Sucesiones en R n. Ejemplos.-Considerando el espacio R 2 sea la sucesión {x k } 1 dada por x k = ( k, 1 k) podemos listar como sigue:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sucesiones en R n. Ejemplos.-Considerando el espacio R 2 sea la sucesión {x k } 1 dada por x k = ( k, 1 k) podemos listar como sigue:"

Transcripción

1 Sucesiones en R n Definición. Una sucesión en R n es cualquier lista infinita de vectores en R n x, x,..., x,... algunos de los cuales o todos ellos pueden coincidir entre si. Dada una sucesión x, x,..., x,... se define de manera natural una función de los enteros positivos N en R n tal que a cada entero positivo se le asigna un vector x R n A la colección ordenada de los elementos de una sucesión la denotaremos {x } =, {x } Ejemplos.-Considerando el espacio R sea la sucesión {x } dada por x = (, ) cuyos elementos podemos listar como sigue: { ( (, ),, ) (, 3, ) },... 3 Considerando la sucesión {x } R n. Cada vector x {x } esta dado de la siguiente manera: x = (x,, x,,..., x n, ) Es decir, dicho vector define de manera natural n sucesiones en R {x}, las cuales llamaremos sucesiones componentes o sucesiones proyección, así, la primera sucesión componente del ejemplo anterior es: {x, } = y la segunda sucesión proyección del ejemplo anterior es {x, } = Ejemplos.-Sea la sucesión {x } dada por x = ( +, ) + cuyas sucesiones componentes son: ( ) ( ) + x = x = + Ejemplos.-Sea la sucesión {x } dada por x = ( ( + ) cuyas sucesiones componentes son: x = ),, ( + ) x = x = 3

2 Convergencia de Sucesiones en R n Definición. Una sucesión {x } en R n se dice que converge a un vector x en R n si ɛ > 0 N 0 N tal que x x < ɛ > N 0 En este caso diremos que la sucesión es convergente y que x es el limite de la sucesión y escribimos lím x = x Proposición. Unicidad del Limite Consideremos una sucesión {x } en R n y sean x, y R n tal que entonces x = y x = lím x y y = lím x Demostración. Supongamos que x y y tomemos ɛ = x y > 0. Por definición x = lím x por lo que N 0x N tal que x x < ɛ para > N 0x y analogamente se tiene que y = lím x por lo que N 0y N tal que x y < ɛ para > N 0y Sea ahora N 0 = máx{n 0x, N 0y } entonces se cumple simultaneamente que x x < ɛ y x y < ɛ para > N 0 x y = x x + x y x x + x y < ɛ = ( ) x y = x y (falso) Proposición. Sea {x } una sucesión en R n y sean {x } = (x, x,...) {x } = (x, x,...).

3 {x n } = (x n, x n,...) las sucesiones componentes de la sucesión {x }. Entonces la sucesión {x } converge a x = (x, x,...) en R n si y solo si para cada j =,,... se tiene que x nj converge a x j Demostración. Supóngase que la sucesión {x } converge a x = (x, x,...) esto quiere decir que N 0 N tal que x x < ɛ para > N 0 y dado que 0 x j x j x x < ɛ entonces se tiene que 0 x j x j < ɛ lo que significa que Reciprocamente, supongamos que para cada j lo que significa que lím x j = x j lím x j = x j x j x j < ɛ n 0 x x x x + x x x n x n < ɛ n + ɛ n ɛ n = ɛ lím x j = x Ejemplo.-Consideremos la sucesión x = (, +) tenemos que lím x = lím = 0, lím x = (0, ) = x Ahora para comprobarlo tenemos que ( ) x x =, (0, ) + = lím x = lím + + = lím + = lím + = ( ) + = + ( + ) < = 3

4 < ɛ < N 0 = ɛ ɛ ( ) Si > N 0 entonces, (0, ) + < ɛ Definición 3. Deciimos que A R n es un conjunto acotado si y solo si M > 0 tal que a A se cumple a M Proposición 3. Sea {x } R n, si {x } converge entonces {x } es acotada Demostración. Si {x } converge entonces lím x = x lím x,j = x j j =,..., n por lo tante se tiene {x,j } es acotada y por tanto M j > 0 tal que x,j M j se tiene que x x, + x, + + x n, n máx{x,j } = n M j = M {x } es acotada Teorema. Un subconjunto A R n es cerrado si y solo si contiene a todos sus puntos de acumulación Demostración. ( ) Suponemos que A es cerrado. Sea x un punto de acumulación de A y suponemos que x / A. Como A c es abierto y x A c existe r > 0 tal que B(x, r) A c B(x, r) A = pues x es punto de acumulaión de A ( ) Supongamos que A contiene a todos sus puntos de acumulación. Sea U = A c queremos probar que U es abierto. Sea x U como x no es de acumulación r > 0 tal que B(x, r) A = B(x, r) A c A c es abierto Teorema. Sea A R n y x R n. Entonces, x es un punto de acumulación de A si y solo si {x } A con x x tal que x x Demostración. Suponemos que x es punto de acumulación de A entonces para cada N x A B(x, ) con x x x x Sea B(x, r) como x x 0 N tal que x B(x, r) > 0 x A B(x, r) x es punto de acumulación 4

5 Criterio de Convergencia de Cauchy Definición 4. Sea {x } una sucesión de puntos de R n. Se dice que {x } es una sucesión de Cauchy si dado ɛ > 0 N 0 N tal que x x l < ɛ, l N 0 Teorema 3. Una sucesión {x } R n es convergenta si y solo si cumple el criterio de Cauchy Demostración. Suponemos que {x } x x x < ɛ > N 0. Se tiene entonces que x x l = x x + x x l x x + x x l < ɛ + ɛ = ɛ, l > N 0 {x } cumple la condición de Cauchy Supongamos que {x } cumple la condición de Cauchy por tanto se tiene que: x x l < ɛ x i, x i,l < ɛ i {x i, } cumple Cauchy x i, es convergente i {x } es convergente Teorema 4. (Bolzano-Wierstrass) Toda sucesión x en R n acotada tiene un punto limite. Dicho de otro modo, toda sucesión en R n tiene una subsucesión convergente Demostración. Sea x en R n suponiendo x es acotada, entonces cada x i, es acotada según el teorema de Bolzano-Wierstrass para sucesiones en R {x i, } tiene una subsucesión convergente α i, la cual es una sucesión convergente, podemos formar la sucesiòn x α, = {x α,,, x α,,,..., x α,n, } la cual es una sucesión convergente, pero x α, es subsucesión de x x tiene una subsucesión convergente Definición 5. Sea A un subconjunto de R n. Se dice que A es compacto cuando toda sucesión de puntos de A tiene una subsucesión que converge a un punto de A. Teorema 5. Sea A R n. Entonces, A es compacto si, y solo si, A es cerrado y acotado. Demostración. ( ) Supongamos que A es compacto. Sea {x } una sucesión de elementos de A tal que x x en R n. Por la compacidad de A, {x } tiene una subsucesión convergente a 5

6 un punto de A. x es punto de acumulación de A A es cerrado Si A no fuera acotado podriamos encontrar x A tal que x l por lo que {x } no tendra ninguna subsucesión convergente A es acotado ( ) Supongamos ahora que A es cerrado y acotado. SPG consideraremos el caso R. Sea x = (x,, x, ) A al ser x acotado entonces x, y x, es acotada Por el teorema de Bolazano-Weierstrass existe {x α,, } y {x α,, } subsucesiones de {x, } y {x, } respectivamente, cada una de las cuales converge a x α, y x α, y como A es cerrado (x α,, x α, ) A A es compacto Lema. Si A i R son conjuntos acotados, entonces A = A A A n es un conjunto acotado Demostración. Como A i es acotado r i > 0 tal que A i B(0, r i ). Entonces si consideramos r = n máx{r, r,..., r n } se tiene que A B(0, r ) B(0, r )... B(0, r n ) B(0, r) con lo cual A es acotado Teorema 6. Los intervalos cerrados y acotados de R son compactos Demostración. Sea x n una sucesión de puntos del intervalo [a, b] R, según el teorema de Bolzano-Weierstrass una subsucesión convergente x α,n de x n y el límite de esta sucesión pertence a [a, b]. Si [a, b] y [c, d] R y ambos son compactos entonces A = [a, b] [c, d] es compacto en R Demostración. Sea z = (x, y ) una sucesión cualquiera de [a, b] [c, d] com [a, b] es compacto x α,i, subsucesión de x que tiene limite en [a, b]. Analogamente por la compacidad de [c, d] y α,i, que posee limite en [c, d], entonces la sucesión z α,i, = (x α,i,, y α,i, ) es una subsucesión de la sucesión z que converge a (x, y) [a, b] [c, d]. [a, b] [c, d] es compacto. 6

1. Sucesiones. Sucesiones. Compacidad. {( 1) n, n N} = { 1, 1, 1, 1, 1, 1,... } es una sucesión de elementos del conjunto { 1, 1}, y la familia

1. Sucesiones. Sucesiones. Compacidad. {( 1) n, n N} = { 1, 1, 1, 1, 1, 1,... } es una sucesión de elementos del conjunto { 1, 1}, y la familia 1.. De una manera informal, una sucesión es una familia de elementos de un conjunto, ordenada según el índice de los números naturales. Los elementos pueden estar repetidos o no. Por ejemplo la familia

Más detalles

CONJUNTOS COMPACTOS. . En consecuencia, ninguna unión finita de {G n n N} puede contener a H H no es compacto

CONJUNTOS COMPACTOS. . En consecuencia, ninguna unión finita de {G n n N} puede contener a H H no es compacto CONJUNTOS COMPACTOS Denición. Se dice que un conjunto K es compacto si siempre que esté contenido en la unión de una colección g = {G α } de conjuntos abiertos, también esta contenido en la unión de algún

Más detalles

Espacios métricos completos

Espacios métricos completos 5 Espacios métricos completos Comenzamos introduciendo las sucesiones de Cauchy, que relacionamos con las sucesiones convergentes. En el caso de que coincidan, se trata de un espacio métrico completo.

Más detalles

Espacios completos. 8.1 Sucesiones de Cauchy

Espacios completos. 8.1 Sucesiones de Cauchy Capítulo 8 Espacios completos 8.1 Sucesiones de Cauchy Definición 8.1.1 (Sucesión de Cauchy). Diremos que una sucesión (x n ) n=1 en un espacio métrico (X, d) es de Cauchy si para todo ε > 0 existe un

Más detalles

SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente.

SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente. ANÁLISIS MATEMÁTICO BÁSICO. SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente. Ejemplo.. Sea la sucesión (x n

Más detalles

DEFINICIÓN DE SUCESIÓN. Definición: Una sucesión de números reales es una aplicación del conjunto de los números naturales en los reales: x : n x n -

DEFINICIÓN DE SUCESIÓN. Definición: Una sucesión de números reales es una aplicación del conjunto de los números naturales en los reales: x : n x n - DEFINICIÓN DE SUCESIÓN. Definición: Una sucesión de números reales es una aplicación del conjunto de los números naturales en los reales: x : n x n - Una sucesión asigna a cada número natural un número

Más detalles

Pauta 1 : Sucesiones y Continuidad

Pauta 1 : Sucesiones y Continuidad MA1002-2 Cálculo Diferencial e Integral Profesor: Mauricio Telias Auxiliar: Arturo Merino P1. [Función por partes] Pauta 1 : Sucesiones y Continuidad 8 de agosto del 2017 Sea a R \ {0, 1} y b R. Consideremos

Más detalles

Espacios compactos. 7.1 Espacios compactos

Espacios compactos. 7.1 Espacios compactos 58 Capítulo 7 Espacios compactos 7.1 Espacios compactos Definición 7.1.1 (Recubrimiento). Sea X un conjunto y sea S X. Un recubrimiento de S es una familia A = {A i } i I de subconjuntos de X tales que

Más detalles

Espacios compactos. Capítulo Cubiertas. En este capítulo estudiaremos el concepto de compacidad en un espacio métrico.

Espacios compactos. Capítulo Cubiertas. En este capítulo estudiaremos el concepto de compacidad en un espacio métrico. Capítulo 3 Espacios compactos 1. Cubiertas En este capítulo estudiaremos el concepto de compacidad en un espacio métrico. Definición 3.1. Sea (X, d) un espacio métrico y A X. Una cubierta de A es una familia

Más detalles

CARACTERIZACIONES DE LA COMPLETITUD DE R

CARACTERIZACIONES DE LA COMPLETITUD DE R CARACTERIZACIONES DE LA COMPLETITUD DE R 1 Definición 1. Diremos que un cuerpo ordenado K es arquimediano si lím n n que decir que N, visto como subconjunto de K, no está acotado en K. = 0 en K. Esto es

Más detalles

Guía Semana 1 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 1 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables 08-1 Guía Semana 1 Geometría. Dados x, y Ê N, su producto interno canónico (o producto punto) es x

Más detalles

Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas.

Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas. Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas. Beatriz Porras 1 Límites Las definiciones de ĺımite de funciones de varias variables son similares a las de los ĺımites de funciones

Más detalles

1. Sucesiones y redes.

1. Sucesiones y redes. 1. Sucesiones y redes. PRACTICO 7. REDES. Se ha visto que el concepto de sucesión no permite caracterizar algunas nociones topológicas, salvo en espacios métricos. Esto empieza con algunas definiciones

Más detalles

TEMA2. SUCESIONES DE NÚMEROS REALES Y COMPLEJOS

TEMA2. SUCESIONES DE NÚMEROS REALES Y COMPLEJOS TEMA2. SUCESIONES DE NÚMEROS REALES Y COMPLEJOS 2.1 SUCESIONES DE NUMEROS REALES 2.1.1 Definición de sucesión de números reales Definición: Una sucesión de números reales es una aplicación del conjunto

Más detalles

TOPOLOGÍA. Resumen Curso 2011/2012

TOPOLOGÍA. Resumen Curso 2011/2012 TOPOLOGÍA Resumen Curso 2011/2012 Capítulo 1 Espacios métricos 1.1. Medir la proximidad Sea X un conjunto. Denotaremos por X X al conjunto de los pares de elementos de X. Definición 1.1.1. Una distancia

Más detalles

Cálculo diferencial e integral I. Eleonora Catsigeras

Cálculo diferencial e integral I. Eleonora Catsigeras Cálculo diferencial e integral I Eleonora Catsigeras Universidad de la República Montevideo, Uruguay 01 de setiembre de 2011. CLASE 14 complementaria. Sobre sucesiones y conjuntos en la recta real. Sucesiones

Más detalles

El espacio euclideano

El espacio euclideano Capítulo 1 El espacio euclideano 1. Definiciones básicas El espacio Euclideano, denotado por R n, está definido por el conjunto (1.1) R n = {x = (x 1, x 2,..., x n ) : x i R}. Es decir, R n es efectivamente

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase : Series de números reales Definición de Serie Elaborado por los profesores Edgar Cabello y Marcos González Definicion Dada una sucesión de escalares (a n ), definimos su sucesión de sumas parciales

Más detalles

Espacios compactos. 1. Cubiertas

Espacios compactos. 1. Cubiertas Capítulo 3 Espacios compactos 1. Cubiertas En este capítulo estudiaremos el concepto de compacidad en un espacio métrico. La compacidad se puede estudiar desde dos puntos de vista: el topológico, a través

Más detalles

Tema 1 EL TEOREMA DE PEANO. 1 Compacidad en C(I; R N ): el Teorema de Ascoli-

Tema 1 EL TEOREMA DE PEANO. 1 Compacidad en C(I; R N ): el Teorema de Ascoli- Tema 1 EL TEOREMA DE PEANO En este tema vamos a probar que bajo la hipótesis de ser f continua en un entorno del punto (, y 0 ), se puede garantizar la existencia, aunque no necesariamente la unicidad,

Más detalles

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II CÁLCULO II Grado M+I Sucesiones y series de funciones Sucesiones y series de funciones 1 / Sucesiones funciones. Convergencia puntual Sucesión de funciones Definición Una sucesión de funciones será cualquier

Más detalles

Práctica 5 -Completitud, Continuidad uniforme y Compacidad- A. Completitud

Práctica 5 -Completitud, Continuidad uniforme y Compacidad- A. Completitud Cálculo Avanzado Primer Cuatrimestre de 2011 Práctica 5 -Completitud, Continuidad uniforme y Compacidad- Cuanto más sólido, bien definido y espléndido es el edificio erigido por el entendimiento, más imperioso

Más detalles

x i x io V no V n+1 ; y no x = x io x V n+1. Por tanto x i x V n+1 + V n+1 V n,

x i x io V no V n+1 ; y no x = x io x V n+1. Por tanto x i x V n+1 + V n+1 V n, COMPLETITUD La noción de completitud que vamos a definir, es una generalización de la conocida en espacios métricos. Como en este caso, el hecho de saber que un cierto conjunto de un e.v.t. es completo

Más detalles

sup si A no es acotado.

sup si A no es acotado. Capítulo 5 Teoría de Baire 1. El teorema de Cantor En este capítulo estudiaremos más a fondo los espacios métricos completos. Lo primero que haremos es establecer la equivalencia entre completitud y la

Más detalles

Espacios conexos. 6.1 Conexos

Espacios conexos. 6.1 Conexos Capítulo 6 Espacios conexos 6.1 Conexos Definición 6.1.1 (Conjuntos separados). Dado un espacio topológico (X, τ) y dos subconjuntos A, B X, diremos que A y B están separados si A B = A B = Es evidente

Más detalles

Nociones topológicas elementales de R n

Nociones topológicas elementales de R n Nociones topológicas elementales de R n 1 Espacio vectorial R n Consideremos el conunto R n de las n-uplas de números reales, donde n es un número natural arbitrario fio. Los elementos de R n, que llamamos

Más detalles

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación).

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación). Espacios Topológicos 1 Punto de Acumulación Definición: Sea A un subconjunto arbitrario de R n, se dice que x R n es un punto de acumulación de A si toda bola abierta con centro x contiene un punto A distinto

Más detalles

sup si A no es acotado.

sup si A no es acotado. Capítulo 6 Espacios completos 1. El teorema de Cantor En este capítulo estudiaremos más a fondo los espacios métricos completos. Lo primero que haremos es establecer la equivalencia entre completitud y

Más detalles

Normas Equivalentes. Espacios Normados de Dimensión Finita

Normas Equivalentes. Espacios Normados de Dimensión Finita Capítulo 2 Normas Equivalentes. Espacios Normados de Dimensión Finita Dos son los resultados más importantes que, sobre la equivalencia de normas, veremos en este capítulo. El primero de ellos establece

Más detalles

Nociones topológicas elementales de R n

Nociones topológicas elementales de R n Nociones topológicas elementales de R n Cálculo II (2004) * 1. Espacio vectorial R n Consideremos el conjunto R n de las n-uplas de números reales, donde n es un número natural arbitrario fijo. Los elementos

Más detalles

TEMA 4: SUCESIONES EN R.

TEMA 4: SUCESIONES EN R. TEMA 4: SUCESIONES EN R. 4.0. INTRODUCCIÓN. El concepto de límite desempeña un papel fundamental en todo el Cálculo Infinitesimal. En este tema introduciremos este concepto de la forma más sencilla posible:

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. Conjuntos invariantes

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. Conjuntos invariantes ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. CONJUNTOS INVARIANTES Y CONJUNTOS LÍMITE. ESTABILIDAD POR EL MÉTODO DE LIAPUNOV. Conjuntos invariantes 1. Definición. Se dice que un conjunto D Ω es positivamente

Más detalles

TEMA VI: ESPACIOS DE HILBERT

TEMA VI: ESPACIOS DE HILBERT TEMA VI: ESPACIOS DE HILBERT. Espacios con producto escalar Definición: Sea L un espacio vectorial sobre el cuerpo K (R ó C). Por un producto escalar (o interno) sobre L entedemos una aplicación :

Más detalles

Tema 5. Ejemplos. Sucesiones y series. Marisa Serrano, José Ángel Huidobro. Ejemplo 5.1. n(1 + i) n + 1. converge a 1 + i.

Tema 5. Ejemplos. Sucesiones y series. Marisa Serrano, José Ángel Huidobro. Ejemplo 5.1. n(1 + i) n + 1. converge a 1 + i. Índice Tema 5 Marisa Serrano, José Ángel Huidobro Universidad de Oviedo 2 email: mlserrano@uniovi.es email: jahuidobro@uniovi.es Definición 5. Sea {z n }, n N, una sucesión de números complejos. Se dice

Más detalles

Mariano Suárez-Alvarez. 7 de mayo, Límites superiores y límites inferiores

Mariano Suárez-Alvarez. 7 de mayo, Límites superiores y límites inferiores ĺımsup y ĺıminf Mariano Suárez-Alvarez 7 de mayo, 2013 1.1. Definiciones 1. Límites superiores y límites inferiores 1.1. Sea (a n ) n 1 una sucesión de números reales que es acotada superiormente. Si para

Más detalles

Sucesiones y convergencia

Sucesiones y convergencia Capítulo 2 Sucesiones y convergencia 1. Definiciones Una de las ideas fundamentales del análisis es la de límite; en particular, el límite de una sucesión. En este capítulo estudiaremos la convergencia

Más detalles

Sucesiones. Una sucesión de números reales es una tira, o una lista, de nḿeros reales que generalmente denotamos como

Sucesiones. Una sucesión de números reales es una tira, o una lista, de nḿeros reales que generalmente denotamos como Universidad de la República Facultad de Ingeniería IMERL Sucesiones Curso Cálculo 1 2008 Una sucesión de números reales es una tira, o una lista, de nḿeros reales que generalmente denotamos como a 1, a

Más detalles

ɛ > 0, exists n 0 tal que n > n 0, p > 0 f n+p f n (p) < ɛ, x I

ɛ > 0, exists n 0 tal que n > n 0, p > 0 f n+p f n (p) < ɛ, x I 5. Prueba M de Weierstrass Teorema. Criterio de Cauchy para Convergencia Uniorme de sucesiones de unciones. Una sucesión de unciones { n } denidas en I, converge uniormemente si y solo si ɛ > 0, eists

Más detalles

Elementos Básicos de Análisis Funcional en. Dr. Oldemar Rodríguez Rojas

Elementos Básicos de Análisis Funcional en. Dr. Oldemar Rodríguez Rojas Elementos Básicos de Análisis Funcional en Análisis Numérico Dr. Oldemar Rodríguez Rojas Agosto 2008 Contents 1 Elementos Básicos de Análisis Funcional 2 1.1 Espacios normados...........................

Más detalles

Sucesiones en R. j. armando Velazco. Bitácora personal de matemáticas

Sucesiones en R. j. armando Velazco. Bitácora personal de matemáticas Sucesiones en R j. armando Velazco Bitácora personal de matemáticas 2 de febrero 206 El presente trabajo se distribuye bajo una Licencia Creative Commons Atribución- CompartirIgual 4.0 Internacional. Para

Más detalles

Subconjuntos notables de un Espacio Topológico

Subconjuntos notables de un Espacio Topológico 34 Capítulo 4 Subconjuntos notables de un Espacio Topológico 4.1 Adherencia Definición 4.1.1 (Punto adherente). Sea (X, τ) un espacio topológico, y sea S un subconjunto de X. Diremos que x X es un punto

Más detalles

Espacios compactos. Se pretenden alcanzar las siguientes competencias específicas:

Espacios compactos. Se pretenden alcanzar las siguientes competencias específicas: 4 Espacios compactos En este capítulo introducimos los conceptos de espacio y subespacio compacto. Se estudian propiedades de los conjuntos compactos, así como relación entre la compacidad y las funciones

Más detalles

Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias.

Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias. Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias. Dr. Rafael Morones E. Dept. de Matemáticas ITAM August 5, 2002 1 Contenido 1 Preliminares. 3 1.1 Sucesiones...............................

Más detalles

Funciones en R n Conceptos métricos y topológicos Límites y continuidad en R 2. Funciones en R n : nociones topológicas

Funciones en R n Conceptos métricos y topológicos Límites y continuidad en R 2. Funciones en R n : nociones topológicas Funciones en R n : nociones topológicas 1 Funciones en R n 2 Conceptos métricos y topológicos 3 Límites y continuidad en R 2 Definición Definición Llamaremos función escalar real de n variables reales,

Más detalles

Series numéricas (I) 1 Convergencia y divergencia. 2 Series importantes. 3 Propiedades generales. 4 Series de términos positivos

Series numéricas (I) 1 Convergencia y divergencia. 2 Series importantes. 3 Propiedades generales. 4 Series de términos positivos Convergencia y divergencia Series numéricas (I Definición Sea { } una sucesión de reales y sea la sucesión asociada {S n } de sumas parciales, S n = a + a 2 + a 3 + +. LLamaremos serie a la pareja formada

Más detalles

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará

Más detalles

Sucesiones Introducción

Sucesiones Introducción Temas Límites de sucesiones. convergentes. Sucesiones divergentes. Sucesiones Capacidades Conocer y manejar conceptos de sucesiones convergentes y divergentes. Conocer las principales propiedades de las

Más detalles

Análisis Matemático I

Análisis Matemático I Análisis Matemático I Funciones Implícitas Francisco Montalvo Curso 2011/12 Índice 1. Teorema de existencia de Funciones Implícitas 1 1.1. Punto fijo.............................. 1 1.2. Planteamiento............................

Más detalles

Reconocer y utilizar las propiedades sencillas de la topología métrica.

Reconocer y utilizar las propiedades sencillas de la topología métrica. 3 Funciones continuas De entre todas las aplicaciones que pueden definirse entre dos espacios métrico, las aplicaciones continuas ocupan un papel preponderante. Su estudio es fundamental no sólo en topología,

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

CÁLCULO DIFERENCIAL. Víctor Manuel Sánchez de los Reyes. Departamento de Análisis Matemático Universidad Complutense de Madrid

CÁLCULO DIFERENCIAL. Víctor Manuel Sánchez de los Reyes. Departamento de Análisis Matemático Universidad Complutense de Madrid CÁLCULO DIFERENCIAL Víctor Manuel Sánchez de los Reyes Departamento de Análisis Matemático Universidad Complutense de Madrid Índice 1. Conceptos topológicos y métricos 5 1.1. Métricas, normas y productos

Más detalles

Espacios Métricos. 25 de octubre de 2011

Espacios Métricos. 25 de octubre de 2011 Espacios Métricos 25 de octubre de 2011 1. Nociones de espacios métricos Llamaremos espacio métrico a un conjunto X con una función d : X X R 0 (que llamaremos la métrica de X) que verifica las siguientes

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS E.A.P DE MATEMÁTICAS Decaimiento exponencial para la ecuación de onda con amortiguamiento localmente distribuido - caso globalmente

Más detalles

Análisis Real: Primer Curso. Ricardo A. Sáenz

Análisis Real: Primer Curso. Ricardo A. Sáenz Análisis Real: Primer Curso Ricardo A. Sáenz Índice general Introducción v Capítulo 1. Espacios Métricos 1 1. Métricas 1 2. Métricas en espacios vectoriales 4 3. Topología 9 Ejercicios 16 Capítulo 2.

Más detalles

Práctica 1: Números reales y sucesiones

Práctica 1: Números reales y sucesiones Taller de Cálculo Avanzado - Primer cuatrimestre 2017 Práctica 1: Números reales y sucesiones 1. A partir de los axiomas de cuerpo demostrar las siguientes propiedades cualesquiera sean a, b, c y d en

Más detalles

MMAF: Espacios normados y espacios de Banach

MMAF: Espacios normados y espacios de Banach MMAF: Espacios normados y espacios de Banach Licenciatura en Estadística R. Álvarez-Nodarse Universidad de Sevilla Curso 2011/2012 Espacios vectoriales Definición Sea V un conjunto de elementos sobre el

Más detalles

diám A = x,y A d(x,y) si A es acotado si A no es acotado. {d(x,y) : x,y A}

diám A = x,y A d(x,y) si A es acotado si A no es acotado. {d(x,y) : x,y A} Capítulo 6 Teoría de Baire 1. El teorema de Cantor En este capítulo estudiaremos más a fondo los espacios métricos completos. Lo primero que haremos es establecer la equivalencia entre completitud y la

Más detalles

ELEMENTOS DE ANÁLISIS FUNCIONAL

ELEMENTOS DE ANÁLISIS FUNCIONAL ELEMENTOS DE ANÁLISIS FUNCIONAL Guillermo Ames Universidad Tecnológica Nacional - Facultad Regional Córdoba 2011 TEMA 1: NOCIONES BÁSICAS DE ESPACIOS MÉTRICOS Espacios métricos: definición y ejemplos Definición

Más detalles

Benemérita Universidad Autónoma de Puebla. Funciones continuas en el sentido de Cauchy.

Benemérita Universidad Autónoma de Puebla. Funciones continuas en el sentido de Cauchy. Benemérita Universidad Autónoma de Puebla Facultad de Ciencias Físico-Matemáticas Funciones continuas en el sentido de Cauchy. Tesis presentada al Colegio de Matemáticas como requisito para obtener el

Más detalles

11.1. Funciones uniformemente continuas

11.1. Funciones uniformemente continuas Lección 11 Continuidad uniforme Completando el análisis de los principales teoremas que conocemos sobre continuidad de funciones reales de variable real, estudiamos ahora la versión general para espacios

Más detalles

Pauta Control 1 - MA2A1 Agosto a) Estudiar si las siguientes denen una norma en R 2 : 3) (x, y) = x + 3

Pauta Control 1 - MA2A1 Agosto a) Estudiar si las siguientes denen una norma en R 2 : 3) (x, y) = x + 3 Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Pauta Control 1 - MA2A1 Agosto 2008 Profesor: Marcelo Leseigneur Auxiliares: Cristopher Hermosilla

Más detalles

c n sucesiones numéricas. Si n a n. } k=1 dos subsucesiones de la sucesión { } k=1 = an. Entonces, si lím = L se tiene que lím a n = L.

c n sucesiones numéricas. Si n a n. } k=1 dos subsucesiones de la sucesión { } k=1 = an. Entonces, si lím = L se tiene que lím a n = L. 147 Matemáticas 1 : Cálculo diferencial en IR Anexo 4: Demostraciones Sucesiones de números Series numéricas Demostración de: Proposición 241 de la página 138 Proposición 241- Sean { }, { } y { } c n sucesiones

Más detalles

RESUMEN ELEMENTOS DE GEOMETRÍA DIFERENCIAL Y TOPOLOGÍA CURSO

RESUMEN ELEMENTOS DE GEOMETRÍA DIFERENCIAL Y TOPOLOGÍA CURSO RESUMEN ELEMENTOS DE GEOMETRÍA DIFERENCIAL Y TOPOLOGÍA CURSO 2008-09 En este resumen no se puede escribir o añadir nada, ni por delante, ni por detrás. En todo caso, sólo se permite subrayar lo que se

Más detalles

Espacios de funciones

Espacios de funciones Espacios de funciones Eugenio Borghini Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales Eugenio Borghini Espacios de funciones 1 / 14 Durante la materia nos cruzamos con varios ejemplos

Más detalles

Relación de ejercicios. Topología en R N

Relación de ejercicios. Topología en R N Relación de ejercicios. Topología en R N Abraham Rueda Zoca Ejercicio. Sea N un número natural. Demostrar que dados x, y R N se cumple que x y x y. Indicación: Utilizar la desigualdad triangular. Ejercicio

Más detalles

Conceptos clave para el examen de Análisis Matemático

Conceptos clave para el examen de Análisis Matemático Conceptos clave para el examen de Análisis Matemático 1. Axioma de Dedekind. Existencia de supremos e ínfimos. Sucesiones monótonas y acotadas. Axioma de Dedekind: Dados dos subconjuntos no vacíos A y

Más detalles

En primer lugar, vamos a precisar un concepto al que ya nos hemos referido anteriormente, el de σ-álgebra.

En primer lugar, vamos a precisar un concepto al que ya nos hemos referido anteriormente, el de σ-álgebra. Capítulo 20 Conjuntos de Borel Hemos demostrado ya que la familia M de los conjuntos medibles contiene a todos los abiertos de R n y, por tanto, a todos los conjuntos que podamos formar a partir de los

Más detalles

C alculo Noviembre 2010

C alculo Noviembre 2010 Cálculo Noviembre 2010 Series numéricas. Sucesiones Definición Una sucesión es una aplicación a : IN IR. Denotamos simplificadamente a n en vez de a(n). El límite de la sucesión (a n ) es l R si para

Más detalles

Parte 2: Definición y ejemplos de topologías.

Parte 2: Definición y ejemplos de topologías. Parte 2: Definición y ejemplos de topologías. 22 de marzo de 2014 1. Definiciones y propiedades básicas. Definición 1 Sea X un conjunto. Una familia T de subconjuntos de X es una topología de X si se cumplen:

Más detalles

10. Series de potencias

10. Series de potencias FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 7-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San

Más detalles

Fórmula integral de Cauchy

Fórmula integral de Cauchy Fórmula integral de Cauchy Comentario: de acuerdo con esta fórmula, uno puede conocer el valor de f dentro del entorno, conociendo únicamente los valores que toma f en el contorno C! Fórmula integral de

Más detalles

1. Continuidad. Universidad de Chile Subsucesiones. Ingeniería Matemática

1. Continuidad. Universidad de Chile Subsucesiones. Ingeniería Matemática 1. Continuidad 1.1. Subsucesiones Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08- Importante: Visita regularmente http://www.dim.uchile.cl/~calculo.

Más detalles

Dilatación unitaria de semigrupos locales de contracciones con parámetro en los racionales diádicos. MSc. Angel Padilla. Cumaná, Marzo 2012

Dilatación unitaria de semigrupos locales de contracciones con parámetro en los racionales diádicos. MSc. Angel Padilla. Cumaná, Marzo 2012 Dilatación unitaria de semigrupos locales de contracciones con parámetro en los racionales diádicos Autor: MSc. Angel Padilla Cumaná, Marzo 2012 2 A continuación se fija algo de la notación que se utilizará

Más detalles

1. Espacios topológicos compactos.

1. Espacios topológicos compactos. PRACTICO 6. COMPACIDAD. 1. Espacios topológicos compactos. Definición 1 Un cubrimiento de un conjunto X es una familia de subconjuntos de X cuya unión da X. Un cubrimiento de un espacio es abierto si cada

Más detalles

Observación: Aceptaremos que la función f no este definida para un número finito de términos como por ejemplo f(n) = n 5.

Observación: Aceptaremos que la función f no este definida para un número finito de términos como por ejemplo f(n) = n 5. Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 07- Importante: Visita regularmente http://www.dim.uchile.cl/calculo. Ahí encontrarás

Más detalles

Métodos Matemáticos: Análisis Funcional

Métodos Matemáticos: Análisis Funcional Licenciatura en Ciencias y Técnicas Estadísticas Universidad de Sevilla http://euler.us.es/ renato/clases.html Espacios eucĺıdeos Definición Se dice que un espacio vectorial E es un espacio eucĺıdeo si

Más detalles

Series. Denición y Ejemplos de Series. a n o bien a n

Series. Denición y Ejemplos de Series. a n o bien a n 7. Denición y ejemplos de sucesiones y series convergentes y no convergentes. Series Denición y Ejemplos de Series Denición. Al sumar los términos de una sucesión innita {a n } forma a + a + a + + a n

Más detalles

Se desea resolver el problema. P : mín f(x) (5.1)

Se desea resolver el problema. P : mín f(x) (5.1) Capítulo 5 Teoría Lagrangiana 5.1. Condiciones para problemas con restricciones de igualdad. Se desea resolver el problema P : mín f(x) (5.1) s.a : h i (x) = 0 i = 1, 2..., m donde f : IR n IR y h i :

Más detalles

El Espacio Normado R n

El Espacio Normado R n Capítulo 1 El Espacio Normado R n 1. Conceptos básicos En este curso supondremos conocida la estructura de R y su topología, así como las propiedades de las funciones continuas o derivables de una variable.

Más detalles

Taller de Cálculo Avanzado - Segundo Cuatrimestre de Práctica 3

Taller de Cálculo Avanzado - Segundo Cuatrimestre de Práctica 3 Taller de Cálculo Avanzado - Segundo Cuatrimestre de 2008 Práctica 3 Topología. Decir qué propiedades (abierto, cerrado, acotado) tienen los siguientes conjuntos. (a) Q. (b) N. (c) {x R : x > 0}. (d) (0,

Más detalles

CÁLCULO DIFERENCIAL EN VARIAS VARIABLES

CÁLCULO DIFERENCIAL EN VARIAS VARIABLES UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS CÁLCULO DIFERENCIAL EN VARIAS VARIABLES Ramón Bruzual Marisela Domínguez Caracas, Venezuela Julio

Más detalles

Funciones continuas Motivación

Funciones continuas Motivación Lección 9 Funciones continuas Generalizando la noción que conocemos para funciones reales de variable real, vamos a estudiar la continuidad para funciones entre dos espacios métricos cualesquiera. La definimos

Más detalles

Continuidad. 5.1 Continuidad en un punto

Continuidad. 5.1 Continuidad en un punto Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos

Más detalles

Sucesiones y Suma Finita

Sucesiones y Suma Finita Sucesiones y Suma Finita Hermes Pantoja Carhuavilca Centro Pre-Universitario CEPRE-UNI Universidad Nacional de Ingeniería Algebra Hermes Pantoja Carhuavilca 1 de 21 CONTENIDO Convergencia de una sucesión

Más detalles

El teorema del valor intermedio

El teorema del valor intermedio Ya hemos tratado en un artículo anterior el problema de la continuidad de una función. Ahora nos hemos de preguntar sobre las ventajas que, en análisis matemático, nos proporciona este hecho. Existen una

Más detalles

Convergencia de sucesiones

Convergencia de sucesiones TEMA 4. CONVERGENCIA DE SUCESIONES 65 Tema 4. Convergencia de sucesiones Definición 5.4.1. Sea X un conjunto: una sucesión en X es una aplicación s : N X; denotaremos x n := s(n) y por S := {x n } n N

Más detalles

1. La topología inducida.

1. La topología inducida. PRACTICO 4. ESPACIOS METRICOS. 1. La topología inducida. Sea (M, d) un espacio métrico. La bola abierta de centro x y radio r es el conjunto B(x; r) = {y M : d(x, y) < r}. La bola cerrada de centro x y

Más detalles

INTRODUCCIÓN UNIDAD DIDÁCTICA 1 Espacios Métricos

INTRODUCCIÓN UNIDAD DIDÁCTICA 1 Espacios Métricos Índice Pág. INTRODUCCIÓN... 9 UNIDAD DIDÁCTICA 1 Espacios Métricos CAPÍTULO 1. ESPACIOS MÉTRICOS... 13 1. Espacios métricos... 17 2. Adherencia y acumulación de un conjunto... 23 3. Conjuntos compactos.

Más detalles

Funciones de R m R n

Funciones de R m R n Funciones de R n R m Funciones de R m R n Una funcion f : R n R m es una función cuyo dominio es un subconjunto Ω R n. Denotada por f : Ω R m donde a cada x R n f le asigna un vector f(x) R m. Ejemplo.-

Más detalles

1. Definiciones y propiedades básicas.

1. Definiciones y propiedades básicas. Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 PRACTICO 2: TOPOLOGÍA. 1 1. Definiciones y propiedades básicas. Definición 1 Sea X un conjunto.

Más detalles

Tema 10: Continuidad en varias variables.

Tema 10: Continuidad en varias variables. Tema 10: Continuidad en varias variables. José M. Salazar Noviembre de 2016 Tema 10: Continuidad en varias variables. Lección 13. Continuidad en varias variables. Índice 1 Nociones básicas en R n. Funciones

Más detalles

Espacios Metricos, Compacidad y Completez

Espacios Metricos, Compacidad y Completez 46 CAPÍTULO 3. Espacios Metricos, Compacidad y Completez Una sucesión en un conjunto X es una función N X. Si la función se llama f entonces para sucesiones acostumbra denotarse {f(n)} n N en cambio de

Más detalles

Fórmula integral de Cauchy

Fórmula integral de Cauchy Fórmula integral de Cauchy Comentario: de acuerdo con esta fórmula, uno puede conocer el valor de f dentro del entorno, conociendo únicamente los valores que toma f en el contorno C! Fórmula integral de

Más detalles

1. Convergencia en medida

1. Convergencia en medida FACULTAD CS. FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA3801 Teoría de la Medida. Semestre 2009-02 Profesor: Jaime San Martín Auxiliares: Andrés Fielbaum y Cristóbal Guzmán Clase auxiliar 7 21 de Septiembre

Más detalles

Espacios Métricos. Jorge Alberto Guccione Juan José Guccione

Espacios Métricos. Jorge Alberto Guccione Juan José Guccione Espacios Métricos Jorge Alberto Guccione Juan José Guccione Índice general Capítulo 1. Espacios métricos 1 1 Definición y ejemplos........................ 1 1.1 Producto de numerables espacios métricos..............

Más detalles

ANÁLISIS PROF. GUSTAVO FRANCO

ANÁLISIS PROF. GUSTAVO FRANCO FUNCIONES REALES () 1 ANÁLISIS 1 017 PROF. GUSTAVO FRANCO Se consideran las siguientes funciones f : X X, dadas por sus gráficas. Para cada una: (1) Indica cuáles son continuas en a según tu idea previa

Más detalles

Sucesiones y Series Sucesiones

Sucesiones y Series Sucesiones Capítulo 6 Sucesiones y Series 6.. Sucesiones En particular estudiaremos las sucesiones de números reales, es decir, las que verifican la siguiente definición. Definición 6... Llamaremos sucesión a la

Más detalles

: k }, es decir. 2 k. k=0

: k }, es decir. 2 k. k=0 FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San

Más detalles