la función cos f () a b si si si a) Calcular los valors d a y b para qu la función f() sa continua n [ punto] b) Es drivabl la función

Más detalles

Tema 3 La economía de la información

Tema 3 La economía de la información jrcicios rsultos d Microconomía. quilibrio gnral y conomía d la información rnando Prra Tallo Olga María odríguz odríguz Tma La conomía d la información http://bit.ly/8l8u jrcicio : na mprsa d frtilizants

Más detalles

ANÁLISIS (Selectividad 2014) 1

ANÁLISIS (Selectividad 2014) 1 ANÁLISIS (Slctividad 4) ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD EN 4 ( Obsrvación: La slcción s ha hcho dando prioridad a las custions más tóricas) Andalucía, junio 4 San

Más detalles

4.2. Ejemplo de aplicación.

4.2. Ejemplo de aplicación. HEB 8 Dsarrollo dl método d los dsplazamintos 45 4.. Ejmplo d aplicación. ontinuando con l pórtico dscrito n l apartado (3.8), s van a calcular las cargas y, postriormnt, sguir con l cálculo matricial,

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

Núm. 36 Martes, 22 de febrero de 2011. III. ADMINISTRACIÓN local. DIpuTACIÓN provincial De burgos. secretaría general

Núm. 36 Martes, 22 de febrero de 2011. III. ADMINISTRACIÓN local. DIpuTACIÓN provincial De burgos. secretaría general III. ADMINISTRACIÓN local DIpuTACIÓN provincial D burgos scrtaría gnral cv: BOPBUR-2011-01058 El Plno d la Excma. Diputación Provincial, n ssión ordinaria clbrada l día 16 d novimbr d 2010, adoptó ntr

Más detalles

TERMODINAMICA 1 1 Ley de la Termodinámica aplicada a Volumenes de Control

TERMODINAMICA 1 1 Ley de la Termodinámica aplicada a Volumenes de Control TERMODINAMICA 1 1 Ly d la Trmodinámica aplicada a Volumns d Control Prof. Carlos G. Villamar Linars Ingniro Mcánico MSc. Matmáticas Aplicada a la Ingniría CONTENIDO PRIMERA LEY DE LA TERMODINAMICA PARA

Más detalles

INTERCAMBIADOR DE CALOR AIRE AIRE PARA EL ACONDICIONAMIENTO TÉRMICO DE UNA CAMARA DE REPRODUCCION AGAMICA DE PLANTAS

INTERCAMBIADOR DE CALOR AIRE AIRE PARA EL ACONDICIONAMIENTO TÉRMICO DE UNA CAMARA DE REPRODUCCION AGAMICA DE PLANTAS INTERCAMBIADOR DE CALOR AIRE AIRE PARA EL ACONDICIONAMIENTO TÉRMICO DE UNA CAMARA DE REPRODUCCION AGAMICA DE PLANTAS Aljandro Luis Hrnándz aljohr65@gmail.com Gracila Lsino lsino@gmail.com Univrsidad Nacional

Más detalles

núm. 51 lunes, 16 de marzo de 2015 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE MERINDAD DE VALDEPORRES

núm. 51 lunes, 16 de marzo de 2015 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE MERINDAD DE VALDEPORRES III. ADMINISTRACIÓN LOCAL C.V.E.: BOPBUR-2015-01676 AYUNTAMIENTO DE MERINDAD DE VALDEPORRES Bass para la bolsa d trabajo para sustitucions d Auxiliars d Griatría, Cocinros/as y Prsonal d Limpiza d la rsidncia

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Funcions d Variabl Complja Modlos d Sistmas II Smstr 2008 Ing. Gabrila Ortiz L 1 Función Concpto Matmático Considrando los conjuntos X Y una función comprnd una rlación o rgla qu asocia a cada lmnto x

Más detalles

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden APITULO 5. EUAIONES DIFERENIALES DE ORDEN N 5.. Introducción Una cuación difrncial d sgundo ordn s una prsión matmática n la qu s rlaciona una función con sus drivadas primra sgunda. Es dcir, una prsión

Más detalles

núm. 38 martes, 25 de febrero de 2014 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS SERVICIO DE PERSONAL

núm. 38 martes, 25 de febrero de 2014 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS SERVICIO DE PERSONAL III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS SERVICIO DE PERSONAL C.V.E.: BOPBUR-2014-01298 Código d Vrificación:1453130796 - Comprub su validz n http://www..s/comprobar-firmados Convocatoria

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 1 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS Junio, Ejercicio 4, Opción A Junio, Ejercicio 6, Opción B Reserva 1, Ejercicio 3, Opción B Reserva, Ejercicio

Más detalles

QUÍMICA FÍSICA III. Tema 3 CINETICA MOLECULAR. Departamento de Química Física Universidad de Valencia. QF III Tema 3 1

QUÍMICA FÍSICA III. Tema 3 CINETICA MOLECULAR. Departamento de Química Física Universidad de Valencia. QF III Tema 3 1 QUÍMICA FÍSICA III Tma 3 CIETICA MOLECULAR Dpartamnto d Química Física Unirsidad d Valncia QF III Tma 3 Tma 3. Cinética Molcular 3.. Introducción 3.. Toría d Colisions 3... Vlocidads Molculars 3... Funcions

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

UNIDAD 2 HIDRAÚLICA. GENERALIDADES. Capítulo 2 PRESIONES EN LOS LÍQUIDOS : HIDROSTATICA SECCIÓN 2 : EMPUJES SOBRE SUPERFICIES PLANAS Y CURVAS

UNIDAD 2 HIDRAÚLICA. GENERALIDADES. Capítulo 2 PRESIONES EN LOS LÍQUIDOS : HIDROSTATICA SECCIÓN 2 : EMPUJES SOBRE SUPERFICIES PLANAS Y CURVAS UNDD HDRÚL. ENERLDDES apítulo PRESONES EN LOS LÍQUDOS : HDROSTT SEÓN : EPUJES SORE SUPERFES PLNS Y URVS ÁLULO DEL EPUJE EN SUPERFES PLNS Una suprfici plana sumrgida n un líquido con pso spcífico γ s ncuntra

Más detalles

12 Representación de funciones

12 Representación de funciones Rprsntación d funcions ACTIVIDADES INICIALES.I. Factorizando prviamnt las prsions, rsulv las siguints cuacions: a) 6 7 5 0 6 c) 0 7 b) 6 d) 0 a) 6 7 5 0 ( )(6 5) 0 5 6 5 0, b) 7 6 ( )( ) 6 6 ( ) 7 ( )

Más detalles

núm. 56 lunes, 23 de marzo de 2015 V. OTROS ANUNCIOS OFICIALES SODEBUR SOCIEDAD PARA EL DESARROLLO DE LA PROVINCIA DE BURGOS

núm. 56 lunes, 23 de marzo de 2015 V. OTROS ANUNCIOS OFICIALES SODEBUR SOCIEDAD PARA EL DESARROLLO DE LA PROVINCIA DE BURGOS núm. 56 luns, 23 d marzo d 2015 V. OTROS ANUNCIOS OFICIALES SODEBUR C.V.E.: BOPBUR-2015-01880 SOCIEDAD PARA EL DESARROLLO DE LA PROVINCIA DE BURGOS Convocatoria pública d la Diputación Provincial d Burgos

Más detalles

QUÍMICA 2º Bachillerato Ejercicios: Cinética Química

QUÍMICA 2º Bachillerato Ejercicios: Cinética Química 1(6) Ejercicio nº 1 En la reacción de formación del agua a partir de sus componentes han desaparecido 0,2 mol/litro de oxígeno en 3 segundos. Calcula la velocidad de reacción en ese intervalo de tiempo,

Más detalles

Tema 6. Termodinámica y cinética

Tema 6. Termodinámica y cinética Tema 6. Termodinámica y cinética A) Termodinámica Por qué algunas reacciones químicas son espontáneas a ciertas temperaturas? Existe alguna forma de predecir si una reacción va a producirse en unas condiciones

Más detalles

ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE.

ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE. ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE. El mastro impart la matria d Física y al iniciar un tma rscata los sabrs prvios d los alumnos sobr l tma, como s mustra a continuación:

Más detalles

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones Método d los Elmntos Finitos para Análisis Estructural Alisado d tnsions Campo d tnsions Tnsions n cualquir punto dl lmnto, sgún l MEF: = Dε= DBδ Matriz B contin las drivadas d las N: no son continuas

Más detalles

núm. 85 miércoles, 7 de mayo de 2014 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE ROA DE DUERO

núm. 85 miércoles, 7 de mayo de 2014 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE ROA DE DUERO III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE ROA DE DUERO C.V.E.: BOPBUR-2014-03110 Por rsolución d Alcaldía d fcha 16 d abril d 2014, s aprobó la contratación d dos plazas d monitor d gimnasio municipal

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7 VERSIÓN:.0 FECHA: 19-06-01 I.E. COLEGIO ANDRÉS BELLO PÁGINA: 1 d 9 Nombrs y Apllidos dl Estudiant: Docnt: ALEXANDRA URIBE Ára: Matmáticas Grado: UNDÉCIMO Priodo: TERCERO GUIA 7 Duración: 0 horas Asignatura:

Más detalles

LECCIÓN 5: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN DE VARIABLES SEPARABLES

LECCIÓN 5: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN DE VARIABLES SEPARABLES 96 LECCIÓN 5: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN DE VARIABLES SEPARABLES JUSTIFICACIÓN: En sta Lcción s cntrará la atnción n l studio d aqullas cuacions difrncials ordinarias d primr ordn

Más detalles

El calor transferido de un fluido a otro a través de la pared de un tubo es: = / r1 r. ) + h

El calor transferido de un fluido a otro a través de la pared de un tubo es: = / r1 r. ) + h INERCAMBIO DE CALOR ENRE DOS FLUIDOS El calor tranfrido d un fluido a otro a travé d la pard d un tubo : πl( - ln( r / r + + hr k h r ( Eta cuación la ba dl diño d intrcambiador d calor tubular. Si dfin

Más detalles

CENTRO UNIVERSITARIO DEL FUTBOL Y CIENCIAS DEL DEPORTE, S. C. PROCEDIMIENTO PARA LA ENTREGA DE DOCUMENTOS A IHEMSYS Vigente a partir de:

CENTRO UNIVERSITARIO DEL FUTBOL Y CIENCIAS DEL DEPORTE, S. C. PROCEDIMIENTO PARA LA ENTREGA DE DOCUMENTOS A IHEMSYS Vigente a partir de: Vignt a partir d: Clav: 15 d Julio d 2005 Vrsión: Página 1 d 12 1. Objtivo Asgurar qu la Entrga d Documntos al Instituto Hidalguns d Educación Mdia Suprior y Suprior (IHEMSYS) por part d la Coordinación

Más detalles

MÉTODO PROPUESTO PARA LA OBTENCIÓN DE LÍMITES DE ESBELTEZ

MÉTODO PROPUESTO PARA LA OBTENCIÓN DE LÍMITES DE ESBELTEZ Capítulo 3 MÉTODO PROPUESTO PARA LA OBTENCIÓN DE LÍMITES DE ESBELTEZ 3.1. Obtnción d la capacidad sccional: Exprsions analíticas dl diagrama d intracción M-N El diagrama d intracción d una scción d hormigón

Más detalles

TEMA 4: LA OFERTA AGREGADA

TEMA 4: LA OFERTA AGREGADA TEMA 4: LA OFERTA AGREGADA Análisis d los ciclos conómicos INTRODUCCIÓN Abandono supusto rigidz n prcios Con prcios flxibls l modlo IS-LM sirv para drivar la curva d Dmanda Agrgada Ncsidad d analizar la

Más detalles

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES INSTITUTO TENOLÓGIO DE OSTA RIA ESUELA DE INGENIERÍA ELETRÓNIA URSO: MODELOS DE SISTEMAS ÁLULO DE RESIDUOS Y SUS APLIAIONES ING. FAUSTINO MONTES DE OA FEBRERO DE álculo d Rsiduos y sus Aplicacions INDIE

Más detalles

núm. 136 martes, 22 de julio de 2014 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE ARANDA DE DUERO SECRETARÍA GENERAL

núm. 136 martes, 22 de julio de 2014 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE ARANDA DE DUERO SECRETARÍA GENERAL núm. 136 marts, 22 d julio d 2014 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE ARANDA DE DUERO SECRETARÍA GENERAL C.V.E.: BOPBUR-2014-05044 Bass dl procso slctivo para la constitución d una bolsa d trabajo

Más detalles

Aplicaciones de la distribución weibull en ingeniería

Aplicaciones de la distribución weibull en ingeniería COLMEME UAN Aplicacions d la distribución wibull n ingniría Raqul Salazar Morno 1 Abraham Rojano Aguilar 2 Esthr Figuroa Hrnándz Francisco Pérz Soto 1. INTRODUCCIÓN la salud n la vida d una prsona. La

Más detalles

Idea La derivada de una función, f(x), en un punto P se interpreta geométricamente con la pendiente de la recta tangente a la curva en ese punto.

Idea La derivada de una función, f(x), en un punto P se interpreta geométricamente con la pendiente de la recta tangente a la curva en ese punto. http://matmaticas-tic.wikispacs.com Lambrto Cortázar Vinusa 06 DERIVADAS EJERCICIOS WIKI Ida La drivada d una unción, (), n un punto P s intrprta gométricamnt con la pndint d la rcta tangnt a la curva

Más detalles

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO OPERCIONES UNIRIS PROF PEDRO VRGS UNEFM DPO ENERGÉIC Disponibl n: wwwopracionswordprsscom INERCMBIDORES UBO Y CRCZ: NÁLISIS ÉRMICO NÁLISIS ÉRMICO, CONSIDERCIONES GENERLES nts d scribir las cuacions qu

Más detalles

Astrofísica de altas energías

Astrofísica de altas energías Astrofísica d altas nrgías Un ión cósmico d nrgía suprior a 10 15 V al ntrar n la atmósfra intracciona con los átomos d las capas altas d ésta, producindo una racción nuclar qu da como rsultado una sri

Más detalles

Medicion de resistencias por el metodo voltímetro-amperímetro. IV.1.1 Error sistemático debido al consumo de los instrumentos

Medicion de resistencias por el metodo voltímetro-amperímetro. IV.1.1 Error sistemático debido al consumo de los instrumentos ESSTENCA ELECTCA: oltítro -Aprítro Mdicion d rsistncias por l todo oltítro-aprítro CONTENDOS oltítro Aprítro. Conxión Corta y Larga. Error sistático d consuo y dbido a la clas. y o. Errors casuals. Opratoria

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS Junio, Ejercicio 5, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 6, Opción B Reserva 3, Ejercicio

Más detalles

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo.

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo. Valldupar como vamos: Dmografía, Pobrza y Pobrza Extrma y mplo. Tradicionalmnt l programa Valldupar Cómo Vamos, lugo d prsntar la Encusta d Prcpción Ciudadana (EPC), raliza la ntrga d Indici d Calidad

Más detalles

Ofertas y Contratos Agiles

Ofertas y Contratos Agiles Ofrtas y Contratos Agils algunas idas xtraídas dl libro Obra bajo licncia Crativ Commons los pilar s d transp arncia, ins adaptación pc, junto con l nfoqu d ción y continua q mjora u forman part d lo Agils,

Más detalles

El Verdadero Cálculo de la Devaluación

El Verdadero Cálculo de la Devaluación El vrdadro alulo d la Dvaluaión El Vrdadro Cálulo d la Dvaluaión Riardo Botro G. rbgstoks@hotmail.om Casi a diario nontramos n la prnsa onómia inormaión omo sta El día d ayr la tasa rprsntativa dl mrado

Más detalles