Tema 5: Análisis de Sensibilidad y Paramétrico

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 5: Análisis de Sensibilidad y Paramétrico"

Transcripción

1 Tema 5: Análisis de Sensibilidad y Paramétrico 5.1 Introducción 5.2 Cambios en los coeficientes de la función objetivo 5.3 Cambios en el rhs 5.4 Análisis de Sensibilidad y Dualidad Cambios en el coeficiente en la función objetivo de una variable no básica Cambios en la columna de una variable no básica Añadir una nueva variable 5.5 Análisis Paramétrico con WinQSB 1

2 5.1 Introducción Hipótesis en PL: parámetros deterministas (conocidos y fijos). Realidad: los parámetros son estimaciones de los valores reales. Análisis de Sensibilidad: cómo afecta a la solución óptima los cambios en los parámetros del modelo? Obtener de forma eficiente la nueva solución óptima (si existe) sin resolver de nuevo el modelo. Min c t x Supongamos resuelto el ppl en forma estándar: s.a: Ax = b x 0 n En la tabla óptima del Simplex tenemos: z j c j 0 j = 1,..., n bi 0 i = 1,..., m 2

3 Cómo afectan los cambios en: los coeficientes de la función objetivo (c j )? Posible pérdida de la posibilidad dual Reoptimizar con el algoritmo Simplex los términos de la derecha de las restricciones (b i )? Posible pérdida de la posibilidad primal Reoptimizar con el Dual del Simplex una fila y/o columna de A (a ij )? Posible pérdida de la posibilidad primal Posible pérdida de la posibilidad dual Posible pérdida de ambas Reoptimizar con dos Fases 3

4 5.2 Cambios en los coeficientes de la función objetivo Pueden provocar la pérdida de la optimalidad primal Para qué rango de valores de c k sigue siendo óptima la solución actual? Coeficiente de una variable no básica: sólo afecta al coste reducido de la variable cuyo coeficiente se ha cambiado. z k c k = (z k c k ) + (c k c k) Si z k c k 0 La solución sigue siendo óptima. Si z k c k > 0 Reoptimizamos con el algoritmo del Simplex, haciendo básica x k. 4

5 Ejemplo 1 Min 2x 1 + x 2 x 3 s.a.: x 1 + x 2 + x 3 6 x 1 + 2x 2 4 x 1, x 2, x 3 0 x = z = 12 Tabla óptima: x 1 x 2 x 3 x 4 x 5 rhs z x x

6 Ejemplo: Cambio en el Coeficiente de una Variable no Básica c 2 c 2 {}}{{}}{ z = 2x 1 +1 x 2 x 3 z = 2x 1 3 x 2 x 3 z 2 c 2 = (z 2 c 2 ) + (c 2 c 2) = 3 + (1 ( 3)) = 1 > 0 x 1 x 2 x 3 x 4 x 5 rhs z x x Reoptimizamos con el Simplex, x 2 se hace básica y x 5 deja de serlo. x 1 x 2 x 3 x 4 x 5 rhs z 0 0 x x x = z =

7 Para qué rango de valores del coeficiente de una variable no básica sigue siendo óptima la solución actual? La solución actual sigue siendo óptima sii: z k c k 0 sii (z k c k ) + (c k c k) 0 sii c k c k + (z k c k ) Ejemplo, continuación... c k [c k + (z k c k ), [ En el Ejemplo 1, c 2 = 1 y z 2 c 2 = 3, luego la solución actual seguirá siendo óptima sii: c 2 [1 + ( 3), [ = [ 2, [ x = z = 12 7

8 Coeficiente de una variable básica: cambiará toda la fila asociada a la función objetivo (Fila 0), excepto los costes reducidos de las variables básicas, que seguirán siendo iguales a cero. Nueva Fila 0 = (Fila 0 actual) + (c k c k) (Fila actual de x k ) Si algún coste reducido se hace positivo reoptimizamos con el algoritmo del Simplex. Para determinar el rango de valores para los cuales sigue siendo óptima la solución actual se resuelve el sistema de inecuaciones dado por: z j c j 0 j N En dicho rango, la solución óptima será la misma y el valor óptimo: z = c B B 1 b + (c k c k )x k 8

9 Ejemplo: Cambio en el Coeficiente de una Variable Básica z = c 1 {}}{ 2 x 1 + x 2 x 3 z = c 1 {}}{ 0 x 1 + x 2 x 3 z = x 2 x 3 x 1 x 2 x 3 x 4 x 5 rhs z x x Nueva Fila 0 = (Fila 0 actual) + (c 1 c 1 ) (Fila actual de x 1 ) x 1 x 2 x 3 x 4 x 5 rhs z x x

10 x 1 x 2 x 3 x 4 x 5 rhs z x x Reoptimizamos con el Simplex, x 3 se hace básica y x 1 deja de serlo. x 1 x 2 x 3 x 4 x 5 rhs z x x x = z = 6 10

11 Ejemplo, continuación... Para qué rango de valores del coeficiente de x 1 sigue siendo óptima la solución actual? x 1 x 2 x 3 x 4 x 5 rhs z x x x = Nueva Fila 0 = (Fila 0 actual) + (c 1 c 1) (Fila actual de x 1 ) z = 12 z 2 c 2 = 3 + (c 1 c 1)1 0 (c 1 c 1) 3 z 3 c 3 = 1 + (c 1 c 1)1 0 (c 1 c 1) 1 z 4 c 4 = 2 + (c 1 c 1)1 0 (c 1 c 1) 2 c c 1 En el ejemplo, c 1 = 2, si c 1 ], 1] la solución óptima sigue siendo la misma pero el valor óptimo será: z = 12 + (c 1 c 1 )6 = c = 6c 1 11

12 5.3 Cambios en el término de la derecha de una restricción Pueden provocar la pérdida de la optimalidad dual pérdida de la posibilidad primal Si x B = B 1 b = b tiene alguna componente negativa será necesario reoptimizar con el algoritmo Dual del Simplex. Para qué rango de valores de b i sigue siendo óptima la base actual? Aquél que se obtiene al resolver el sistema de inecuaciones: b = b + (columna i-ésima de B 1 ) (b i b i ) 0 }{{} i En dicho rango, la solución óptima será: El valor óptimo: x B = b + (columna i-ésima de B 1 )( i ), x N = 0 z = c t B b + ω i i 12

13 Ejemplo, cambio en el término de la derecha de una restricción (no hay pérdida de posibilidad primal) b = 6 4 Cambiamos b 1 b = 3 4 La nueva solución será: b = B 1 b = = La base B = {a 1, a 5 } sigue siendo óptima, la nueva solución es: 3 x = 0 z = c t B b = ( 2, 0) 3 =

14 Ejemplo, Continuación..., sí hay pérdida de posibilidad primal Cambiamos b 1 = 6 por b 1 = 2. La nueva solución y el nuevo coste serán: b = B 1 b = = z = c t B b = ( 2, 0) 2 2 = 4 x 1 x 2 x 3 x 4 x 5 rhs Nuevo z x x Perdemos la posibilidad primal, reoptimizamos con el Dual del Simpex: Dual no acotado Primal Imposible 14

15 Ejemplo En cuánto podemos incrementar b 1 sin que cambie la base óptima? Si cambiamos b = 6 por b = x B = B = = proporcionará una solución óptima sii proporciona una solución posible: b 1 [0, [ La solución óptima y el valor óptimo serán, respectivamente: x B = 6 + x N = 0 z = ( 2, 0) 6 + =

16 Para qué rango de valores de b 2 sigue siendo óptima la base actual? x B = B 1 6 = = 6 b b b 2 proporcionará una solución óptima sii proporciona una solución posible: b 2 0 b 2 6 b 2 [ 6, [ La solución óptima y el valor óptimo serán, respectivamente: x B = 6 x N = 0 z = ( 2, 0) 6 = b b 2 Notar que el precio sombra para esta restricción será 0. 16

17 5.4 Análisis de Sensibilidad y Dualidad Dada una solución posible básica del problema primal, (x B = B 1 b, x N = 0), dicha solución es óptima si y sólo si la solución obtenida a partir de B, ω = c t B B 1, es solución posible del dual. Cambios en la función objetivo del coeficiente de una variable no básica Cambios en la columna de A de una variable no básica Adición al problema de una nueva variable 17

18 La empresa Dakota Furniture Company fabrica escritorios, mesas y sillas. La fabricación de cada tipo de mueble requiere madera y dos tipos de procesos: carpintería y acabado. La cantidad de recursos que necesita cada tipo de mueble vienen dados en la siguiente tabla, en la que también se incluyen los precios de venta de los muebles: Recurso Escritorios Mesas Sillas Madera (en pies de tablero) Carpintería (en horas) Acabado (en horas) Precio de Venta (en euros) En la actualidad se dispone de 48 pies de tableros de madera, 20 horas de acabado y 8 de carpintería. Puesto que los recursos ya han sido adquiridos y se supone que la demanda de cualquiera de los productos es ilimitada, la empresa está interesada en planificar la producción de forma que se maximicen los beneficios obtenidos. 18

19 x 1 = escritorios x 2 = mesas x 3 = sillas Max 60x x x 3 s.a.: 8x 1 + 6x 2 + x x 1 + 2x 2 + 1,5x x 1 + 1,5x 2 + 0,5x 3 8 x 1, x 2, x 3 0 x 1 = 2, x 2 = 0, x 3 = 8 19

20 ω 1 = precio madera, ω 2 = precio acabado, ω 3 = precio carpint. Min 48ω ω 2 + 8ω 3 s.a.: 8ω 1 + 4ω 2 + 2ω ω 1 + 2ω 2 + 1,5ω 3 30 ω 1 + 1,5ω 2 + 0,5ω 3 20 ω 1, ω 2, ω 3 0 ω 1 = 0, ω 2 = 10, ω 3 = 10 z =

21 5.4.1 Cambios en la función objetivo del coeficiente de una variable no básica Para qué valores de c 2 seguirá siendo óptima la solución actual? Una mesa consume, 6 pies de madera, a ω 1 = 0 euros el pie 2 horas de acabado, a ω 2 = 10 euros la hora, y 1.5 horas de carpintería, a ω 3 = 10 euros la hora En total: ,5 10 = 35 Mientras el precio de venta de las mesas c 2 35 euros seguirá sin interesar fabricar mesas, x 2 = 0. La solución actual seguirá siendo óptima. 21

22 Los cambios en el coeficiente no afectan a la factibilidad de la solución del primal. Min 48ω ω 2 + 8ω 3 s.a.: 8ω 1 + 4ω 2 + 2ω ω 1 + 2ω 2 + 1,5ω 3 c 2 ω 1 + 1,5ω 2 + 0,5ω 3 20 ω 1, ω 2, ω 3, 0 6ω 1 + 2ω 2 + 1,5ω 3 c ,5 10 c 2 35 c 2 22

23 5.4.2 Cambios en la columna de una variable no básica Supongamos que cambia el vector de coeficientes de las mesas y también su precio de venta. 6 5 c 2 = 30 c 2 = 43 a 2 = 2 a 2 = 2 La nueva restricción del dual sería: 1,5 5ω 1 + 2ω 2 + 2ω 3 43 Que es violada por la solución del dual actual: Fabricar una mesa consume 40 euros, si se vende por 43, interesará fabricar mesas. El coste reducido cambiaría de signo. 2 23

24 5.4.3 Añadir una nueva variable Dakota está considerando fabricar zapateros. Podrían venderse por 15 euros y consumirían 1 pie de madera, 1 hora de acabado y 1 hora de carpintería. Seguiría siendo óptima la solución actual?, Interesa fabricar zapateros? Introducir una nueva variable, x 4, con, c 4 = 15 a 4 = Equivale a añadir una restricción al dual: ω 1 + ω 2 + ω 3 15 Como la solución actual del dual, sí que cumple la restricción: No interesará fabricar zapateros z 4 c 4 = ω 1 + ω 2 + ω 3 c 4 = =

25 5.5 Análisis Paramétrico El análisis paramétrico es una extensión del análisis de sensibilidad. Consiste en investigar cómo cambia la solución óptima y el valor óptimo de un PPL cuando se efectúan cambios continuos en uno o más parámetros, de la función objetivo: o del rhs: z(µ) = c + µc, c y c conocidos, µ escalar b(µ) = b + µb, b y b conocidos, µ escalar 25

26 Procedimiento 1. Calcular la solución óptima para µ = Determinar el rango de valores para µ, [0, µ 1 ], para los que la solución sigue siendo óptima. 3. Para µ = µ 1 se produce un cambio de base óptima. Realizar el cambio. Obtener la nueva solución óptima. 4. Determinar el nuevo rango de valores de µ para los que es óptima la solución actual. Sea [µ 1, µ 2 ]. 5. Repetir el proceso hasta que se detecta un µ r tal que: el problema es imposible µ µ r, o la solución óptima actual sigue siendo óptima µ µ r. 26

27 Min x 1 3x 2 s.a.: x 1 + x 2 6 x 1 + 2x 2 6 x 1, x 2 0 z(µ) = µ 2 1 x 1 x 2 z(µ) = ( 1 + 2µ)x 1 + ( 3 + 1µ)x 2 b(µ) = µ 1 1 = 6 µ 6 + µ 27

28 5.5.1 Análisis Paramétrico de la Función Objetivo µ = 0 µ [0, 1] Solución Óptima: x = 2 4 Valor Óptimo: z = 14 z [ 14, 6] con pendiente 8 z (µ) = µ Notar que la misma conclusión se obtiene para: µ [ 2, 0] pero aquí z [ 30, 14] 28

29 µ = 1 µ [1, 3] Cambio de base: x 1 deja de ser básica, h 1 se hace básica. x 2 + h 1 = 6 2x 2 = 6 x 2 = 3 h 1 = 3 Solución Óptima: x = 0 3 Valor Óptimo: z = 6 z [ 6, 0] con pendiente 3 z (µ) = 9 + 3µ 29

30 µ = 3 µ [3, [ Cambio de base: x 2 deja de ser básica, h 2 se hace básica. h 1 = 6 h 2 = 6 Solución Óptima: x = 0 0 Valor Óptimo: z = 0 z [0, 0] con pendiente 0 z (µ) = 0 30

31 µ = 2 µ ], 2] Cambio de base: x 2 deja de ser básica, h 2 se hace básica. x 1 = 6 x 1 + h 2 = 6 x 1 = 6 h 2 = 12 Solución Óptima: x = 6 0 Valor Óptimo: z = 30 z ], 30] con pendiente 12 z (µ) = µ 31

32 Resumiendo: µ ], 2] x = 6 0 z (µ) = µ µ [ 2, 1] x = 2 4 z (µ) = µ µ [1, 3] x = 0 3 z (µ) = 9 + 3µ µ [3, [ x = 0 0 z (µ) = 0 32

33 5.5.2 Análisis Paramétrico del rhs µ ], 2] Las variables básicas óptimas son x 1 y x 2. x 1 + x 2 = 6 µ x 1 + 2x 2 = 6 + µ x 1 = 2 µ x 2 = 4 Solución Óptima: x = 2 µ 4 Valor Óptimo: z = 14 + µ 33

34 µ = 2 µ [2, 6] Cambio de base: x 1 deja de ser básica, h 2 se hace básica. x 2 = 6 µ 2x 2 + h 2 = 6 + µ x 2 = 6 µ h 2 = 6 + 3µ Solución Óptima: x = 0 6 µ Valor Óptimo: z = µ 34

35 µ = 6 µ ]6, [ Cambio de base: x 2 deja de ser básica, No es posible determinar la variable que se hace básica: Dual no Acotado Primal Imposible Resumiendo: µ ], 2] x = µ [2, 6] x = 2 µ µ z (µ) = 14 + µ z (µ) = µ µ [6, [ Problema Imposible 35

Tema 3: El Método Simplex. Algoritmo de las Dos Fases.

Tema 3: El Método Simplex. Algoritmo de las Dos Fases. Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo

Más detalles

PROBLEMA 1. Considere el siguiente problema de programación lineal:

PROBLEMA 1. Considere el siguiente problema de programación lineal: PROBLEMA 1 Considere el siguiente problema de programación lineal: Sean h1 y h2 las variables de holgura correspondientes a la primera y segunda restricción, respectivamente, de manera que al aplicar el

Más detalles

Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como:

Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como: UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono 2532-2668/Telefax 2532-2684 INVESTIGACIÓN DE OPERACIONES LABORATORIO #7 ANALISIS DE SENSIBILIDAD Y DUALIDAD DE UN PPL I.

Más detalles

Colección de Problemas II. mín Z = 8x 1 + 9x 2 + 7x 3 s. a: x 1 + x 2 + x x 1 + 3x 2 + x x 1 + x 2 x 3 30

Colección de Problemas II. mín Z = 8x 1 + 9x 2 + 7x 3 s. a: x 1 + x 2 + x x 1 + 3x 2 + x x 1 + x 2 x 3 30 1.- Dado el siguiente problema mín Z = 8x 1 + 9x + 7x 3 s. a: x 1 + x + x 3 40 x 1 + 3x + x 3 10 x 1 + x x 3 30 x 1 0, x 0, x 3 0 A) Plantear el problema dual y escribir las condiciones de la holgura complementaria

Más detalles

EJERCICIO 1. Max Z = 6 x x 2 s.r. (1) 4 x x 2 12 (2) 2 x x 2 16 (3) 2 x 1 6 x 1, x 2 0

EJERCICIO 1. Max Z = 6 x x 2 s.r. (1) 4 x x 2 12 (2) 2 x x 2 16 (3) 2 x 1 6 x 1, x 2 0 Considere el Programa Lineal siguiente: EJERCICIO Max Z 6 x + 9 x 2 s.r. () 4 x + 6 x 2 2 (2) 2 x + 8 x 2 6 (3) 2 x 6 x, x 2 0 (.a) 3 2 0 2 3 4 5 6 7 8 El Problema tiene una Región Factible delimitada

Más detalles

Tema 4: Teoría de dualidad. Algoritmo Dual del Simplex 1

Tema 4: Teoría de dualidad. Algoritmo Dual del Simplex 1 Tema 4: Teoría de dualidad. Algoritmo Dual del Simplex 1 4.1 Introducción 4.2 Definición del Problema Dual 4.3 Relaciones Primal-Dual 4.4 Condiciones de Holgura Complementaria 4.5 Interpretación Económica

Más detalles

POST-OPTIMIZACIÓN Y SENSIBILIDAD EN PROBLEMAS LINEALES.

POST-OPTIMIZACIÓN Y SENSIBILIDAD EN PROBLEMAS LINEALES. POST-OPTIMIZACIÓN Y SENSIBILIDAD EN PROBLEMAS LINEALES. Una de las hipótesis básicas de los problemas lineales es la constancia de los coeficientes que aparecen en el problema. Esta hipótesis solamente

Más detalles

Degeneración y ciclaje. Método de las dos fases CO-3411 (S08) 30/03/

Degeneración y ciclaje. Método de las dos fases CO-3411 (S08) 30/03/ CO-3411 (S08 30/03/2008 98 Degeneración y ciclaje En el caso de problemas generales, una solución será degenerada cuando alguna de las variables básicas se encuentra en una de sus cotas (comparar con el

Más detalles

Universidad de Managua Al más alto nivel Facultad de Ciencias Económicas y Administrativas. Curso de Programación Unidad IV Lineal Tema.

Universidad de Managua Al más alto nivel Facultad de Ciencias Económicas y Administrativas. Curso de Programación Unidad IV Lineal Tema. Universidad de Managua Al más alto nivel Facultad de Ciencias Económicas y Administrativas Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: F.C.E.A Curso de Programación Unidad IV Lineal Tema Análisis

Más detalles

Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones

Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo IV Unidad UnidadIV Análisis Dualidad de

Más detalles

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas.

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas. Tema 3 Dualidad En el desarrollo de la programación lineal la teoria de la dualidad es importante, tanto desde el punto de vista teórico como desde el punto de vista práctico. Para cada modelo lineal se

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal La regla del 100 % 17 de febrero de 2011 La regla del 100 % () Optimización y Programación Lineal 17 de febrero de 2011 1 / 21 Introducción Introducción Veamos ahora

Más detalles

Programación lineal: Algoritmo del simplex

Programación lineal: Algoritmo del simplex Programación lineal: Algoritmo del simplex Se considera la formulación estándar de un problema de programación lineal siguiendo la notación utilizada en las clases teóricas: Minimizar c t x sa: Ax = b

Más detalles

RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY

RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY 25 de Junio de 2012 RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela Programación

Más detalles

DUALIDAD EN PROGRAMACION LINEAL

DUALIDAD EN PROGRAMACION LINEAL DUALIDAD EN PROGRAMACION LINEAL Relaciones primal-dual Asociado a cada problema lineal existe otro problema de programación lineal denominado problema dual (PD), que posee importantes propiedades y relaciones

Más detalles

WinQSB. Módulo de Programación Lineal y Entera. Al ejecutar el módulo Linear and Integer Programming, la ventana de inicio es la siguiente

WinQSB. Módulo de Programación Lineal y Entera. Al ejecutar el módulo Linear and Integer Programming, la ventana de inicio es la siguiente WinQSB Módulo de Programación Lineal y Entera Al ejecutar el módulo Linear and Integer Programming, la ventana de inicio es la siguiente desde la cual, a partir del menú File New Problem puedes introducir

Más detalles

Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 8va versión MGM

Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 8va versión MGM Universidad Católica del Norte Escuela de Negocios Mineros Magíster en Gestión Minera Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 8va versión MGM Antofagasta, Diciembre de 2014

Más detalles

3.1 Por inspección del tablero óptimo genere las respuestas a los numerales dados. X 1 = Cantidad de tarjetas de invitación a producir semanalmente en Kimberly Colpapel y X 2 = Cantidad de tarjetas de

Más detalles

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex. El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.

Más detalles

La lección de hoy de febrero de Notación. Solución factible básica

La lección de hoy de febrero de Notación. Solución factible básica 1.3 1 de febrero de La lección de hoy Método simplex (continuación) Entregas: material de clase Nota: el diseño de esta presentación incluye animaciones que permiten verla en forma de diapositivas. Repaso

Más detalles

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú Teoría de la dualidad El desarrollo de esta teoría de la dualidad es debido al interés que existe en la interpretación económica

Más detalles

INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA

INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA Sesión 4 Objetivos: Aplicar el método simplex a la solución de problemas reales. Contenido: Introducción al método Simplex Requerimiento del método Simplex

Más detalles

Análisis Post Optimal y Algoritmo de Ramificación y Acotamiento

Análisis Post Optimal y Algoritmo de Ramificación y Acotamiento Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN34A: Clase Auxiliar Análisis Post Optimal y Algoritmo de Ramificación y Acotamiento Marcel Goic F.

Más detalles

Tema 3 Optimización lineal. Algoritmo del simplex

Tema 3 Optimización lineal. Algoritmo del simplex Tema 3 Optimización lineal. Algoritmo del simplex José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 3 Teorema fundamental de la programación lineal. Algoritmo

Más detalles

Optimización de Problemas de Producción

Optimización de Problemas de Producción Optimización de Problemas de Producción Pedro Piñeyro - Luis Stábile Colaboran: Héctor Cancela - Antonio Mauttone - Carlos Testuri Depto. Investigación Operativa. Instituto de Computación. Facultad de

Más detalles

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto

Más detalles

Algoritmos de Planos de Corte

Algoritmos de Planos de Corte Algoritmos de Planos de Corte Problema: max {cx / x X} con X = {x / Ax b, x Z n + } Proposición: conv (X) es un poliedro que puede entonces escribirse como conv (X) = {x / Ax b, x 0} Lo mismo ocurre para

Más detalles

MÉTODO DEL DUAL (TEORIA DE DUALIDAD)

MÉTODO DEL DUAL (TEORIA DE DUALIDAD) MÉTODO DEL DUAL (TEORIA DE DUALIDAD) Todo problema de programación lineal tiene asociado con él otro problema de programación lineal llamado DUAL. El problema inicial es llamado PRIMO y el problema asociado

Más detalles

Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero

Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero 11 de Diciembre de 2008 2 B.G.O. 104.- Determina si los siguientes subconjuntos del espacio vectorial correspondiente son subvariedades afines:

Más detalles

Tema 7: Problemas clásicos de Programación Lineal

Tema 7: Problemas clásicos de Programación Lineal Tema 7: Problemas clásicos de Programación Lineal 1.- Características generales de un problema de transporte y asignación Surgen con frecuencia en diferentes contextos de la vida real. Requieren un número

Más detalles

Análisis de Sensibilidad de los Resultados

Análisis de Sensibilidad de los Resultados Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 22 Análisis de Sensibilidad de los Resultados ICS 02 Optimización Profesor : Claudio Seebach

Más detalles

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son:

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son: Unidad X: Programación lineal (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones

Más detalles

PLE: Ramificación y Acotamiento

PLE: Ramificación y Acotamiento PLE: Ramificación y Acotamiento CCIR / Depto Matemáticas TC3001 CCIR / Depto Matemáticas PLE: Ramificación y Acotamiento TC3001 1 / 45 La compañía TELFA fabrica mesa y sillas. Una mesa requiere 1 hora

Más detalles

315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA

315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA 35 M/R Versión Integral /3 29/ UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA (VERSION.2) ASIGNATURA: Investigación de Operaciones I CÓDIGO: 35 MOMENTO: Prueba

Más detalles

Problemas de Programación Lineal: Método Simplex

Problemas de Programación Lineal: Método Simplex Problemas de Programación Lineal: Método Simplex Ej. (3.1) (C) Los siguientes Tableaux fueron obtenidos en el transcurso de la resolución de PL en los cuales había que maximizar una Función Objetivo con

Más detalles

El Método Simplex. H. R. Alvarez A., Ph. D. 1

El Método Simplex. H. R. Alvarez A., Ph. D. 1 El Método Simplex H. R. Alvarez A., Ph. D. 1 El Método Simplex Desarrollado en 1947 por George Dantzig como parte de un proyecto para el Departamento de Defensa Se basa en la propiedad de la solución esquina

Más detalles

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO.

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Clase # 8 Hasta el momento sólo se han estudiado problemas en la forma estándar ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Maximizar Z. Restricciones de la forma. Todas las variables no negativas. b i 0 para

Más detalles

Tema 2: Optimización lineal. Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga

Tema 2: Optimización lineal. Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga Tema 2: Optimización lineal Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga Sumario El modelo de programación lineal Formulación de modelos Método gráfico

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO

UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO INVESTIGACIÓN DE OPERACIONES Laboratorio #1 GRAFICA DE REGIONES CONVEXAS Y SOLUCIÓN POR MÉTODO GRÁFICO DE UN PROBLEMA DE PROGRAMACIÓN

Más detalles

Programación Lineal III. Análisis Post-Optimal

Programación Lineal III. Análisis Post-Optimal Programación Lineal III. Análisis Post-Optimal P.M. Mateo y David Lahoz 7 de mayo de 009 En este tema se estudia al análisis post-optimal, qué ocurre en un problema de programación lineal que ya hemos

Más detalles

Dualidad. Dpto. Ingeniería Industrial, Universidad de Chile. 22 de abril de IN3701, Optimización

Dualidad. Dpto. Ingeniería Industrial, Universidad de Chile. 22 de abril de IN3701, Optimización Contenidos Motivación y Representación de Poliedros IN3701, Optimización 22 de abril de 2009 Contenidos Motivación y Representación de Poliedros Contenidos 1 Motivación 2 y Representación de Poliedros

Más detalles

Departamento de Matemáticas. ITAM Programación lineal (+ extensiones). Objetivos y panorama del c

Departamento de Matemáticas. ITAM Programación lineal (+ extensiones). Objetivos y panorama del c Programación lineal (+ extensiones). Objetivos y panorama del curso. Departamento de Matemáticas. ITAM. 2008. Introducción Programación lineal http://allman.rhon.itam.mx/ jmorales La programación lineal

Más detalles

ANÁLISIS DE DUALIDAD. M. En C. Eduardo Bustos Farías

ANÁLISIS DE DUALIDAD. M. En C. Eduardo Bustos Farías ANÁLISIS DE DUALIDAD M. En C. Eduardo Bustos Farías 1 LA TEORÍA DE LA DUALIDAD El método simplex además de resolver un problema de PL llegando a una solución óptima nos ofrece más y mejores elementos para

Más detalles

Repaso del algoritmo SIMPLEX

Repaso del algoritmo SIMPLEX Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN70K: Clase Auxiliar Repaso del algoritmo SIMPLEX Marcel Goic F. 1 1 Esta es una versión bastante

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

de febrero de Ejemplo de los vasos. Nuevos cambios en el lado derecho. FAQ. Sí, conozco la teoría, pero me puede poner un ejemplo?

de febrero de Ejemplo de los vasos. Nuevos cambios en el lado derecho. FAQ. Sí, conozco la teoría, pero me puede poner un ejemplo? 15.053 26 de febrero de nálisis de sensibilidad La clase sigue un esquema de FQs (preguntas frecuentes) Los distintos puntos se explican a través de un mismo ejemplo sobre fabricación de vasos de cristal.

Más detalles

Jesús Getán y Eva Boj. Marzo de 2014

Jesús Getán y Eva Boj. Marzo de 2014 Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj 1 / 18 Jesús Getán y Eva Boj 2 / 18 Un Programa lineal consta de: Función objetivo. Modeliza

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO M. En C. Eduardo Bustos Farías 1 EL METODO SIMPLEX Es un procedimiento general para resolver problemas de programación lineal. Fue desarrollado en el año de 1947 por George

Más detalles

Figura 1: Esquema de las tablas simplex de inicio y general.

Figura 1: Esquema de las tablas simplex de inicio y general. RELACIONES PRIMAL-DUAL Los cambios que se hacen en el modelo original de programación lineal afectan a los elementos de la tabla óptima actual el que se tenga en el momento, que a su vez puede afectar

Más detalles

1. RESOLVER el siguiente problema de programación lineal. max z =15x 1 + 10x 2 suj.a : 2x 1 + x 2 1500 x 1 + x 2 1200 0 x 1 500

1. RESOLVER el siguiente problema de programación lineal. max z =15x 1 + 10x 2 suj.a : 2x 1 + x 2 1500 x 1 + x 2 1200 0 x 1 500 1. RESOLVER el siguiente problema de programación lineal max z =15x 1 + 10x 2 suj.a : 2x 1 + x 2 1500 x 1 + x 2 1200 0 x 1 500 x 2 0 2 RESOLVER el siguiente problema de P.L.: max z = 2x 1 + 3x 2 2x 3

Más detalles

Tema V: Optimización Lineal

Tema V: Optimización Lineal Tema V: Optimización Lineal Omar J. Casas López Diciembre 2003 1 Algoritmo Simplex El objetivo del Algoritmo Simplex consiste en que partiendo de una Solución Factible Básica inicial, encontrar otra que

Más detalles

(2.c) RESOLUCIÓN DE MODELOS LINEALES. ALGORITMO DEL SIMPLEX

(2.c) RESOLUCIÓN DE MODELOS LINEALES. ALGORITMO DEL SIMPLEX (2.c) RESOLUCIÓN DE MODELOS LINEALES. ALGORITMO DEL SIMPLEX FORMA CANÓNICA DE UN SISTEMA Ax = b Forma Standard y Base factible (repaso). Expresión de las v. básicas en función de las no básicas. Forma

Más detalles

Facultad de Ciencias Económicas, Jurídicas y Sociales - Métodos Cuantitativos para los Negocios

Facultad de Ciencias Económicas, Jurídicas y Sociales - Métodos Cuantitativos para los Negocios Ubicación dentro del Programa Unidad III UNIDAD II: PROGRAMACIÓN LINEAL 1. Característica. Formulación matemática de un problema de programación lineal. Planteo e interpretación de un sistema de inecuaciones.

Más detalles

BASES MATEMÁTICAS DEL MÉTODO SIMPLEX (Parte 3)

BASES MATEMÁTICAS DEL MÉTODO SIMPLEX (Parte 3) 4 de Julio de 26 ASES MATEMÁTICAS DEL MÉTODO SIMPLEX (Parte 3) Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela 4 de Julio de 26 MÉTODO SIMPLEX REVISADO

Más detalles

Resumen parcial de la última lección Jueves, 28 de febrero. Los precios sombra se pueden hallar examinando las tablas iniciales y finales

Resumen parcial de la última lección Jueves, 28 de febrero. Los precios sombra se pueden hallar examinando las tablas iniciales y finales 5.53 Jueves, 8 de ferero Análisis de sensiilidad () Otros aspectos del pricing out Efectos sore talas finales Entregas: material de clase Resumen parcial de la última lección El precio somra es la variación

Más detalles

Dualidad y Análisis de Sensibilidad

Dualidad y Análisis de Sensibilidad Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN34A: Clase Auxiliar Dualidad y Análisis de Sensibilidad Marcel Goic F. 1 1 Esta es una versión bastante

Más detalles

Ejercicios tipo final

Ejercicios tipo final Ejercicios tipo final En la primera parte pondremos los enunciados de los ejercicios, en la segunda algunas sugerencias y en la tercera se encuentran las resoluciones 1 Ejercicios 1 Si A R 3x2, B R 2x1

Más detalles

Programación Lineal II. Teoría de la dualidad

Programación Lineal II. Teoría de la dualidad Programación Lineal II. Teoría de la dualidad P.M. Mateo y David Lahoz 27 de mayo de 2009 Este tema continúa el desarrollo iniciado en el tema 1. En el se define el problema dual asociado a un problema

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 3 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo:

Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo: Método Simplex. Este método fue creado en el año 1947 por el estadounidense George Bernard Dantzig y el ruso Leonid Vitalievich Kantorovich, con el objetivo de crear un algoritmo capaz de crear soluciones

Más detalles

7. PROGRAMACION LINEAL

7. PROGRAMACION LINEAL 7. PROGRAMACION LINEAL 7.1. INTRODUCCION A LA PROGRMACION LINEAL 7.2. FORMULACION DE UN PROBLEMA LINEAL 7.3. SOLUCION GRAFICA DE UN PROBLEMA LINEAL 7.4. CASOS ESPECIALES DE PROBLEMAS LINEALES 7.4.1. Problemas

Más detalles

3. Estudia si la solución ( 1, 1, 1) es factible y, si lo es, si es interior o de frontera.

3. Estudia si la solución ( 1, 1, 1) es factible y, si lo es, si es interior o de frontera. MATEMÁTIAS II Grupo M APELLIDOS: NOMRE: onsidera el problema Max. 3x + 2y + z s.a 2x 2 + y 2 + z apple x + y + z x apple, z. Escribe el conjunto de oportunidades y razona si es compacto. 2. Podemos asegurar

Más detalles

TEMA 7: MATRICES. OPERACIONES.

TEMA 7: MATRICES. OPERACIONES. TEMA 7: MATRICES. OPERACIONES. 1. MATRICES. TIPOS DE MATRICES. Se llama matriz de orden m x n (m filas y n columnas) a un conjunto de m n elementos, distribuidos en m filas y n columnas y encerrados entre

Más detalles

PROGRAMACIÓN LINEAL INGENIERÍA DE SISTEMAS FACULTAD DE CIENCIAS BÁSICAS E INGENIERÍA

PROGRAMACIÓN LINEAL INGENIERÍA DE SISTEMAS FACULTAD DE CIENCIAS BÁSICAS E INGENIERÍA FACULTAD DE CIENCIAS BÁSICAS E INGENIERÍA Pág. 2 CRÉDITOS El módulo de estudio de la asignatura Programación Lineal del Programa Ingeniería de Sistemas es propiedad de la Corporación Universitaria Remington.

Más detalles

3 de abril de $ wget 5.5.orig.tar.gz

3 de abril de $ wget  5.5.orig.tar.gz FACULTAD CS. FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA37A Optimización. Semestre 2006-2 Profesor: Héctor Ramírez C. Auxiliares: Omar Larré, Oscar Peredo. Instructivo lp solve y MS Excel Solver 3 de

Más detalles

UNIDAD 5. Problema de Transporte

UNIDAD 5. Problema de Transporte UNIDAD 5 Problema de Transporte En matemáticas y economía, un problema de transporte es un caso particular de problema de programación lineal en el cual se debe minimizar el coste del abastecimiento a

Más detalles

Tema 3. El metodo del Simplex.

Tema 3. El metodo del Simplex. Tema 3. El metodo del Simplex. M a Luisa Carpente Rodrguez Departamento de Matematicas.L. Carpente (Departamento de Matematicas) El metodo del Simplex 2008 1 / 28 Objetivos 1 Conocer el funcionamiento

Más detalles

Investigación de Operaciones Método Simplex

Investigación de Operaciones Método Simplex FACULTA DE INGENIERIA DE SISTEMAS E INFORMATICA Investigación de Operaciones Método Simplex Integrantes Mayta Chiclote, Ricardo Toledo Fabian, Jimmy Yarleque Esqueche, Jimmy Daniel Método Simplex Página

Más detalles

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 4 Optimización no Lineal

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 4 Optimización no Lineal OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 4 Optimización no Lineal ORGANIZACIÓN DEL TEMA Sesiones: El caso sin restricciones: formulación, ejemplos Condiciones de optimalidad, métodos Caso con restricciones:

Más detalles

Desarrollo de las condiciones de optimalidad y factibilidad. El problema lineal general se puede plantear como sigue:

Desarrollo de las condiciones de optimalidad y factibilidad. El problema lineal general se puede plantear como sigue: Método simplex modificado Los pasos iterativos del método simplex modificado o revisado son exactamente a los que seguimos con la tabla. La principal diferencia esá en que en este método se usa el algebra

Más detalles

Investigación de Operaciones 1

Investigación de Operaciones 1 Investigación de Operaciones 1 Clase 10 Pablo Andrés Maya Mayo, 2014 Pablo Andrés Maya () Investigación de Operaciones 1 Mayo, 2014 1 / 15 Clasificación de los modelos de optimización Pablo Andrés Maya

Más detalles

PROGRAMACION ENTERA: METODO DE BIFURCACIÓN Y ACOTAMIENTO

PROGRAMACION ENTERA: METODO DE BIFURCACIÓN Y ACOTAMIENTO PROGRAMACION ENTERA: METODO DE BIFURCACIÓN Y ACOTAMIENTO La mayor parte de los PE se resuelven en la práctica mediante la técnica de ramificación y acotamiento. En este método se encuentra la solución

Más detalles

Universidad Autónoma de Sinaloa

Universidad Autónoma de Sinaloa Universidad Autónoma de Sinaloa Facultad de Ciencias Sociales Licenciatura en Economía Programa de estudios Asignatura: Investigación de operaciones. Clave: Eje de formación: Básica EFBCII Área de Conocimiento:

Más detalles

PRÁCTICA 5: Optimización de modelos lineales (continuos

PRÁCTICA 5: Optimización de modelos lineales (continuos Grado en Administración de Empresas Departamento de Estadística Asignatura: Optimización y Simulación para la Empresa Curso: 2011/2012 PRÁCTICA 5: Optimización de modelos lineales (continuos y discretos)

Más detalles

Práctica 2: Análisis de sensibilidad e Interpretación Gráfica

Práctica 2: Análisis de sensibilidad e Interpretación Gráfica Práctica 2: Análisis de sensibilidad e Interpretación Gráfica a) Ejercicios Resueltos Modelización y resolución del Ejercicio 5: (Del Conjunto de Problemas 4.5B del libro Investigación de Operaciones,

Más detalles

Introducción al programa WinQSB

Introducción al programa WinQSB Introducción al programa WinQSB WinQSB es un sistema interactivo de ayuda a la toma de decisiones que contiene herramientas muy útiles para resolver distintos tipos de problemas en el campo de la investigación

Más detalles

Pasos en el Método Simplex

Pasos en el Método Simplex Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 20 El Método Simplex ICS 1102 Optimización Profesor : Claudio Seebach 16 de octubre de 2006

Más detalles

ESCUELA DE CIENCIAS CIENCIAS BASICAS TECNOLOGIA E INGENIERIA PROGRAMACION LINEAL Act No. 8. LECTURA LECCION EVALUATIVA 2

ESCUELA DE CIENCIAS CIENCIAS BASICAS TECNOLOGIA E INGENIERIA PROGRAMACION LINEAL Act No. 8. LECTURA LECCION EVALUATIVA 2 INTRODUCCION AL METODO GRAFICO Antes de entrarnos por completo en los métodos analíticos de la investigación de operaciones es muy conveniente ver un poco acerca de las desigualdades de una ecuación lineal.

Más detalles

Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones

Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo Unidad III Metodologías para la Solución

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

1.Restricciones de Desigualdad 2.Procedimiento algebraico

1.Restricciones de Desigualdad 2.Procedimiento algebraico Universidad Nacional de Colombia Sede Medellín 1. Restricciones de Desigualdad Clase # 6 EL MÉTODO M SIMPLEX El método m simplex es un procedimiento algebraico: las soluciones se obtienen al resolver un

Más detalles

APUNTE: Introducción a la Programación Lineal

APUNTE: Introducción a la Programación Lineal APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La

Más detalles

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Prof.: MSc. Julio Rito Vargas Avilés Planteamiento del problema: PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Una compañía de manufactura se dedica a la fabricación de tres productos: A,

Más detalles

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo Unidad II Modelos de Programación Lineal

Más detalles

Soluciones básicas factibles y vértices Introducción al método símplex. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Soluciones básicas factibles y vértices Introducción al método símplex. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Soluciones básicas factibles y vértices Introducción al método símplex Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema PLs en formato estándar Vértices y soluciones

Más detalles

CAPITULO 1: PERSPECTIVE GENERAL DE LA

CAPITULO 1: PERSPECTIVE GENERAL DE LA CONTENIDO CAPITULO 1: PERSPECTIVE GENERAL DE LA INVESTIGACION DE OPERACIONES 1 1.1 Modelos matemáticos de investigación de operaciones. 1 1.2 Técnicas de investigación de operaciones 3 1.3 Modelado de

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Tema 3: Método del Simplex Revisado.

Tema 3: Método del Simplex Revisado. Investigación Operativa 28/9 Tema 3: Método del Simplex Revisado. El método revisado o método del simples con multiplicadores: Conceptos básicos. Vector de Multiplicadores. Se basa en los mismos principios

Más detalles

www.klasesdematematicasymas.com

www.klasesdematematicasymas.com 1. Resolver el siguiente problema por el sistema dual simplex Max Z = 0,50X 1 + 0,40X 2 2X 1 + X 2 120 2X 1 + 3X 2 240 X 1, X 2 0 El modelo estándar es: Z 0,5X 1 0,40X 2 + 0S 1 + 0S 2 = 0 2X 1 + X 2 +

Más detalles

Dualidad y sensitividad

Dualidad y sensitividad Dualidad y sensitividad 1. Dualidad Dad un prblema de minimización en frma canónica PC: min c T x s.a Ax v x 0 su dual es el prblema max w T b s.aw T A c T W 0 Para un prblema de prgramación lineal en

Más detalles

Universidad de Managua Curso de Programación Lineal

Universidad de Managua Curso de Programación Lineal Universidad de Managua Curso de Programación Lineal Profesor: MSc. Julio Rito Vargas Avilés. Objetivos y Temáticas del Curso Estudiantes: Facultad de CE y A Año académico: III Cuatrimestre 2014 ORIENTACIONES

Más detalles

Tabla 1 RADIO 1 RADIO 2 Precio (BsF) Costo materia prima (BsF) 5 4 Horas trabajador Horas trabajador 2 2 1

Tabla 1 RADIO 1 RADIO 2 Precio (BsF) Costo materia prima (BsF) 5 4 Horas trabajador Horas trabajador 2 2 1 Ejercicios de Dualidad y Análisis de Sensibilidad 1. Radioco fabrica dos tipos de radios. El único recurso escaso que se necesita para producir los radios es la mano de obra. Actualmente, la compañía tiene

Más detalles

x 1 : número de viviendas tipo I por construir x 2 : número de viviendas tipo II por construir

x 1 : número de viviendas tipo I por construir x 2 : número de viviendas tipo II por construir Una empresa desarrolladora iniciará un proyecto urbano en un terreno de hectáreas. En él se construirán dos tipos distintos de casas: las viviendas tipo I que ocupan una superficie de 70 m y tendrán un

Más detalles

Problemas de análisis de sensibilidad

Problemas de análisis de sensibilidad Problemas de análisis de sensibilidad. Considerar el siguiente modelo lineal y la tabla óptima max z = x + x + x x x x x x x sujeto a 0 0 0 8 x + x + x a 0 0 x + x + x 0 a 0 0 x + x + x a 0 0 x, x, x 0.

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

Esterilización 1 4. Envase 3 2

Esterilización 1 4. Envase 3 2 9.- Una empresa de productos lácteos fabrica dos tipos de leche: entera y desnatada. El proceso de fabricación se lleva a cabo mediante una máquina de esterilización y otra de envase, donde el tiempo (expresado

Más detalles

Producto Maquina A Maquina B Acabado Muñecas 2 hr 1 hr 1 hr Soldados 1 hr 1 hr 3 hr

Producto Maquina A Maquina B Acabado Muñecas 2 hr 1 hr 1 hr Soldados 1 hr 1 hr 3 hr Nombre: UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS METODOS CUANTITATIVOS II EXAMEN PARCIAL I /3/7 Sección # Cuenta: Catedrático: Desarrolle en forma clara y ordenada lo que a continuación se le pide:.-

Más detalles

Programación Lineal Pedro Sánchez

Programación Lineal Pedro Sánchez Pedro Sánchez Contents 1. Solución gráfica 2. Sensibilidades gráficas 3. Método Simplex 4. Metodología Simplex 5. Dualidad 6. Análisis de sensibilidad 7. Método simplex dual 2 1 Solución gráfica Sensibilidades

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

La Dualidad en el Problema de Transporte

La Dualidad en el Problema de Transporte II Conferencia de Ingeniería de Organización Vigo, 5-6 Septiembre 2002 La Dualidad en el Problema de Transporte Francisco López Ruiz, Germán Arana Landín 2 Doctor Ingeniero Industrial, Departamento Organización

Más detalles