Tipo de punta (factor) (bloques)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tipo de punta (factor) (bloques)"

Transcripción

1 Ejemplo Diseño Bloques al Azar Ejercicio -6 (Pág. 99 Montgomery) Probeta Tipo de punta (factor) (bloques) ) Representación gráfica de los datos mediante diagramas de caja PUNTA Resumen del procesamiento de los casos DUREZA PUNTA Casos Válidos Perdidos Total N Porcentaje N Porcentaje N Porcentaje 00,0% 0,0% 00,0% 00,0% 0,0% 00,0% 00,0% 0,0% 00,0% 00,0% 0,0% 00,0% DUREZA 0, 0, 0,0 9,8 9,6 9, DUREZA 9, 9,0 N = PUNTA Gráficos-Gráficos Antiguos-Diagramas de caja-simple-definir- Variable (dureza) Eje de categoría (Punta)

2 ) Para realizar el análisis de la variancia y permitir guardar los residuos para su posterior análisis se utiliza el menú: Modelo Lineal General Análisis de varianza univariante Factores inter-sujetos N Probetas Estadísticos descriptivos Variable dependiente: Dureza Probetas Media Desv. típ. N 9,000. 9,000. 9, ,0000. Total 9,5750,0957 9,000. 9,000. 9, ,9000. Total 9,6000,99 9,000. 9,000. 9, ,7000. Total 9,500,087 9, , , ,000. Total 9,8750,758 Total 9,000,60 9,50,58 9,750,7 9,9500,087 Total 9,650,96 6

3 Contraste de Levene sobre la igualdad de las varianzas error a Variable dependiente: DUREZA F gl gl Significación, 5 0, Contrasta la hipótesis nula de que la varianza error de la variable dependiente es igual a lo largo de todos los grupos. a. Diseño: Intercept+PROBETA+PUNTA El test de Levene debe ser calculado posteriormente porque el programa no lo hace para este diseño. Pruebas de los efectos inter-sujetos Variable dependiente: Dureza Suma de Fuente cuadrados tipo III gl Media cuadrática F Significación Modelo corregido,0(a) 6,0,688,000 Intersección 8,50 8, ,5,000 Punta,85,8,8,00 Probeta,85,75 0,98,000 Error,080 9,009 Total 8,50 6 Total corregida,90 5 a R cuadrado =,98 (R cuadrado corregida =,897) Las Medias para los distintos tratamientos No son iguales RECHAZO Ho Si bien el valor F=0.98 con significación aprox. 0 para la fuente de variación Probeta (bloque), que automáticamente calcula el sofware no tiene demasiada relevancia en el estudio, nos permite decir que efectivamente hay diferencias entre los bloques, y por lo tanto ha sido una buena elección el Diseño en Bloques. Medias marginales estimadas Variable dependiente: Dureza Intervalo de confianza al 95%. Límite Media Error típ. Límite inferior superior 9,575,07 9,68 9,68 9,600,07 9,9 9,707 9,50,07 9, 9,557 9,875,07 9,768 9,98

4 Pruebas post hoc Comparaciones múltiples Variable dependiente: Dureza Diferencia entre Intervalo de confianza al 95%. (I) (J) medias (I-J) Error típ. Significació n Límite superior Límite inferior DHS de -,050,06667,98 -,,8 Tukey,50,06667,0 -,08, -,000(*),06667,007 -,508 -,099,050,06667,98 -,8,,500,06667,8 -,058,58 -,750(*),06667,0 -,8 -,0669 -,50,06667,0 -,,08 -,500,06667,8 -,58,058 -,50(*),06667,00 -,6 -,69,000(*),06667,007,099,508,750(*),06667,0,0669,8,50(*),06667,00,69,6 DMS -,050,06667,76 -,758,58,50,06667,09 -,058,758 -,000(*),06667,00 -,508 -,9,050,06667,76 -,58,758,500,06667,05 -,0008,008 -,750(*),06667,00 -,58 -, -,50,06667,09 -,758,058 -,500,06667,05 -,008,0008 -,50(*),06667,000 -,5758 -,7,000(*),06667,00,9,508,750(*),06667,00,,58,50(*),06667,000,7,5758 Basado en las medias observadas. * La diferencia de medias es significativa al nivel,05.

5 Subconjuntos homogéneos DHS de Tukey a,b PUNTA Significación DUREZA N 9,500 9,5750 9,6000 Subconjunto 9,8750,8,000 Se muestran las medias para los grupos en subconjuntos homogéneos. Basado en la suma de cuadrados tipo III El término error es la Media cuadrática (Error) = 8,889E-0. a. Usa el tamaño muestral de la media armónica =,000 b. Alfa =,05. Medias marginales estimadas de Dureza Medias marginales estimadas 0,0 0,00 9,80 9,60 9,0 9,0 Probetas Analizar-Modelo Lineal General-Univariante Variable dependiente-dureza Factor fijo- Punta - Probeta Modelo-Personalizado - Punta - Probeta Gráficos-Probetas - eje horizontal Punta - lineas distintas - añadir Post hoc Punta - factor- Tukey (o Duncan o DMS (LSD en inglés)) Guardar-Valores pronosticados sin estandarizar Residuos estandarizados Residuos sin estandarizar Opciones Punta - Estadisticos descriptivos -Test de Homogeneidad Gráficos de residuos

6 ) Para estudio de residuos Explorar Resumen del procesamiento de los casos Residuo estandarizado para DUREZA Casos Válidos Perdidos Total N Porcentaje N Porcentaje N Porcentaje 6 00,0% 0,0% 6 00,0% Descriptivos Residuo estandarizado para DUREZA Media Intervalo de confianza para la media al 95% Límite inferior Límite superior Estadístico Error típ.,0000,965 -,8,8 Media recortada al 5% Mediana Varianza Desv. típ. Mínimo Máximo Rango Amplitud intercuartil Asimetría Curtosis -,095 -,6,600,7760 -,06,59,65,9,587,56 -,80,09 Residuo estandarizado para DUREZA Pruebas de normalidad Kolmogorov-Smirnov a Estadístico gl Sig. Estadístico gl Sig. *. Este es un límite inferior de la significación verdadera. a. Corrección de la significación de Lilliefors Shapiro-Wilk, 6,00*,90 6, Como el número de casos es n < 50 uso Shapiro-Wilk. La significación es mayor al 5%. Acepto la Ho: Lo que indica que los residuos para la dureza se aproxima a una distribución normal.

7 ,0,5 Gráfico Q-Q normal de Residuo estandarizado para DUREZA,0,5,0,0,5,5 0,0 Normal esperado -,5 -,0 -,5 -,0 -,5 -,0 -,5 0,0,5,0,5,0 0,0 -,5 -,0 -,5 Valor observado N = 6 Residuo estandarizad Analizar-Estadisticos descriptivos-explorar-variable dependiente-residuos Ambos Gráficos-Pruebas de normalidad Para realizar la prueba de homogeneidad de variancias se debe realizar con un ANOVA el análisis de la variancia para la variable residuos en valor absoluto por tratamientos (en este caso, punta). Si el valor de probabilidad asociado a F es mayor que 0,05, se asume que las variancias son homogéneas (Test de Levene) ANOVA de un factor ANOVA ABSRES Inter-grupos Intra-grupos Total Suma de Media cuadrados gl cuadrática F Sig.,00,00,576,6,0,00,0 5 Las Varianzas son homogéneas NO RECHAZO Ho En el menu de los Datos se procede de la siguiente forma Transformar Calcular - Abs(residuos sin estandarizar)----nombre de la variable absres Analizar-Modelo Lineal General-Univariante Variable dependiente- absres Factor fijo- Punta

8 ) Verificación gráfica de supuestos Gráficos Standardized Residual for DUREZA Standardized Residual for DUREZA ,0 9,0 9,60 9,80 0,00 Valor pronosticado para dureza 0,0 0 5 Gráficos-Dispersión-Eje y: residuos estandarizados Eje x: valores pronosticados Para modificar el gráfico hacer doble clic en el gráfico Diseño-Ejes (marcar el eje y) Valor mínimo : - Valor máximo: Lineas de referencia: 0 añadir - añadir añadir Gráficos-Dispersión-Eje y: residuos estandarizados Eje x: punta

Tema: ESTADÍSTICA DESCRIPTIVA BÁSICA CON SPSS 8.0

Tema: ESTADÍSTICA DESCRIPTIVA BÁSICA CON SPSS 8.0 Ignacio Martín Tamayo 11 Tema: ESTADÍSTICA DESCRIPTIVA BÁSICA CON SPSS 8.0 ÍNDICE ------------------------------------------------------------- 1. Introducción 2. Frecuencias 3. Descriptivos 4. Explorar

Más detalles

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia

Más detalles

Estadísticos Descriptivos

Estadísticos Descriptivos ANÁLISIS EXPLORATORIO DE DATOS El análisis exploratorio tiene como objetivo identificar el modelo teórico más adecuado para representar la población de la cual proceden los datos muéstrales. Dicho análisis

Más detalles

Evaluación de Regnum 25 EC en el cultivo de maíz para la producción de grano. Rodolfo Alberto Rubio Chávez. Maíz (Zea mays)

Evaluación de Regnum 25 EC en el cultivo de maíz para la producción de grano. Rodolfo Alberto Rubio Chávez. Maíz (Zea mays) Evaluación de Regnum 25 EC en el cultivo de maíz para la producción de grano. Rodolfo Alberto Rubio Chávez Cadelga Maíz (Zea mays) Científica Objetivos Medir el Efecto Fisiológico AgCelence del Fungicida

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

Estadísticos Aplicados en el SPSS 2008

Estadísticos Aplicados en el SPSS 2008 PRUEBAS ESTADISTICAS QUE SE APLICAN (SPSS 10.0) PARAMÉTRICAS:... 2 Prueba t de Student para una muestra... 2 Prueba t par muestras independientes... 2 ANOVA de una vía (multigrupo)... 2 ANOVA de dos vías

Más detalles

Capítulo 15. Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante

Capítulo 15. Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante Capítulo 15 Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante Los modelos factoriales de análisis de varianza (factorial = más de un factor) sirven para evaluar el efecto

Más detalles

GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS

GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS Se realizó un estudio a partir de una muestra aleatoria de mujeres atendidas por el departamento de obstetricia y ginecología de cierta clínica particular.

Más detalles

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.

Más detalles

Tema 3: Diseño de experimentos

Tema 3: Diseño de experimentos Grado en Fisioterapia, 2010/11 Cátedra de Bioestadística Universidad de Extremadura 15 de noviembre de 2010 Índice Diseños con un factor 1 Diseños con un factor Comparación de dos medias Comparación de

Más detalles

SOLUCIÓN A LOS EJERCICIOS DEL SPSS Bivariante

SOLUCIÓN A LOS EJERCICIOS DEL SPSS Bivariante SOLUCIÓ A LOS EJERCICIOS DEL SPSS Bivariante. a). La media y la varianza de las variables estatura y peso en la escala de medida norteamericana. Peso Peso: Transformar -> Calcular: Libras.4536 Peso libras

Más detalles

Hay diferencias en la media del HOMA entre los diabéticos y los no diabéticos? Resumen del procesamiento de los casos

Hay diferencias en la media del HOMA entre los diabéticos y los no diabéticos? Resumen del procesamiento de los casos Test de hipótesis t de Student Hay diferencias en la media del HOMA entre los diabéticos y los no diabéticos? Resumen del procesamiento de los casos HOMA Casos Válidos Perdidos Total N Porcentaje N Porcentaje

Más detalles

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo...

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo... CONTENIDO Prólogo a la 3. a edición en español ampliada.................................. Prólogo.................................................................. vii xvii 1. Métodos descriptivos................................................

Más detalles

SPSS: ANOVA de un Factor

SPSS: ANOVA de un Factor SPSS: ANOVA de un Factor El análisis de varianza (ANOVA) de un factor nos sirve para comparar varios grupos en una variable cuantitativa. Esta prueba es una generalización del contraste de igualdad de

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

ESTADÍSTICA APLICADA. PRÁCTICAS CON SPSS. TEMA 2

ESTADÍSTICA APLICADA. PRÁCTICAS CON SPSS. TEMA 2 ESTADÍSTICA APLICADA. PRÁCTICAS CON SPSS. TEMA 2 1.- ANÁLISIS DE LA VARIANZA CON UN FACTOR El análisis de la varianza estudia el efecto de una o varias variables independientes denominadas factores sobre

Más detalles

Regresión con variables independientes cualitativas

Regresión con variables independientes cualitativas Regresión con variables independientes cualitativas.- Introducción...2 2.- Regresión con variable cualitativa dicotómica...2 3.- Regresión con variable cualitativa de varias categorías...6 2.- Introducción.

Más detalles

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016 Pruebas de Hipótesis-ANOVA Curso de Seminario de Tesis Profesor Q Jose Avila Parco Año 2016 Análisis de la Varianza de un factor (ANOVA) El análisis de la varianza (ANOVA) es una técnica estadística paramétrica

Más detalles

Pero qué hacemos cuando no se cumple la normalidad o tenemos muy pocos datos?

Pero qué hacemos cuando no se cumple la normalidad o tenemos muy pocos datos? Capítulo. Métodos no paramétricos Los métodos presentados en los capítulos anteriores, se basaban en el conocimiento de las distribuciones muestrales de las diferencias de porcentajes o promedios, cuando

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

Capítulo 14. Análisis de varianza de un factor: El procedimiento ANOVA de un factor

Capítulo 14. Análisis de varianza de un factor: El procedimiento ANOVA de un factor Capítulo 14 Análisis de varianza de un factor: El procedimiento ANOVA de un factor El análisis de varianza (ANOVA) de un factor sirve para comparar varios grupos en una variable cuantitativa. Se trata,

Más detalles

Análisis de Componentes de la Varianza

Análisis de Componentes de la Varianza Análisis de Componentes de la Varianza Resumen El procedimiento de Análisis de Componentes de Varianza está diseñado para estimar la contribución de múltiples factores a la variabilidad de una variable

Más detalles

Y accedemos al cuadro de diálogo Descriptivos

Y accedemos al cuadro de diálogo Descriptivos SPSS: DESCRIPTIVOS PROCEDIMIENTO DE ANÁLISIS INICIAL DE DATOS: DESCRIPTIVOS A diferencia con el procedimiento Frecuencias, que contiene opciones para describir tanto variables categóricas como cuantitativas

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

CLAVE-LAB 3-Supuestos del Análisis de la Varianza

CLAVE-LAB 3-Supuestos del Análisis de la Varianza (Revisado enero 016_LWB/CL) CLAVE-LAB 3-Supuestos del Análisis de la Varianza El archivo Excel con los datos para este laboratorio está en la página del curso. Los datos provienen de un estudio realizado

Más detalles

Detergente Lavad.1 Lavad.2 Lavad.3 Media A 45 43 51 46.3 B 47 44 52 47.6 C 50 49 57 52 D 42 37 49 42.6. Media 46 43.2 52.2 47.16

Detergente Lavad.1 Lavad.2 Lavad.3 Media A 45 43 51 46.3 B 47 44 52 47.6 C 50 49 57 52 D 42 37 49 42.6. Media 46 43.2 52.2 47.16 3. DISEÑO EN BLOQUES ALEATORIZADOS En muchos experimentos además de que interesa investigar la influencia de un factor controlado sobre la variable de respuesta, como en la sección anterior, existe una

Más detalles

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo Estructura de este tema Tema 3 Contrastes de hipótesis José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Qué es un contraste de hipótesis? Elementos de un contraste: hipótesis,

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

CURSO-TALLER DE ANÁLISIS ESTADÍSTICO BÁSICO CON EXCEL Y SPSS Instructor: Mario Alberto Barajas Malacara

CURSO-TALLER DE ANÁLISIS ESTADÍSTICO BÁSICO CON EXCEL Y SPSS Instructor: Mario Alberto Barajas Malacara CURSO-TALLER DE ANÁLISIS ESTADÍSTICO BÁSICO CON EXCEL Y SPSS Instructor: Mario Alberto Barajas Malacara Descripción: Los temas de estadística propuestos corresponden con los conocimientos mínimos que un

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Análisis de la Varianza de un Factor

Análisis de la Varianza de un Factor Práctica de Estadística con Statgraphics Análisis de la Varianza de un Factor Fundamentos teóricos El Análisis de la Varianza con un Factor es una técnica estadística de contraste de hipótesis, cuyo propósito

Más detalles

Experimentos Factoriales Febrero 2010 Apuntes de la Cátedra de Estadística INDICE

Experimentos Factoriales Febrero 2010 Apuntes de la Cátedra de Estadística INDICE Serie Didáctica Nro. 1 Facultad de Ciencias Forestales UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO C Á T E D R A D E ESTADÍSTICA O. F. ANÁLISIS DE LA VARIANCIA EN EXPERIMENTOS FACTORIALES Cátedra de Estadística

Más detalles

Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A

Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A Regresión lineal REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL MÚLTIPLE N A Z IRA C A L L E J A Qué es la regresión? El análisis de regresión: Se utiliza para examinar el efecto de diferentes variables (VIs

Más detalles

Grado en NHyD 23 de junio de 2014

Grado en NHyD 23 de junio de 2014 Estadística Aplicada Examen extraordinario Grado en HyD 23 de junio de 214 OTA: Explica y desarrolla tus respuestas usando las salidas de los anexos. En las preguntas de verdadero y falso indica qué gráficos

Más detalles

EJERCICIOS ANALISIS DE DISEÑOS EXPERIMENTALES Y CUASIEXPERIMENTALES CON SPSS

EJERCICIOS ANALISIS DE DISEÑOS EXPERIMENTALES Y CUASIEXPERIMENTALES CON SPSS EJERCICIOS ANALISIS DE DISEÑOS EXPERIMENTALES Y CUASIEXPERIMENTALES CON SPSS Las soluciones a estos ejercicios y los outputs del SPSS se encuentran al final. EJERCICIO 1. Comparamos dos muestras de 10

Más detalles

ÍNDICE INTRODUCCIÓN... 21

ÍNDICE INTRODUCCIÓN... 21 INTRODUCCIÓN... 21 CAPÍTULO 1. ORGANIZACIÓN DE LOS DATOS Y REPRESENTACIONES GRÁFICAS... 23 1. ORGANIZACIÓN DE LOS DATOS... 23 1.1. La distribución de frecuencias... 24 1.2. Agrupación en intervalos...

Más detalles

MANEJO DE VARIABLES EN INVESTIGACIÓN CLÍNICA Y EXPERIMENTAL

MANEJO DE VARIABLES EN INVESTIGACIÓN CLÍNICA Y EXPERIMENTAL MANEJO DE VARIABLES EN INVESTIGACIÓN CLÍNICA Y EXPERIMENTAL Israel J. Thuissard David Sanz-Rosa IV JORNADAS INVESTIGACIÓN COEM UNIVERSIDADES 4 de marzo de 2016 Escuela de Doctorado e Investigación. Vicerrectorado

Más detalles

Práctica 9: Anova (2).

Práctica 9: Anova (2). Práctica 9: Anova (2) Dedicamos esta práctica al estudio de modelos bifactoriales del análisis de la varianza Veremos concretamente diseños bifactoriales con y sin interacción, diseño por bloques al azar

Más detalles

Análisis de la varianza ANOVA

Análisis de la varianza ANOVA Estadística Básica. Mayo 2004 1 Análisis de la varianza ANOVA Francisco Montes Departament d Estadística i I. O. Universitat de València http://www.uv.es/~montes Estadística Básica. Mayo 2004 2 Comparación

Más detalles

Pruebas para evaluar diferencias

Pruebas para evaluar diferencias Pruebas para evaluar diferencias Métodos paramétricos vs no paramétricos Mayoría se basaban en el conocimiento de las distribuciones muestrales (t- student, Normal, F): EsFman los parámetros de las poblaciones

Más detalles

1 Introducción al SPSS

1 Introducción al SPSS Breve guión para las prácticas con SPSS 1 Introducción al SPSS El programa SPSS está organizado en dos bloques: el editor de datos y el visor de resultados. En la barra de menú (arriba de la pantalla)

Más detalles

Este programa estadístico está organizado en dos bloques: el editor de datos y el visor de resultados.

Este programa estadístico está organizado en dos bloques: el editor de datos y el visor de resultados. Bases de Estadística Licenciatura en Ciencias Ambientales Curso 2oo3/2oo4 Introducción al SPSS/PC Este programa estadístico está organizado en dos bloques: el editor de datos y el visor de resultados.

Más detalles

Estadísticas por Filas

Estadísticas por Filas Estadísticas por s Resumen El procedimiento Estadísticas por s calcula estadísticas para datos en filas de la hoa de datos. Esto contrasta con la mayoría de los procedimientos de STATGRAPHICS que esperan

Más detalles

MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN. Lic. Esperanza García Cribilleros

MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN. Lic. Esperanza García Cribilleros MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN Lic. Esperanza García Cribilleros ANÁLISIS EXPLORATORIO DE DATOS Diagrama de tallo y hojas Diagrama de caja DESCRIPCIÓN N DE LOS DATOS Tablas

Más detalles

Los modelos que permite construir el ANOVA pueden ser reducidos a la siguiente forma:

Los modelos que permite construir el ANOVA pueden ser reducidos a la siguiente forma: Ignacio Martín Tamayo 25 Tema: ANÁLISIS DE VARIANZA CON SPSS 8.0 ÍNDICE --------------------------------------------------------- 1. Modelos de ANOVA 2. ANOVA unifactorial entregrupos 3. ANOVA multifactorial

Más detalles

Programa de Statgraphics. TITULO: Aplicaciones del Análisis de la Varianza. Resolución de dos Ejercicios propuestos paso por paso.

Programa de Statgraphics. TITULO: Aplicaciones del Análisis de la Varianza. Resolución de dos Ejercicios propuestos paso por paso. Programa de Statgraphics TITULO: Aplicaciones del Análisis de la Varianza. Resolución de dos Ejercicios propuestos paso por paso. AUTOR: JUAN VICENTE GONZÁLEZ OVANDO ANALISIS Y CALCULOS A) Planteamos los

Más detalles

CLASE 10: RESUMEN DEL CURSO

CLASE 10: RESUMEN DEL CURSO CLASE 10: RESUMEN DEL CURSO 10.1.-INTRODUCCIÓN Qué debemos valorar al enfrentarnos con el análisis de unos datos estadísticos? 1º TIPO DE ESTUDIO: - Datos Independientes - Datos Apareados 2º TIPO DE VARIABLES:

Más detalles

PATRONES DE DISTRIBUCIÓN ESPACIAL

PATRONES DE DISTRIBUCIÓN ESPACIAL PATRONES DE DISTRIBUCIÓN ESPACIAL Tipos de arreglos espaciales Al azar Regular o Uniforme Agrupada Hipótesis Ecológicas Disposición al Azar Todos los puntos en el espacio tienen la misma posibilidad de

Más detalles

Módulo de Estadística

Módulo de Estadística Módulo de Estadística Tema 2: Estadística descriptiva Tema 2: Estadísticos 1 Medidas La finalidad de las medidas de posición o tendencia central (centralización) es encontrar unos valores que sinteticen

Más detalles

Práctica 9 REGRESION LINEAL Y CORRELACIÓN

Práctica 9 REGRESION LINEAL Y CORRELACIÓN Práctica 9. Regresión lineal y Correlación 1 Práctica 9 REGRESION LINEAL Y CORRELACIÓN Objetivos: En esta práctica utilizaremos el paquete SPSS para estudiar la regresión lineal entre dos variables y la

Más detalles

bloques SC Suma de Cuadrados k trat bloques

bloques SC Suma de Cuadrados k trat bloques Análisis de un diseño en bloques aleatorios Cuando sólo hay dos tratamientos, el análisis de varianza de una vía equivale al test t de Student para muestras independientes. A su vez, el análisis de varianza

Más detalles

Probabilidad y Estadística, EIC 311

Probabilidad y Estadística, EIC 311 Probabilidad y Estadística, EIC 311 Medida de resumen 1er Semestre 2016 1 / 105 , mediana y moda para datos no Una medida muy útil es la media aritmética de la muestra = Promedio. 2 / 105 , mediana y moda

Más detalles

Indicaciones para el lector... xv Prólogo... xvii

Indicaciones para el lector... xv Prólogo... xvii ÍNDICE Indicaciones para el lector... xv Prólogo... xvii 1. INTRODUCCIÓN Qué es la estadística?... 3 Por qué estudiar estadística?... 5 Empleo de modelos en estadística... 6 Perspectiva hacia el futuro...

Más detalles

Cómo se hace la Prueba t a mano?

Cómo se hace la Prueba t a mano? Cómo se hace la Prueba t a mano? Sujeto Grupo Grupo Grupo Grupo 33 089 74 5476 84 7056 75 565 3 94 8836 75 565 4 5 704 76 5776 5 4 6 76 5776 6 9 8 76 5776 7 4 78 6084 8 65 45 79 64 9 86 7396 80 6400 0

Más detalles

Repaso Estadística Descriptiva

Repaso Estadística Descriptiva Grado en Fisioterapia, 2010/11 Cátedra de Bioestadística Universidad de Extremadura 13 de octubre de 2010 Índice Descriptiva de una variable 1 Descriptiva de una variable 2 Índice Descriptiva de una variable

Más detalles

BIOESTADÍSTICA - Posgrado en Ciencias de la Salud pag. 1 BIOESTADÍSTICA. Posgrado en Ciencias de la Salud. Curso

BIOESTADÍSTICA - Posgrado en Ciencias de la Salud pag. 1 BIOESTADÍSTICA. Posgrado en Ciencias de la Salud. Curso BIOESTADÍSTICA - Posgrado en Ciencias de la Salud pag. BIOESTADÍSTICA Posgrado en Ciencias de la Salud Curso 00-0 Bloque I:. Nociones básicas de estadística descriptiva e inferencia.. Comparación de dos

Más detalles

Cómo describir e interpretar los resultados de un estudio de investigación quirúrgica? Variables cuantitativas

Cómo describir e interpretar los resultados de un estudio de investigación quirúrgica? Variables cuantitativas Cómo describir e interpretar los resultados de un estudio de investigación quirúrgica? Variables cuantitativas Sesión de Residentes 13 de febrero, 2012 ÍNDICE Diferencia entre población y muestra. Diferencia

Más detalles

b.- Realiza las comparaciones múltiples mediante los métodos LSD, Bonferroni y Tuckey.

b.- Realiza las comparaciones múltiples mediante los métodos LSD, Bonferroni y Tuckey. Ejercicio 1: Se someten 24 muestras de agua a 4 tratamientos de descontaminación diferentes y asignados al azar. Para cada muestra se mide un indicador de la calidad del agua ( cuanto más alto es el indicador,

Más detalles

Estadística Inferencial. Estadística Descriptiva

Estadística Inferencial. Estadística Descriptiva INTRODUCCIÓN Estadística: Ciencia que trata sobre la teoría y aplicación de métodos para coleccionar, representar, resumir y analizar datos, así como realizar inferencias a partir de ellos. Recogida y

Más detalles

Tema: Medidas de Asociación con SPSS

Tema: Medidas de Asociación con SPSS Tema: Medidas de Asociación con SPSS 1.- Introducción Una de las tareas habituales en el análisis de encuestas es la generación y análisis de tablas de contingencia, para las variables y categorías objetivo

Más detalles

1. Cómo introducir datos en SPSS/PC? - Recordatorio

1. Cómo introducir datos en SPSS/PC? - Recordatorio 1 Taller de Estadística Curso 2oo5/2oo6 Descripción de datos bivariantes El objetivo de esta práctica es familiarizarse con las técnicas de descripción de datos bidimensionales y con algunas de las opciones

Más detalles

matemáticas como herramientas para solución de problemas en ingeniería. PS Probabilidad y Estadística Clave de la materia: Cuatrimestre: 4

matemáticas como herramientas para solución de problemas en ingeniería. PS Probabilidad y Estadística Clave de la materia: Cuatrimestre: 4 PS0401 - Probabilidad y Estadística DES: Ingeniería Programa(s) Educativo(s): Ingeniería de Software Tipo de materia: Obligatoria Clave de la materia: PS0401 Cuatrimestre: 4 UNIVERSIDAD AUTÓNOMA DE Área

Más detalles

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS 1 POR QUÉ SE LLAMAN CONTRASTES NO PARAMÉTRICOS? A diferencia de lo que ocurría en la inferencia paramétrica, ahora, el desconocimiento de la población que vamos

Más detalles

Capítulo 16 Análisis de varianza con medidas repetidas: El procedimiento MLG: Medidas repetidas

Capítulo 16 Análisis de varianza con medidas repetidas: El procedimiento MLG: Medidas repetidas Capítulo 6 Análisis de varianza con medidas repetidas: El procedimiento MLG: Medidas repetidas Los modelos de análisis de varianza (ANOVA) con medidas repetidas (MR) sirven para estudiar el efecto de uno

Más detalles

CAPÍTULO VI RESULTADOS PESO (50 COMPRIMIDOS) INICIAL PESO (50 COMPRIMIDOS) FINAL PESO (50 COMPRIMIDOS) INICIAL PESO DEL PLATO

CAPÍTULO VI RESULTADOS PESO (50 COMPRIMIDOS) INICIAL PESO (50 COMPRIMIDOS) FINAL PESO (50 COMPRIMIDOS) INICIAL PESO DEL PLATO CAPÍTULO VI RESULTADOS 6.1. CÁLCULOS 6.1.1. PORCENTAJE DE FRIABILIDAD RANGO: No mayor 1 % FÓRMULA % = PESO (50 COMPRIMIDOS) INICIAL PESO (50 COMPRIMIDOS) FINAL PESO (50 COMPRIMIDOS) INICIAL PESO DEL PLATO

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES La estadística unidimensional estudia los elementos de un conjunto de datos considerando sólo una variable o característica. Si ahora incorporamos, otra variable, y se observa simultáneamente el comportamiento

Más detalles

4.1 Análisis bivariado de asociaciones

4.1 Análisis bivariado de asociaciones 4.1 Análisis bivariado de asociaciones Los gerentes posiblemente estén interesados en el grado de asociación entre dos variables Las técnicas estadísticas adecuadas para realizar este tipo de análisis

Más detalles

Bloque 1. Contenidos comunes. (Total: 3 sesiones)

Bloque 1. Contenidos comunes. (Total: 3 sesiones) 4º E.S.O. OPCIÓN A 1.1.1 Contenidos 1.1.1.1 Bloque 1. Contenidos comunes. (Total: 3 sesiones) Planificación y utilización de procesos de razonamiento y estrategias de resolución de problemas, tales como

Más detalles

ANX-PR/CL/ GUÍA DE APRENDIZAJE. ASIGNATURA Estadistica. CURSO ACADÉMICO - SEMESTRE Primer semestre

ANX-PR/CL/ GUÍA DE APRENDIZAJE. ASIGNATURA Estadistica. CURSO ACADÉMICO - SEMESTRE Primer semestre ANX-PR/CL/001-01 GUÍA DE APRENDIZAJE ASIGNATURA Estadistica CURSO ACADÉMICO - SEMESTRE 2016-17 - Primer semestre GA_05IQ_55001012_1S_2016-17 Datos Descriptivos Nombre de la Asignatura Titulación Centro

Más detalles

Regresión con variables cualitativas

Regresión con variables cualitativas 3 Regresión con variables cualitativas. Introducción Hasta ahora hemos abordado el tema de la correlación y la regresión con variables cuantitativas. Sin embargo, un estudio de regresión similar puede

Más detalles

CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS

CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS 1. HIPÓTESIS ALTERNA E HIPÓTESIS NULA Para someter a contraste una hipótesis es necesario formular las Hipótesis Alternas ( H1 ) y formular

Más detalles

ESTADÍSTICA DESCRIPTIVA CON SPSS

ESTADÍSTICA DESCRIPTIVA CON SPSS ESTADÍSTICA DESCRIPTIVA CON SPSS (2602) Estadística Económica Joaquín Alegre y Magdalena Cladera SPSS es una aplicación para el análisis estadístico. En este material se presentan los procedimientos básicos

Más detalles

CORRELACIÓN Y REGRESIÓN. Juan José Hernández Ocaña

CORRELACIÓN Y REGRESIÓN. Juan José Hernández Ocaña CORRELACIÓN Y REGRESIÓN Juan José Hernández Ocaña CORRELACIÓN Muchas veces en Estadística necesitamos saber si existe una relación entre datos apareados y tratamos de buscar una posible relación entre

Más detalles

IX.- ANÁLISIS DE VARIANZA

IX.- ANÁLISIS DE VARIANZA IX- ANÁLISIS DE VARIANZA Las técnicas de Diseño Experimental basadas en la estadística son particularmente útiles en el mundo de la Ingeniería en lo que corresponde a la mejora del rendimiento de los procesos

Más detalles

Diseño Estadístico de Experimentos

Diseño Estadístico de Experimentos Capítulo 3 Diseño Estadístico de Experimentos Una prueba o serie de pruebas en las cuales se introducen cambios deliberados en las variables de entrada que forman el proceso, de manera que sea posible

Más detalles

A. PRUEBAS DE BONDAD DE AJUSTE: B.TABLAS DE CONTINGENCIA. Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords

A. PRUEBAS DE BONDAD DE AJUSTE: B.TABLAS DE CONTINGENCIA. Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords A. PRUEBAS DE BONDAD DE AJUSTE: Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords B.TABLAS DE CONTINGENCIA Marta Alperin Prosora Adjunta de Estadística alperin@fcnym.unlp.edu.ar http://www.fcnym.unlp.edu.ar/catedras/estadistica

Más detalles

ANEXO I. ANÁLISIS DE LA VARIANZA.

ANEXO I. ANÁLISIS DE LA VARIANZA. ANEXO I. ANÁLISIS DE LA VARIANZA. El análisis de la varianza (o Anova: Analysis of variance) es un método para comparar dos o más medias. Cuando se quiere comparar más de dos medias es incorrecto utilizar

Más detalles

TEMA 4 ELABORACIÓN Y COMPROBACIÓN DE LAS HIPÓTESIS DE INVESTIGACIÓN

TEMA 4 ELABORACIÓN Y COMPROBACIÓN DE LAS HIPÓTESIS DE INVESTIGACIÓN TEMA 4 ELABORACIÓN Y COMPROBACIÓN DE LAS HIPÓTESIS DE INVESTIGACIÓN 1 MODELO LINEAL GENERAL applemodelo estadístico appledescribe una combinación lineal de los efectos aditivos que forman la puntuación

Más detalles

Índice de contenidos. Primera parte Introducción al SPSS. 1. Estructura del SPSS

Índice de contenidos. Primera parte Introducción al SPSS. 1. Estructura del SPSS Índice de contenidos Primera parte Introducción al SPSS 1. Estructura del SPSS Tipos de ventanas SPSS Ventana designada versus ventana activa Cuadros de diálogo Subcuadros de diálogo Las barras de menús

Más detalles

ANÁLISIS DE LA VARIANZA (ANOVA) José Vicéns Otero Ainhoa Herrarte Sánchez Eva Medina Moral

ANÁLISIS DE LA VARIANZA (ANOVA) José Vicéns Otero Ainhoa Herrarte Sánchez Eva Medina Moral ANÁLISIS DE LA VARIANZA (ANOVA) José Vicéns Otero Ainhoa Herrarte Sánchez Eva Medina Moral Enero 2005 1.- INTRODUCCIÓN En múltiples ocasiones el analista o investigador se enfrenta al problema de determinar

Más detalles

MANUAL PARA EL USO DE SPSS

MANUAL PARA EL USO DE SPSS MANUAL PARA EL USO DE SPSS 1 INTRODUCCIÓN El propósito de este manual, es ilustrar con un ejemplo cómo generar tablas de frecuencia, tablas de contingencia, cálculos de medias, así como la generación de

Más detalles

Tema 7: Modelos de diseños de experimentos

Tema 7: Modelos de diseños de experimentos Tema 7: Modelos de diseños de experimentos Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 7: Modelos de diseños de experimentos Curso

Más detalles

de 1 a 3 15 Desarrollo de ideas y precisión proposi Conclusión de 0 a 1 de 1 a 3

de 1 a 3 15 Desarrollo de ideas y precisión proposi Conclusión de 0 a 1 de 1 a 3 Resultados de la aplicación de la Expresión Escrita (EXPRESC) a la generación 16/Primavera de la División de Ciencias Sociales y Humanidades (DCSH), Unidad Cuajimalpa. La EXPRESC evalúa la expresión escrita

Más detalles

Selección de fuentes de datos y calidad de datos

Selección de fuentes de datos y calidad de datos Selección de fuentes de datos y calidad de datos ESCUELA COMPLUTENSE DE VERANO 2014 MINERIA DE DATOS CON SAS E INTELIGENCIA DE NEGOCIO Juan F. Dorado José María Santiago . Valores atípicos. Valores faltantes.

Más detalles

Trabajo de Matemáticas y Estadística Aplicadas

Trabajo de Matemáticas y Estadística Aplicadas Licenciatura en Ciencia Ambientales Matemáticas y Estadística aplicada Prof. Susana Martín Fernández POLITÉCNICA Trabajo de Matemáticas y Estadística Aplicadas GUIÓN 1: Estadística descriptiva Tipo 1 1-

Más detalles

Práctica 5 MÉTODOS DESCRIPTIVOS PARA DETERMINAR LA NORMALIDAD

Práctica 5 MÉTODOS DESCRIPTIVOS PARA DETERMINAR LA NORMALIDAD Práctica 5.Métodos descriptivos para determinar la normalidad 1 Práctica 5 MÉTODOS DESCRIPTIVOS PARA DETERMINAR LA NORMALIDAD Objetivos: En esta práctica utilizaremos el paquete SPSS para determinar si

Más detalles

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN CICLO, ÁREA O MÓDULO: TERCER CUATRIMESTRE OBJETIVO GENERAL DE LA ASIGNATURA: Al termino del curso el alumno efectuara el análisis ordenado y sistemático de la Información, a través del uso de las técnicas

Más detalles

CURSO: Métodos estadísticos de uso frecuente en salud

CURSO: Métodos estadísticos de uso frecuente en salud CURSO: Métodos estadísticos de uso frecuente en salud Información General Versión: 2016 Modalidad: Presencial. Duración Total: 40 horas. NUEVA FECHA Fecha de inicio: 01 de octubre Fecha de término: 10

Más detalles

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS AGRICOLA, PECUARIAS Y DEL MEDIO AMBIENTE ECAPMA

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS AGRICOLA, PECUARIAS Y DEL MEDIO AMBIENTE ECAPMA UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS AGRICOLA, PECUARIAS Y DEL MEDIO AMBIENTE ECAPMA ESPECIALIZACIÓN EN NUTRICIÓN ANIMAL SOSTENIBLE Nombre del Curso: DISEÑO EXPERIMENTAL AVANZADO

Más detalles

1.2.2. Técnicas estadísticas más utilizadas en la investigación

1.2.2. Técnicas estadísticas más utilizadas en la investigación Contenido PRÓLOGO... 1. LA ESTADÍSTICA COMO HERRAMIENTA EN LA INVESTIGACIÓN TURÍSTICA 1.1. EL TURISMO Y LA ESTADÍSTICA... 2 1.1.1. El turismo... 2 1.1.2. La estadística... 4 1.2. LA ESTADÍSTICA Y LA INVESTIGACIÓN

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso

ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 3 - Septiembre - 2.6 Primera Parte - Test Las respuestas del TEST son las siguientes: Pregunta 2 3 4 5 6 Respuesta C A D C B A Pregunta 7 8 9 2 Respuesta

Más detalles

ANÁLISIS EXPLORATORIO DE DATOS ESPACIALES ESTADÍSTICA ESPACIAL

ANÁLISIS EXPLORATORIO DE DATOS ESPACIALES ESTADÍSTICA ESPACIAL ANÁLISIS EXPLORATORIO DE DATOS ESPACIALES ESTADÍSTICA ESPACIAL DEPARTAMENTO DE GEOGRAFÍA FACULTAD DE HUMANIDADES UNNE Prof. Silvia Stela Ferreyra Revista Geográfica Digital. IGUNNE. Facultad de Humanidades.

Más detalles

SEGUNDA PRUEBA PARCIAL 20 MAYO 2015 PROF. CALVENTUS EVALUACIÓN DE TRES MÉTODOS DE ENSEÑANZA-APRENDIZAJE (ME-A)

SEGUNDA PRUEBA PARCIAL 20 MAYO 2015 PROF. CALVENTUS EVALUACIÓN DE TRES MÉTODOS DE ENSEÑANZA-APRENDIZAJE (ME-A) PSICOLOGÍA U.S.T. Estadística Inferencial SEGUNDA PRUEBA PARCIAL 20 MAYO 2015 PROF. CALVENTUS Nombre: Ptje: Nota: Esta prueba consta de 7 Preguntas y un total de 18 Puntos. La aprobación se consigue al

Más detalles

Modelo Econométrico sobre el Turismo

Modelo Econométrico sobre el Turismo Modelo Econométrico sobre el Turismo Ruth Rubio Rodríguez Miriam Gómez Sánchez Mercados 3ºA GMIM Índice Planteamiento del Problema..4 1. Estadísticos Descriptivos...5 2. Matriz Correlaciones 5 3. Gráfico

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

1 Ejemplo de análisis descriptivo de un conjunto de datos

1 Ejemplo de análisis descriptivo de un conjunto de datos 1 Ejemplo de análisis descriptivo de un conjunto de datos 1.1 Introducción En este ejemplo se analiza un conjunto de datos utilizando herramientas de estadística descriptiva. El objetivo es repasar algunos

Más detalles

Diagramas de Dispersión simples

Diagramas de Dispersión simples Ayuda SPSS-Diagrama de Dispersión-Inserción Recta de Regresión -1- AYUDA SPSS DIAGRAMA DE DISPERSIÓN e INSERCIÓN DE LA RECTA DE REGRESIÓN Ruta Cuadros de Diálogos Autor: Prof. Rubén José Rodríguez 1 de

Más detalles

UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO FACULTAD DE CIENCIAS FORESTALES

UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO FACULTAD DE CIENCIAS FORESTALES UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO FACULTAD DE CIENCIAS FORESTALES CARRERAS: Ing. en Industrias forestales. PLAN DE ESTUDIOS: 1996 ASIGNATURA: FUNDAMENTOS DE ESTADISTICA AÑO : 2015 UBICACIÓN:

Más detalles