7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN

Tamaño: px
Comenzar la demostración a partir de la página:

Download "7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN"

Transcripción

1 DINÁMIA ONTROL DE PROESOS 7 FUNIÓN DE TRANSFERENIA SISTEMAS DE PRIMER ORDEN Introucción Trabajar en el omio e Laplace no olamente e útil para la reolución matemática e ecuacione o que e preta epecialmente para er utilizao con el concepto e función e tranferencia. En general un proceo recibe una entraa u(t) genera una alia (t). Si lleamo eta eñale al omio e Laplace tenremo una entraa U() que genera una alia (). La función que relaciona alia con entraa e enoma función e tranferencia g(). De moo que () = g() U(). Sitema e primer oren Se enoman itema e primer oren a aquello en lo que en la ecuación general aparece olamente la eriaa primera el lao izquiero (el e la ariable e etao). O ea que e reucen al formato iguiente: u one e enoma ganancia el proceo e la contante e tiempo el itema. En general encontraremo que la ecuación etá ecrita en función e la ariable eiación repecto al alor e etao etacionario. Por lo tanto en general (0) = 0, u(0) = 0. Tomano tranformaa e Laplace 0 U U U eamo un ejemplo: un tanque completamente agitao que recibe un caual e le extrae el mimo caual: ILM g g U U

2 DINÁMIA ONTROL DE PROESOS Del balance e materia omo e contante porque entra ale el mimo caual Etao etacionario: / = 0 ; =. Por lo tanto ue e e la forma one = /, =, u = u Repueta e itema e primer oren a iferente entraa Seguimo manejánono con el equema one g Ecalón e magnitu U a tiempo t = 0 Sabemo que LU U Por lo tanto U ILM

3 (mol/m3) alia aimenional DINÁMIA ONTROL DE PROESOS Tomano antitranformaa O bien t t U e ue ecrito en forma aimenional e - L e t t t e U t/tau Por ejemplo: conieremo un tanque e = 5m 3 con = m 3 /m, concentración en etao etacionario.5 mol/m 3. onierar un cambio en la concentración e entraa ee.5 mol/m 3 a.75 mol/m 3. U = 0.5 mol/m 3 = 5 m U Por lo tanto la repueta en el omio el tiempo erá U t 5 t 0.5 e Sieno la ariable reucia por lo que la concentración en el tanque erá t e t t (m) er ejem7..ce ejem7..co (ete último en Scico). ILM 3

4 DINÁMIA ONTROL DE PROESOS onocieno la repueta e una función e primer oren a un ecalón en la entraa e pueen etimar lo parámetro e la función e tranferencia el proceo: Etimación e la ganancia: O bien lim 0 G t U t U Etimación e la contante e tiempo: Ientificano el alor e tiempo en el cual la repueta ale 0.63 el alor fal: U e 0.63 U O bien ealuano en t = 0 t0 U e U t Ejemplo: El operaor e un proceo realiza un cambio en el caual e entraa paano e 0 a 7.5 gal/m encuentra que la preión cambia e 50 a 55 pig como e muetra en la figura pig pig U gpm gpm U e 0.63 U P pig 5m ILM 4

5 alia aimenional DINÁMIA ONTROL DE PROESOS Impulo L Aδ A U A t A e t - L t e O en forma aimenional t A e t t/tau Proceo autorregulao Son aquello en lo cuale un cambio en la ariable e entraa conuce a un nueo etao etacionario en forma automática. Por ejemplo lo itema e primer oren. eamo un ejemplo: un RAI con una reacción química e primer oren r = Del balance e maa En etao etacionario / = 0 Retano la ecuación e balance en etao etacionario ILM 5

6 DINÁMIA ONTROL DE PROESOS ILM 6 ue e e la forma con éae ejem7..ce. Otro ejemplo: RAI con reacción química e º oren r = En etao etacionario / = 0 Si lealizamo la función ue también e e la forma con er ejem7.3.ce. u u 0 4 f f u u

7 DINÁMIA ONTROL DE PROESOS Sitema e primer oren má tiempo muerto Mucha ece en lo proceo utriale e troucen tiempo muerto; particularmente en la utria química uelen aociare al tranporte e fluio por cañería. Por ejemplo, en el iguiente equema, i e prouce un cambio en la concentración e entraa puee emorar un cierto tiempo en que icho cambio llegue a la entraa el tanque. La forma general e eto proceo erá ut θ en el ejemplo que etamo ieno erá = tubería / por lo que * t t θ Del balance e maa en el tanque * t θ Llamano u =, =, = / tomano tranformaa 0 e U e U e U g e U g U e Si en un proceo e primer oren con tiempo muerto ha un cambio en ecalón e magnitu U a tiempo t = 0 LU U e U ILM 7

8 DINÁMIA ONTROL DE PROESOS antitranformano U e t 0 para 0 t t U 0.6 t e para t 0.5 U = 0.5 a t = = [uniae alia/entraa] = 5 m = 5 m t (m) Proceo tegraore eamo el iguiente ejemplo: ea un tanque e almacenamiento, con área traneral 00 ft, icialmente etá entrano alieno el caual = out = 5 ft 3 /m, h 0 = 4 ft, tanque = 0 ft. A la :00 pm el flujo e entraa e cambia a 6 ft 3 /m. Del balance global e maa como el área traneral e contante Retano la olución e etao etacionario Si el flujo e alia e contante antitranformano ue e e la forma u i llamamo h h A Tomano tranformaa 0 h h t A ft / m h 4 ft t 00 ft out h A A out h h ILM 8 A h h u A U 0 t U u u t 0 A out out

9 h (ft) DINÁMIA ONTROL DE PROESOS Reolieno por ejemplo para h = 0 ft 0 00 ft t ft / m ft 4 ft 600 m hr tiempo (m) Proceo caracterizao por má e una ariable uano un proceo etá caracterizao por má e una ariable e etao, la() alia() puee(n) etar aa() por aria funcione e tranferencia. onieremo por ejemplo un tanque agitao calentao eléctricamente, a caual contante. Del balance e energía T w T T Si el proceo etaba icialmente en etao etacionario 0 w, T T Entonce T T T T T w, T T T T T T, w w O ecribieno en ariable eiación T T T w w El térmo /w tiene uniae e tiempo puee llamare, la contante e tiempo el itema. A u ez /w puee enomare K, la ganancia el itema, pue relaciona la ariable e entraa con la e alia en etao etacionario: T T en e. e. w ILM 9

10 DINÁMIA ONTROL DE PROESOS O ea que ecribimo T T T K Tomano tranformaa como T (0)=0 T T L L T T K T T K T K T T G G T Para concretar má el ejemplo, upongamo que el tanque agitao e e.60 ft 3, opera con un flujo e 00 lb/m e un líquio con = 0.3 Btu/lbºF = 6.4 lb/ft 3. Se ha alcanzao el etao etacionario con un flujo e calor e 90 Btu/m una temperatura e entraa e 70ºF. alcular la repueta e un itema frente a un cambio úbito e la temperatura e entraa a 90ºF. omo el e mantiene contante ólo ebemo ocuparno e hallar la G (), relacionaa con T ft 6.4lb ft 0.5 m w 00lb m Entonce Debemo ecribir la ecuacione en ariable eiación. Para ello calculamo la temperatura e etao etacionario: la eñal e entraa en forma e ecalón e: Multiplicánola por la G Antitranformano G ecribiénolo en ariable reale Btu m T T, 70º F 00º F w 00lb m 0.3 Btu lb.º F T T t t 0 e T ILM 0

11 T (ºF) T (ºF) DINÁMIA ONTROL DE PROESOS T t t 00 0 e t (m) oniéree ahora que al mimo tiempo que la temperatura e entraa aumenta a 90ºF el flujo e calor e cambiao a 600 Btu/m Ambo cambio en la eñale e entraa contribuen al cambio en la eñal e alia. Eto e equematiza con el iguiente iagrama e bloque: T Ahora T K m K 00lb m 0.3 Btu lb.º F.560 º F Btu m T T t t 00 5 e t (m) er ejem7..co. ILM

12 DINÁMIA ONTROL DE PROESOS Proceo en erie La función e tranferencia e proceo en erie reulta e multiplicar la funcione e tranferencia correponiente a caa proceo por eparao. onieremo por ejemplo o tanque en erie (itema lealizao) Del balance e materia para el primer tanque Suponieno que el caual e alia e leal con la altura Por lo que utitueno en la anterior En ariable eiación Tomano tranformaa h A q q h R h A q q h A q q h R R K A R R K q h R Del mimo moo para el eguno tanque h A q q q h R R K A R R K Poemo relacionar toa eta funcione e tranferencia ILM

13 DINÁMIA ONTROL DE PROESOS Puee ere claramente que la función e tranferencia total e el proucto e la función e tranferencia el primer proceo ( /( +) ) e la el eguno ( /( +) ). La repreentación en un iagrama e bloque ería K K K K ILM 3

Errores y Tipo de Sistema

Errores y Tipo de Sistema rrore y Tipo de Sitema rror dinámico: e la diferencia entre la eñale de entrada y alida durante el período tranitorio, e decir el tiempo que tarda la eñal de repueta en etablecere. La repueta de un itema

Más detalles

Análisis y Solución de. en el dominio del tiempo y en la frecuencia (Laplace).

Análisis y Solución de. en el dominio del tiempo y en la frecuencia (Laplace). Análii y Solución de Ecuacione Diferenciale lineale en el dominio del tiempo y en la frecuencia Laplace. Doctor Francico Palomera Palacio Departamento de Mecatrónica y Automatización, ITESM, Campu Monterrey

Más detalles

1. Modelos Orientados al Proceso. 1. Modelos Orientados al Proceso 1

1. Modelos Orientados al Proceso. 1. Modelos Orientados al Proceso 1 . Modelo Orientado al Proceo. Modelo Orientado al Proceo.. Introducción.. Mecanimo de Muetreo.3. Modelo de Modulación.3.. Modelo de un Muetreador-Retenedor 3.3.. Repueta a una entrada u: 5.3.3. Simulación

Más detalles

SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34

SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34 SECO 2014-II Félix Monaterio-Huelin y Álvaro Gutiérre 6 de maro de 2014 Índice Índice 33 Índice de Figura 33 Índice de Tabla 34 12.Muetreador ideal y relación entre y 35 13.Muetreo de Sitema en erie 38

Más detalles

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas Automáca Ejercicio Capítulo.DiagramadeBloqueyFlujograma JoéRamónlataarcía EtheronzálezSarabia DámaoFernándezPérez CarlooreFerero MaríaSandraRoblaómez DepartamentodeecnologíaElectrónica eingenieríadesitemayautomáca

Más detalles

Sistemas de orden superior

Sistemas de orden superior 7 Sitema de orden uperior Hata ahora ólo e ha etudiado la repueta del régimen tranitorio de lo itema de primer y egundo orden imple. En ete capítulo e pretende analizar la evolución temporal de itema de

Más detalles

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide Faore La enoide e exprean fácilmente en término de faore, e má cómodo trabajar que con la funcione eno y coeno. Un faor e un numero complejo que repreenta la amplitud y la fae de una enoide Lo faore brinda

Más detalles

DISEÑO DE UN SISTEMA DE CONTROL DE TEMPERATURA

DISEÑO DE UN SISTEMA DE CONTROL DE TEMPERATURA DISEÑO DE UN SISTEMA DE CONTROL DE TEMPERATURA C. BETANCOR, J. CEREZO, A. VEGA Departamento e Ingeniería Electrónica y Automática, Intituto Univeritario e Microelectrónica Aplicaa (IUMA), Univeria e La

Más detalles

Universidad de Navarra

Universidad de Navarra Aignatura / Gaia Curo / Kurtoa ERMODINÁMICA IEMPO: 45 minuto. Utilice la última cara como borrador. EORÍA 1 (20 punto) Lea la 20 cuetione y ecriba dentro de la cailla al pie: V i conidera que la afirmación

Más detalles

Realizado por: Juan Manuel Bardallo González Miguel Ángel de Vega Alcántara

Realizado por: Juan Manuel Bardallo González Miguel Ángel de Vega Alcántara CONTROL POR COMPUTADOR Temario. Ingeniería Informática. Realiado por: Juan Manuel Bardallo Gonále Miguel Ángel de Vega Alcántara Huelva. Curo 06/07. INDICE Tema. MODELIZACIÓN DE SISTEMAS DISCRETOS. Introducción..

Más detalles

MODELADO ANÁLISIS Y CONTROL DE UN EVAPORADOR DE DOBLE EFECTO

MODELADO ANÁLISIS Y CONTROL DE UN EVAPORADOR DE DOBLE EFECTO XXV Jornada de Automática Ciudad Real, del 8 al de eptiembre de 4 MODELADO ANÁLISIS Y CONTROL DE UN EVAPORADOR DE DOBLE EFECTO Manuel Pérez Polo, Joé Ángel Berná Galiano, Javier Gil Chica Departamento

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividade del final de la unidad. Explica brevemente qué entiende por foco ditancia focal para un dioptrio eférico. Razona cómo erá el igno de la ditancia focal objeto la ditancia focal imagen egún que

Más detalles

Guía docente: Bases de la Ingeniería Química

Guía docente: Bases de la Ingeniería Química Guía docente: Bae la Ingeniería Química 1. Intificación la aignatura NOMBRE Bae la Ingeniería Química CÓDIGO GIQUIM01-1- 010 Graduado o Graduada en Ingeniería TITULACIÓN Química por la Univeridad Oviedo

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

5. MODELO DE UN INTERCAMBIADOR DE CALOR

5. MODELO DE UN INTERCAMBIADOR DE CALOR 5. MODELO DE UN INERCAMBIADOR DE CALOR Para la explicación del modelo matemático de un intercambiador de calor aire agua, e neceario en primer lugar definir una erie de término. Éto aparecen en la abla

Más detalles

ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES

ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES Simpoio de Metrología 00 7 al 9 de Octubre ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES Suana Padilla-Corral, Irael García-Ruiz km 4.5 carretera a Lo Cué, El Marqué, Querétaro

Más detalles

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen:

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen: 0 Óptica geométrica Actividade del interior de la unidad. Tenemo un dioptrio eférico convexo de 5 cm de radio que epara el aire de un vidrio de índice de refracción,567. Calcula la ditancia focal e imagen.

Más detalles

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un CAPÍTULO. INTEGRACIÓN DE FUNCIONES RACIONALES.. Introducción.. Raíce comune.. Diviión entera de polinomio.. Decompoición de un polinomio en producto de factore.5. Método de fraccione imple.6. Método de

Más detalles

TEST. Cinemática 103. 1.- Un móvil que va con M.R.U. inicia su movimiento en x = 12 m y luego de 8 s está en x = 28 m. Hallar su velocidad.

TEST. Cinemática 103. 1.- Un móvil que va con M.R.U. inicia su movimiento en x = 12 m y luego de 8 s está en x = 28 m. Hallar su velocidad. Cinemática 103 TEST 1.- Un móvil que va con M.R.U. inicia u movimiento en x = 12 m y luego de 8 etá en x = 28 m. Hallar u velocidad. a) 2 m/ d) 6 m/ ) 8 m/ e) 7 m/ c) 4 m/ 2.- Señalar verdadero o falo

Más detalles

9.7 Sin hacer cálculos, indica las características de la imagen que se formará en un espejo de 15 cm de radio, cuando el objeto está situado a 7 cm.

9.7 Sin hacer cálculos, indica las características de la imagen que se formará en un espejo de 15 cm de radio, cuando el objeto está situado a 7 cm. 9 Óptica geométrica EJERCICIOS PROPUESTOS 9. Indica la caracterítica de la imagen que oberva una perona que e etá mirando en un epejo plano. La imagen e virtual derecha. Virtual, porque e puede ver pero

Más detalles

Transmisión Digital Paso Banda

Transmisión Digital Paso Banda Tranmiión Digital Pao Banda PRÁCTICA 9 ( eione) Laboratorio de Señale y Comunicacione 3 er curo Ingeniería de Telecomunicación Javier Ramo Fernando Díaz de María y David Luengo García 1. Objetivo Simular

Más detalles

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA MÁQUINAS SÍNCRONAS:

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA MÁQUINAS SÍNCRONAS: UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA MÁQUINAS SÍNCRONAS: POTENCIAS ACTIVA Y REACTIVA. PARES. ESTABILIDAD ESTÁTICA Miguel Angel Roríguez Pozueta Miguel Ángel Roríguez

Más detalles

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 NOMBRE: Ete examen conta de 22 pregunta, entre pregunta conceptuale y problema

Más detalles

Teoría de Colas (Líneas de Espera) Administración de la Producción

Teoría de Colas (Líneas de Espera) Administración de la Producción Teoría de Cola (Línea de Epera) Adminitración de la Producción 3C T La cola La cola on frecuente en nuetra vida cotidiana: En un banco En un retaurante de comida rápida Al matricular en la univeridad Lo

Más detalles

Diagramas de bloques

Diagramas de bloques UNIVRSIDAD AUTÓNOMA D NUVO LÓN FACULTAD D INNIRÍA MCANICA Y LÉCTRICA Diagrama de bloque INNIRÍA D CONTROL M.C. JOSÉ MANUL ROCHA NUÑZ M.C. LIZABTH P. LARA HDZ. UNIVRSIDAD AUTÓNOMA D NUVO LÓN FACULTAD D

Más detalles

SEGUNDO PARCIAL - Física 1 30 de junio de 2010

SEGUNDO PARCIAL - Física 1 30 de junio de 2010 Intituto de Fíica Facultad de Ingeniería Univeridad de la República SEGUNDO PARCIAL - Fíica 1 30 de junio de 010 g= 9,8 m/ Cada pregunta tiene ólo una repueta correcta. Cada repueta correcta uma 6 punto.

Más detalles

REFRACTARIOS Y HORNOS ///// Problemas de combustibles. Combustión -----------------// HOJA 1.

REFRACTARIOS Y HORNOS ///// Problemas de combustibles. Combustión -----------------// HOJA 1. REFRACTARIOS Y HORNOS ///// Problema de combutible. Combutión -----------------// HOJA 1. P1.- Un combutible que contiene un 80 % de butano y un 20 % de propano, e quema con un 20 % de exceo del aire teórico

Más detalles

Transformaciones geométricas

Transformaciones geométricas Tranformacione geométrica Baado en: Capítulo 5 Del Libro: Introducción a la Graficación por Computador Fole Van Dam Feiner Hughe - Phillip Reumen del capítulo Tranformacione bidimenionale Coordenada homogénea

Más detalles

6. CONTROL PID CLÁSICO. Consideremos el siguiente lazo de control SISO:

6. CONTROL PID CLÁSICO. Consideremos el siguiente lazo de control SISO: 6. CONROL PI CLÁSICO 6. Etructura PI Crrepnde a la etructura de cntrl ma uada en el medi indutrial. La letra PI crrepnden a la accine: Prprcinal, Integral y erivativa. Su implicidad limita el rang de la

Más detalles

Física PRUEBA DE ACCESO A LA UNIVERSIDAD 2013 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR. Examen

Física PRUEBA DE ACCESO A LA UNIVERSIDAD 2013 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR. Examen PRUEBA DE ACCESO A LA UNIVERSIDAD 03 Fíica BACHILLERAO FORMACIÓN PROFESIONAL CICLOS FORMAIVOS DE GRADO SUPERIOR Eamen Criterio de Corrección Calificación UNIBERSIAERA SARZEKO PROBAK 03ko EKAINA FISIKA

Más detalles

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS.

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS. IV - 0 TEMA - IV ESPEJOS.. ESPEJOS ESFÉRICOS... Poición de la imagen..2. Foco y ditancia focal..3. Potencia..4. Formación de imágene..4.. Marcha de lo rayo..4.2. Imágene en epejo cóncavo..4.3. Imágene

Más detalles

Diseño óptimo de un regulador de tensión en paralelo

Diseño óptimo de un regulador de tensión en paralelo Deño óptmo de un regulador de tenón en paralelo Federco Myara 1. egulador mple con un dodo de ruptura El cao má mple e el regulador con un dodo zener, ndcado en la fgura 1. S ben el crcuto parece muy encllo,

Más detalles

Contenido. Vision ME Guía del usuario s

Contenido. Vision ME Guía del usuario s GUÍA DEL USUARIO Contenido 1. Introducción...2 1.1. Viion ME Iniciar eión automáticamente...2 2. Invitar a lo alumno a unire a la clae...3 2.1. Ver a lo alumno en clae...6 2.2. Experiencia de lo alumno...7

Más detalles

Tema 1. La negociación de las operaciones financieras.

Tema 1. La negociación de las operaciones financieras. OPERACIONES Y MERCADOS DE RENTA FIJA. Tema. La negociación de la operacione financiera.. Operación financiera... Concepto y reerva matemática..2. Operación de prétamo..3. Tanto efectivo y caracterítica

Más detalles

Tercer Congreso Nacional Segundo Congreso Iberoamericano Hidrógeno y Fuentes Sustentables de Energía HYFUSEN 2009

Tercer Congreso Nacional Segundo Congreso Iberoamericano Hidrógeno y Fuentes Sustentables de Energía HYFUSEN 2009 APLICACIÓN DEL ÍNDICE CAPACIDAD EVAPORATIVA PARA EVALUAR EL COMPORTAMIENTO DE UN SISTEMA DE SECADO INTEGRADO POR UN COLECTOR SOLAR Y UNA CABINA DE SECADO Pontin, M. I.; Lema, A. I.; Moretto, J. M.; Barral,

Más detalles

SOMI XVIII Congreso de Instrumentación ELECTRONICA VBG1885 SISTEMA DE MEDICIÓN DE SUSCEPTIBILIDAD MAGNÉTICA AC

SOMI XVIII Congreso de Instrumentación ELECTRONICA VBG1885 SISTEMA DE MEDICIÓN DE SUSCEPTIBILIDAD MAGNÉTICA AC SOMI XVIII Congreo de Intrumentión SISTEMA DE MEDICIÓN DE SUSCEPTIBILIDAD MAGNÉTICA AC E. R. Vázquez Cerón, J. A. Aguillón Armijo, A. Y. Velázquez Cadena, V. R. Barrale Guadarrama, N. Reye Ayala, E. Rodríguez

Más detalles

Electromagnetismo Pedagogía en Física R. Lagos. PROBLEMAS RESUELTOS

Electromagnetismo Pedagogía en Física R. Lagos. PROBLEMAS RESUELTOS PROBLEMAS RESUELTOS. Un capacitor e lleno e aire está compuesto e os placas paralela, caa una con un área e 7 6 [ 2 ], separaas por una istancia e,8 [mm]. Si se aplica una iferencia e potencial e 20 [V]

Más detalles

El estudio teórico de la práctica se realiza en el problema PTC0004-21

El estudio teórico de la práctica se realiza en el problema PTC0004-21 PRÁCTICA LTC-14: REFLEXIONES EN UN CABLE COAXIAL 1.- Decripción de la práctica a) Excitar un cable coaxial de 50 metro de longitud con un pulo de tenión de 0 a 10 voltio, 100 Khz frecuencia y un duty cycle

Más detalles

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos eunión de Grupo de Invetigación en Ingeniería Eléctrica. Santander Modelo de generadore aíncrono para la evaluación de perturbacione emitida por parque eólico A. Feijóo, J. Cidrá y C. Carrillo Univeridade

Más detalles

Aplicando la Transformada de Laplace a Redes Eléctricas

Aplicando la Transformada de Laplace a Redes Eléctricas Aplicando la Tranformada de Laplace a Rede Eléctrica J.I. Huircán Univeridad de La Frontera April 5, 006 Abtract Se aplica la Tranformada de Laplace a ditinta rede eléctrica, primero excitacione báica

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 007-008 CONVOCATORIA: SEPTIEMBRE TECNOLOGÍA INDUSTRIAL II Lo alumno deberán elegir una de la do opcione. Cada ejercicio vale,5 punto. La pregunta del

Más detalles

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior).

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior). íica de 2º Bachillerato Actividad Para ver un objeto con mayor detalle, utilizamo un dipoitivo compueto de una única lente, llamado corrientemente lupa. [a] Indica el tipo de lente que debemo utilizar

Más detalles

La solución del problema requiere de una primera hipótesis:

La solución del problema requiere de una primera hipótesis: RIOS 9 Cuarto Simpoio Regional obre Hidráulica de Río. Salta, Argentina, 9. CALCULO HIDRAULICO EN RIOS Y DISEÑO DE CANALES ESTABLES SIN USAR ECUACIONES TRADICIONALES Eduardo E. Martínez Pérez Profeor agregado

Más detalles

SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA

SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA * Análii de Sitema en el Dominio del Tiempo. * I. NOMBRE : Análii de Sitema en el Dominio del Tiempo. II. OBJETIVOS : El etudiante conocerá y aplicará un oftware

Más detalles

Hidrodinámica. , entonces claramente se observa que v 1 debe ser mayor que

Hidrodinámica. , entonces claramente se observa que v 1 debe ser mayor que Hiroináica a) reunta.. El uinitro e aua para una ciua e proporciona con frecuencia e epóito contruio en tierra alta. El aua fluye ee el epóito, a traé e tubería, y entra a u caa cuano ute abre la llae

Más detalles

MAESTRIA EN INGENIERIA DE CONTROL INDUSTRIAL. Con el apoyo académico de la Universidad Católica de Lovaina y la Universidad de Gante (Bélgica)

MAESTRIA EN INGENIERIA DE CONTROL INDUSTRIAL. Con el apoyo académico de la Universidad Católica de Lovaina y la Universidad de Gante (Bélgica) MAESTRIA EN INGENIERIA DE CONTROL INDUSTRIAL Con el apoyo académico de la Univeridad Católica de Lovaina y la Univeridad de Gante Bélgica PROGRAMA DE AUTOMATIZACION INDUSTRIAL Univeridad de Ibagué Marzo

Más detalles

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA 7 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA El aálii e el domiio de la frecuecia e u herramieta cláica e la teoría de cotrol, i bie e geeral lo itema que varía co ua periodicidad defiida o uele er lo má

Más detalles

AMPLIFICADOR OPERACIONAL

AMPLIFICADOR OPERACIONAL Sitema Lineale II Unidad 4 EL MPLIFICDO OPECIONL Material de apy Indice 1. Intrducción.. Preentación. 3. Circuit equivalente. 4. Cnfiguración inverra. 4.1 Un circuit "ube y baja". 4. Ca de ganancia finita

Más detalles

7. Amplificadores RF de potencia

7. Amplificadores RF de potencia 7. Amplificadre RF de ptencia 7. ntrducción El amplificadr de ptencia (PA e la última etapa del emir. Tiene la miión de amplificar la ptencia de la eñal (n neceariamente la tenión y tranmitirla a la antena

Más detalles

3. TRABAJO Y ENERGÍA E IMPULSO Y CANTIDAD DE MOVIMIENTO PARA LA PARTÍCULA

3. TRABAJO Y ENERGÍA E IMPULSO Y CANTIDAD DE MOVIMIENTO PARA LA PARTÍCULA 83 3. RJO Y EERGÍ E IMPLSO Y CIDD DE MOVIMIEO PR L PRÍCL 3. rabajo energía cinética. Con una fuerza E de 0 kg, inclinada 30º, e epuja un cuerpo de 0 kg obre una uperficie horizontal, en línea recta, a

Más detalles

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590.

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590. 5//8 Senore generadore y u acondicionadore apítulo Nota: La ecuacione, figura y problema citado en el dearrollo de lo problema de ete capítulo que no contengan W en u referencia correponden al libro impreo.

Más detalles

Estudio de una ecuación del calor semilineal en dominios no-cilíndricos

Estudio de una ecuación del calor semilineal en dominios no-cilíndricos XXI Congreo de Ecuacione Diferenciale y Aplicacione XI Congreo de Matemática Aplicada Ciudad Real, 21-25 eptiembre 2009 (pp. 1 8) Etudio de una ecuación del calor emilineal en dominio no-cilíndrico P.

Más detalles

RESPONSABLE: FRANCISCO JOSÉ PELÁEZ FERMOSO

RESPONSABLE: FRANCISCO JOSÉ PELÁEZ FERMOSO LA INTEGRACIÓN DE LOS PLANES DE PENSIONES CON LA SEGURIDAD SOCIAL: UN SEGURO FRENTE AL RIESGO ASOCIADO A LA VIABILIDAD DE LAS PENSIONES PÚBLICAS EN ESPAÑA RESPONSABLE: FRANCISCO JOSÉ PELÁEZ FERMOSO Invetigación

Más detalles

DIAGRAMAS DE BLOQUES

DIAGRAMAS DE BLOQUES Univeridad Carlo III de Madrid Señale y Sitema DIAGRAMAS DE BLOQUES Diagrama de bloque. 1. Repreentación en diagrama de bloque. 2. Operacione con bloque. Dolore Blanco, Ramón Barber, María Malfaz y Miguel

Más detalles

COLECCIÓN: ELECTROTECNIA PARA INGENIEROS NO ESPECIALISTAS

COLECCIÓN: ELECTROTECNIA PARA INGENIEROS NO ESPECIALISTAS UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA COLECCIÓN: ELECTROTECNIA PARA INGENIEROS NO ESPECIALISTAS Miguel Angel Rodríguez Pozueta Doctor Ingeniero Indutrial 008, Miguel

Más detalles

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( )

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( ) Derivaa e una Función Ínice.. Introucción.. Peniente e una recta tangente.. Derivaa e una función. 4. Derivaas laterales. 5. Derivaa e una función compuesta (Regla e la Caena). 6. Tabla e erivaas usuales.

Más detalles

2. Cálculo de las pérdidas de carga localizadas.

2. Cálculo de las pérdidas de carga localizadas. Cátedra de Ineniería Rural Ecuela Unieritaria de Ineniería Técnica Arícola de Ciudad Real Tema 8. Pérdida de cara localizada o accidentale. Introducción y concepto. Cálculo de la pérdida de cara localizada

Más detalles

TEMA 6: FLUJO EXTERNO

TEMA 6: FLUJO EXTERNO TEMA 6: FLUJO EXTERNO Índice TEMA 6: FLUJO EXTERNO... 1 1. Introducción... 1.1 Partícula ólida... 1. Agregado de partícula y proceo de floculación.... Deplazamiento de partícula olida y agregado en el

Más detalles

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA íica P.A.U. ÓPTICA ÓPTICA INTRODUCCIÓN MÉTODO. En general: Se dibuja un equema con lo rayo. Se compara el reultado del cálculo con el equema. 2. En lo problema de lente: Se traza un rayo paralelo al eje

Más detalles

CONTROL DE TANQUES ACOPLADOS

CONTROL DE TANQUES ACOPLADOS ESCUELA TECNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACION Titulación: INGENIERIA TECNICA INDUSTRIAL (ELECTRICIDAD) CONTROL DE TANQUES ACOPLADOS Alumna: Sara Pérez Izquieta Tutore: Iñaki

Más detalles

FORMULARIO INDICADORES DE DESEMPEÑO AÑO 2015

FORMULARIO INDICADORES DE DESEMPEÑO AÑO 2015 FORMULARIO INDICADORES DE DESEMPEÑO AÑO 15 MINISTERIO MINISTERIO DE TRANSPORTE Y TELECOMUNICACIONES PARTIDA 19 SERVICIO SUBSECRETARIA DE TELECOMUNICACIONES CAPÍTULO Producto Etratégico al que e Vincula

Más detalles

MECÁNICA DE FLUIDOS Tema5. Operaciones separación sólido-fluido

MECÁNICA DE FLUIDOS Tema5. Operaciones separación sólido-fluido 2011 MECÁNICA DE FLUIDOS Tema5. Operacione eparación ólido-fluido Thi work i licened under the Creative Common Attribution-NonCommercial-NoDeriv 3.0 Unported Licene. To view a copy of thi licene, viit

Más detalles

2. Estabilidad Transitoria

2. Estabilidad Transitoria Anexo -. Etabilia Tranitoria. roblema # A n generaor incrónico e catro polo, 60 z poee na capacia nominal e 00 MVA, a actor e potencia 0.8 en atrao. El momento e inercia el rotor e e 45.00kg-m. Determine

Más detalles

JUNTA MONETARIA RESOLUCION JM-349-94

JUNTA MONETARIA RESOLUCION JM-349-94 JUNTA MONETARIA RESOLUCION JM-349-94 Inerta en el Punto Tercero, del acta número 34-94 correpondiente a la eión celebrada por la Junta Monetaria el 20 de julio de 1994. PUNTO TERCERO: El Superintendente

Más detalles

SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann. Noviembre, 1859

SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann. Noviembre, 1859 SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann Noviembre, 859 No creo poder exprear mejor mi agradecimiento por la ditinción que la Academia me ha hecho al nombrarme

Más detalles

MOTORES DE C.C. Y C.A.

MOTORES DE C.C. Y C.A. MOTORES DE C.C. Y C.A. La neumática e la tecnología que utiliza el aire comprimido como fluido de trabajo. El compreor e el elemento que comprime el aire dede la preión atmoférica hata lo 6-8 bar; la válvula

Más detalles

Tema 4: Programación lineal con variables continuas: método del Simplex

Tema 4: Programación lineal con variables continuas: método del Simplex Tema 4: Programación lineal con variable continua: método del Simple Obetivo del tema: Reolver de forma gráfica un problema de programación lineal continuo Etudiar la forma equivalente de repreentación

Más detalles

CÁLCULO EN AGOTAMIENTO

CÁLCULO EN AGOTAMIENTO CÁLCULO EN AGOTAMIENTO A) HIPÓTESIS BÁSICAS *Hipótei e Bernouilli Mantenimiento e eione plana. *Reitenia última e lo materiale: k ; k *Deormaione última e lo materiale: -Hormigón: 0,002 en ompreión imple

Más detalles

[ ] [ m] [ ] [ ] [ ] [ ]

[ ] [ m] [ ] [ ] [ ] [ ] Ejercicio: Ona. El eiicio Sear, ubicao en Chicago, e ece con una recuencia aproxiaa a 0,0 Hz. Cuál e el perioo e la ibración? Dao: 0, [Hz]? 0,Hz 0. Una ola en el océano iene una longiu e 0. Una ona paa

Más detalles

Tema 11 Ciclos con vapor

Tema 11 Ciclos con vapor ema Ciclo con vapor Ciclo con vapor: Equema. Ciclo de Rankine. Rendimiento de máquina biterma. Fluido empleado. Ciclo de Rankine imple. Factore que afectan al rendimiento (ciclo potencia). Aumento de preión

Más detalles

Estudio del sector de alimentación y bebidas en Corea del Sur. 2004. FIAB. ICEX

Estudio del sector de alimentación y bebidas en Corea del Sur. 2004. FIAB. ICEX Una primera aproximación 1 En el año 2003 Corea importaba producto agroalimentario por un valor de 9.246 millone de dólare. Eta cifra repreentba un 5,1% de la importacione totale. Lo dato de lo que diponemo

Más detalles

LAS HERRAMIENTAS DE CALIDAD PARA EL DESARROLLO DE LA EMPRESA

LAS HERRAMIENTAS DE CALIDAD PARA EL DESARROLLO DE LA EMPRESA LAS HERRAMIENTAS DE CALIDAD PARA EL DESARROLLO DE LA EMPRESA TEMARIO: INTRODUCCIÓN HERRAMIENTAS DE CALIDAD MODELOS DE CALIDAD SISTEMAS DE GESTIÓN METODOLOGÍAS POR DÓNDE EMPEZAR? 1 INTRODUCCIÓN: El actual

Más detalles

Audioconecta: Diseño y montaje de módulos de procesado analógico de audio con fines didácticos Ecualizadores gráfico y paramétrico.

Audioconecta: Diseño y montaje de módulos de procesado analógico de audio con fines didácticos Ecualizadores gráfico y paramétrico. UNIESIDAD POLITECNICA DE ALENCIA ESCUELA POLITECNICA SUPEIO DE GANDIA I.T. TELECOMUNICACIÓN (SONIDO E IMAGEN) Auioconecta: Dieño y montaje e móulo e proceao analógico e auio con fine iáctico Ecualizaore

Más detalles

Presentación. Estudio. Brandi. Impuestos, Sueldos y Contabilidad. www.estudiobrandi.com.ar

Presentación. Estudio. Brandi. Impuestos, Sueldos y Contabilidad. www.estudiobrandi.com.ar Preentación Etudio Etudio Intitucional Reeña El Etudio tiene u inicio en Marzo de 1992, cuando lo Contadore Público Juan Leandro y Critina N. Pane baado en la experiencia adquirida en importante etudio

Más detalles

Práctica 6.2: Circuito hidráulico para cilindro de grúa

Práctica 6.2: Circuito hidráulico para cilindro de grúa Práctica 6.: Circuito hidráulico para cilindro de grúa Una grúa de tranporte de chatarra utiliza do cilindro hidráulico para mover u brazo articulado. Se va a etudiar el circuito que irve para accionar

Más detalles

POSICIONES RELATIVAS de RECTAS y PLANOS

POSICIONES RELATIVAS de RECTAS y PLANOS POSICIONES RELATIVAS de RECTAS y PLANOS MATEMÁTICAS II 2º Bachilleato Alfono González IES Fenando de Mena Dpto. de Matemática Supongamo, po ejemplo, que queemo etudia la poición elativa de una ecta que

Más detalles

Boletín audioprotésico número 35

Boletín audioprotésico número 35 Boletín auioprotésico número 35 Cómo asegurar la ganancia in-situ correcta Noveaes el epartamento e Investigación auioprotésica y comunicación 9 502 1041 004 / 06-07 Introucción Normalmente, los auífonos

Más detalles

FUERZA CENTRAL (soluciones)

FUERZA CENTRAL (soluciones) FUERZA CENTRAL (olucione) 1.- Un cuerpo de peo g gira en una circunferencia vertical de radio R atado a un cordel. Calcular la tenión del cordel en el punto á alto y en el á bajo. Calcule la velocidad

Más detalles

REGULACIÓN AUTOMATICA (8)

REGULACIÓN AUTOMATICA (8) REGULACIÓN AUOMAICA 8 Repueta en frecuencia Nyquit Ecuela Politécnica Superior Profeor: Darío García Rodríguez -4.-Dada la función de tranferencia de lazo abierto de un itema con imentación unitaria, para

Más detalles

C a p í t u l o 3 POTENCIAL ELECTROSTÁTICO PROMEDIO

C a p í t u l o 3 POTENCIAL ELECTROSTÁTICO PROMEDIO C a p í t u l o 3 POTENCIAL ELECTROSTÁTICO PROMEDIO En el Capítulo e obtuvieron la ecuacione para lo flujo electrocinético en término del potencial electrotático promedio ψ() en el interior del poro cilíndrico.

Más detalles

CIRCULAR Nº 2 (Aclaratoria)

CIRCULAR Nº 2 (Aclaratoria) Bueno Aire, 8 ero 2016 Referencia: Licitación Pública N 27/15 CIRCULAR Nº 2 (Aclaratoria) A lo efecto una mejor comprenión lo volcado en la epecificacione técnica l Pliego Bae y Condicione Particulare

Más detalles

Optimización de Tiempo para el Proceso de Atención al Cliente para un Restaurante Altamente Estacional

Optimización de Tiempo para el Proceso de Atención al Cliente para un Restaurante Altamente Estacional Optimización de Tiempo para el Proceo de Atención al Cliente para un Retaurante Altamente Etacional Alumna: Año Académico: 212 Profeor Guía: Contraparte: TERESA YOLANDA OLAVE QUINTEROS RODOLFO SCHMAL Ecuela

Más detalles

orden nacional Fase de Información 1 de junio de 2008 1 de noviembre de 2008 Fase de Interacción 1 de diciembre de 2008 1 de diciembre de 2009

orden nacional Fase de Información 1 de junio de 2008 1 de noviembre de 2008 Fase de Interacción 1 de diciembre de 2008 1 de diciembre de 2009 1 1. Adicionalmente, que el CONPES 3248 2003 fine el programa renovación la adminitración pública y etablece que la finalidad la etrategia gobierno electrónico e ( ) finir una política y un conjunto intrumento

Más detalles

UNIVERSIDAD DEL AZUAY Facultad de Ciencia y Tecnología Escuela de Ingeniería Electrónica

UNIVERSIDAD DEL AZUAY Facultad de Ciencia y Tecnología Escuela de Ingeniería Electrónica UNIVERSIDAD DEL AZUAY Facultad de Ciencia y Tecnología Ecuela de Ingeniería Electrónica Implementación de filtro digitale en controladore digitale de eñal Tei previa a la obtención del título de Ingeniero

Más detalles

LA DERIVADA POR FÓRMULAS

LA DERIVADA POR FÓRMULAS CAPÍTULO LA DERIVADA POR FÓRMULAS. FÓRMULAS Obtener la erivaa e cualquier función por alguno e los os métoos vistos anteriormente, el e tabulaciones y el e incrementos, resulta una tarea muy engorrosa,

Más detalles

CAPÍTULO IV. ENSAYOS Y SIMULACIONES REALIZADAS

CAPÍTULO IV. ENSAYOS Y SIMULACIONES REALIZADAS Capítulo IV. Enayo y Simulacione Realizada 93 CAPÍTULO IV. ENSAYOS Y SIMULACIONES REALIZADAS 4.1 INTRODUCCIÓN La contrucción y poteriore prueba realizada con lo prototipo dieñado no iguió un patrón único

Más detalles

CA Nimsoft Monitor Snap

CA Nimsoft Monitor Snap CA Nimoft Monitor Snap Guía de configuración de Monitorización de IBM SVC Serie de ibm_vc 1.0 Avio de copyright de CA Nimoft Monitor Snap Ete itema de ayuda en línea (el "Sitema") e proporciona con el

Más detalles

TEORÍA DE LAS TELECOMUNICACIONES

TEORÍA DE LAS TELECOMUNICACIONES DEARAMENO DE CIENCIA Y ECNOLOGÍA UNIVERSIDAD NACIONAL DE QUILMES Roque Sáenz eña 8 (B876BXD) Bernal Bueno Aire Argentina EORÍA DE LAS ELECOMUNICACIONES MODULACIÓN DIGIAL (SEGUNDA ARE) Durante el dearrollo

Más detalles

Procesamiento Digital de Señal

Procesamiento Digital de Señal Proceamiento Digital de Señal Tema 5: Muetreo y recontrucción Teorema de muetreo: Shannon-Nyquit. Recontrucción Diezmado e Interpolación Cuantización Muetreo El muetreo digital de una eñal analógica trae

Más detalles

www.fisicaeingenieria.es

www.fisicaeingenieria.es 1) Epejo cóncavo y convexo 1.1) Criterio de igno en óptica geométrica Lo objetivo principale en óptica geométrica on la determinación, en función de la poición del objeto y u tamaño, de la poición de la

Más detalles

ÓPTICA GEOMÉTRICA 12.1. FORMACIÓN DE IMÁGENES EN UN ESPEJO PLANO

ÓPTICA GEOMÉTRICA 12.1. FORMACIÓN DE IMÁGENES EN UN ESPEJO PLANO 2 ÓPTICA GEOMÉTRICA 2.. ORMACIÓN DE IMÁGENES EN UN ESPEJO PLANO. En la imagen que e forma de un objeto en un epejo plano e invierten la izquierda la derecha, pero no la parte de arriba la parte de abajo

Más detalles

Tema VI: Referencias de tensión y reguladores de tensión.

Tema VI: Referencias de tensión y reguladores de tensión. ESUELA ÉNA SUPEO DE NGENEOS NDUSALES Y DE ELEOMUNAÓN UNESDAD DE ANABA NSUMENAÓN ELEÓNA DE OMUNAONES (5º uro ngeniería de elecomunicación) ema : eferencia de tenión y reguladore de tenión. Joé María Drake

Más detalles

ANÁLISIS DE PEQUEÑA SEÑAL DE UN SISTEMA MÁQUINA - BARRA INFINITA

ANÁLISIS DE PEQUEÑA SEÑAL DE UN SISTEMA MÁQUINA - BARRA INFINITA I Jornaas en Ingeniería Eléctrica y Electrónica ANÁLISIS E PEQUEÑA SEÑAL E UN SISTEMA MÁQUINA - BARRA INFINITA Játiva Jesús, Ph.. Aguilar Rommel epartamento e Energía Eléctrica Escuela Politécnica Nacional

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES

MAGNITUDES ESCALARES Y VECTORIALES C U R S O: FÍSICA Mención MATERIAL: FM-1 MAGNITUDES ESCALARES Y VECTORIALES La Fíica tiene por objetivo decribir la naturaleza y lo fenómeno que en ella ocurren, a travé de magnitude y relacione entre

Más detalles

Estadísticas europeas de accidentes de trabajo

Estadísticas europeas de accidentes de trabajo 00 Oí (Π Ζ O U D LU Etadítica europea de accidente de trabajo etodología COMIIÓN EUROPEA = L eurotat 5 Población y condicione ociale eurotat OFICINA ETADÍTICA DE LA COMUNIDADE EUROPEA L-2920 Luxembourg

Más detalles

Manual de la Práctica 2: Análisis de sistemas discretos

Manual de la Práctica 2: Análisis de sistemas discretos Control por computaor Manual e la Práctica : Análisis e sistemas iscretos Jorge Pomares Baeza Fracisco Anrés Canelas Herías Grupo e Innovación Eucativa en Automática 009 GITE IEA - - Introucción En la

Más detalles

DETERMINACIÓN DEL TIEMPO DE VUELO DE SEÑALES ULTRASÓNICAS, CON RESOLUCIÓN SUPERIOR A UN PERIODO DE MUESTREO, POR ANÁLISIS DE FASE

DETERMINACIÓN DEL TIEMPO DE VUELO DE SEÑALES ULTRASÓNICAS, CON RESOLUCIÓN SUPERIOR A UN PERIODO DE MUESTREO, POR ANÁLISIS DE FASE DETERMINACIÓN DEL TIEMPO DE VUELO DE SEÑALES ULTRASÓNICAS, CON RESOLUCIÓN SUPERIOR A UN PERIODO DE MUESTREO, POR ANÁLISIS DE FASE REFERENCIA PACS: 43.58.Dj Ibáñez Rodríguez, A.; Parrilla Romero, M; García

Más detalles

TRIEDRO DE FRENET. γ(t) 3 T(t)

TRIEDRO DE FRENET. γ(t) 3 T(t) TRIEDRO DE FRENET Matemática II Sea Γ R 3 una curva y ean γ : I = [a,b] R 3, γ(t = (x(t,y(t,z(t una parametrización regular y α : I = [a,b ] R 3 u parametrización repecto el parámetro arco. A partir de

Más detalles

ESCUELA POLITÉCNICA NACIONAL INSTITUTO DE CIENCIAS BÁSICAS COMPROBACION DE ACELERACIÓN CONSTANTE

ESCUELA POLITÉCNICA NACIONAL INSTITUTO DE CIENCIAS BÁSICAS COMPROBACION DE ACELERACIÓN CONSTANTE ESCUELA POLITÉCNICA NACIONAL INSTITUTO DE CIENCIAS BÁSICAS COMPROBACION DE ACELERACIÓN CONSTANTE DAVID CUEVA ERAZO daidcuea.5@hotail.co ANTHONY ENCALADA CAIZAPANTA anthony-fer@hotail.co ALPHA LANDÁZURI

Más detalles

Fuerza de fricción estática

Fuerza de fricción estática Laboratorio de Meánia. Experimento 10 Fuerza de friión etátia Objetivo general Etudiar la fuerza de friión etátia. Objetivo epeífio Determinar lo oefiiente de friión entre diferente pareja de materiale.

Más detalles