Experimento de Franck-Hertz

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Experimento de Franck-Hertz"

Transcripción

1 TÉCNICAS EXPERIMENTALES EN FÍSICA III curso Experimento de Franck-Hertz Objetivos Demostrar a través del estudio de las colisiones de electrones con los átomos de un gas, que los niveles de energía atómicos están cuantizados. A) Obtención de la curva de Franck-Hertz para mercurio. B) Obtención de la curva de Franck-Hertz para neón. Introducción y fundamentos En 1914, James Franck y Gustav Hertz realizaron un experimento que demostraba de manera directa que los átomos tienen niveles de energía discretos. En este experimento se bombardean átomos de mercurio con electrones acelerados por una diferencia de potencial. La transferencia de energía entre los electrones y los átomos del vapor se produce mediante colisiones inelásticas, en las cuales, una cantidad discreta de energía es absorvida por el átomo como un todo, aumentando así suenergíaaunestado excitado. Se controla entonces la pérdida de energía de los electrones debida a las colisiones inelásticas con los átomos de mercurio y se observa que la energía cedida tiene valores discretos múltiplos de 4.9 ev. La energía de 4.9 ev corresponde a la excitación de un átomo de mercurio desde el estado fundamental (6s 2 ) al primer estado excitado (6s6p- 3 P). Esta energía está en perfecto acuerdo con los resultados espectroscópicos para la línea de emisión ultravioleta del mercurio (λ = 254 nm). El experimento de Franck-Hertz proporciona una confirmación de la teoría cuántica independiente de los resultados espectroscópicos. La misma experiencia se puede realizar con gas Neón. La excitación más probable del Neón a través de colisiones inelásticas tiene lugar desde el estado fundamental 2s al conjunto de estados 3p. Estas excitaciones están en el rango de energías de ev. Aunque los estados 3s tienen una energía de excitación más baja, ev, su probabilidad de excitación es menor. La desexcitación de los niveles 3p no se produce directamente hasta el estado fundamental, sino que tiene lugar a través de los estados 3s. El fotón emitido correspondiente a esta transición está en el rango visible (entre rojo y verde) y se puede observar a simple vista.

2 2 Equipo y Montaje de la práctica Disponemos de un tubo que contiene un vapor atómico (bien sea mercurio o neón) a través del cual se hace pasar un haz de electrones acelerados que bombardean el vapor atómico. Para producir y controlar el haz de electrones, en el interior del tubo se sitúan cuatro electrodos: K, G1, G2 y A. Los electrones son emitidos por el cátodo K previamente calentado y forman una nube de carga que se focaliza mediante una pequeña tensión U1 aplicada a la rejilla G1. Entre las rejillas G1 y G2 se establece una diferencia de tensión U2 que acelera a los electrones al potencial variable deseado. Un pequeño potencial de frenado U3 se establece entre la rejilla G2 y el ánodo A, de tal forma que sólo se colectan en el ánodo y contribuyen a la corriente anódica aquellos electrones que tengan suficiente energía cinética cuando alcanzan la rejilla G2. Inicialmente, al ir aumentando la tensión U2, la corriente anódica irá aumentando. Pero en el espacio entre las dos rejillas G1 y G2 los electrones sufrirán colisiones con los átomos del vapor. Estas colisiones serán de tipo elástico, hasta que la energía cinética de los electrones, cerca de la rejilla G2, alcance un valorigualalaenergía de excitación de los átomos del vapor. En este caso, en las colisiones (inelásticas) los electrónes transfieren toda su energía cinética, excitando a los átomos del vapor. Después de la colisión, los electrones no pueden superar el potencial de frenado U3, por lo que no alcanzan el ánodo y la intensidad de corriente anódica cae bruscamente. Si se contiúa aumentando la tensión U2, los electrones tendrán energía suficiente para superar la contratensión anódica después de sufrir una colisión inelástica y la corriente anódica se recupera y sigue aumentando, hasta que los electrones tienen suficiente energía como para volver a excitar a un segundo átomo del vapor cerca de la rejilla G2 y se produce un segundo descenso brusco de la corriente anódica. Y así sucesivamente. En resumen, al aumentar U2 se observan sucesivos descensos bruscos de la intensidad anódica justo para valores del voltaje de aceleración tales que las energíasdeloselectronessonmúltiplos de la energía de excitación de los átomos del vapor. Esto significa que los átomos absorven energía de los

3 3 electrones sóloaenergías específicas discretas. NOTA: la primera caida de la corriente anódica sucede para un valor del potencial de aceleración (U1+U2) superior a la energía de excitación de los átomos del vapor debido al potencial de contacto efectivo entre el cátodo y la rejilla G2. A) Tubo de mercurio. Es un tubo de vacío en el que se aloja una gota de mercurio. Al calentar el tubo, introduciéndolo en un horno, algunos átomos de la gota pasarán a vapor. La temperatura de operación del tubo de mercurio es de 183 o C. No sobrepasar nunca los 200 o C. Para controlar la temperatura del tubo, disponemos de un conjunto termopartermómetro. El termopar se introduce por un orificio de la parte posterior del horno en un agujero del cilindro de cobre que aloja al tubo de mercurio en el interior del horno. Es MUY IMPORTANTE garantizar una perfecta colocación de la sonda de temperatura para que la lectura del termómetro corresponda realmente a la temperatura del tubo. B) Tubo de neón. Este tubo opera a temperatura ambiente. Precauciones: i) Los tubos de vacío corren peligro de implosión por un golpe o caida. ii) No aplicar ninguna tensión al tubo de mercurio frío pues se corre peligro de cortocircuito por el mercurio metálico entre los electrodos. iii) Antes de empezar a operar con los tubos de mercurio y neón, calentar el cátodo (con la tensión correspondiente) durante 1 minuto.

4 DESCRIPCIÓN DEL EQUIPO Pídase al profesor un tubo de mercurio para verlo con detalle. En el eje cilíndrico del mismo se encuentra el filamento f que al serle aplicada una tensión alterna de unos 6 voltios se pone incandescente calentando indirectamente al cátodo para que emita los electrones que formarán parte de la corriente. Fig. 3a Fig.3b La disposición de los electrodos es cilíndrica en el tubo de Hg. Las imágenes de arriba muestran los dos tubos, la 3a el de mercurio y la 3b el de neón. En el tubo de neón la disposición de los electrodos es planoparalela. En la primera imagen se ve también el horno y el cilindro metálico que ha de alojar el tubo de mercurio en su interior. La conexión tubo-aparato de control es diferente en A1 y en A2. Para A2 se realiza con el cable multiconector de las Figs.3a y 3b que es por donde recibe las tensiones para las rejillas y para el filamento, suministradas por el aparato de control como se ve en las figuras que siguen: cable del horno (oven), conexión posterior aparato de control A2 Fig.4a Fig.4b siendo la 4a para Hg y la 4b para Ne. Obsérvese también la conexión del horno. Por otra parte, los enchufes del panel donde se dispone el tubo de neón no se conectan.

5 5 Montaje del equipo para mercurio Montaje del equipo para neón

6 6 Realización de la práctica A) Obtener la curva de excitación del primer nivel del mercurio. Obtener la diferencia entre máximos adyacentes y compararla con el valor correcto de la energía de excitación del primer nivel 3 Pquees4.9eV. 0) Comprobar que todas las tensiones del aparato de control están a cero. 1) En primer lugar habrá que calentar el horno con el cilindro metálico y el tubo de mercurio incluidos, hasta 183 o C. Para ello se conecta el horno al aparato de control y también se conecta el termómetro al aparato de control. Al encender la unidad de operación con el tubo de mercurio conectado se enciende el LED rojo. Al cabo de unos minutos, cuando se alcance la temperatura preseleccionada, el LED indicador se iluminará verde. (El cable del cilindro metálico del horno se conecta a la tierra del horno.) 2) No conecte tensiones al tubo de mercurio hasta que éste no haya alcanzado su temperatura de operación de 183 o C. 3) Hacer las conexiones (con todas las tensiones iguales a cero) según se indica en las figuras respectivas y esperar 1 minuto a que se caliente el cátodo. 4) Ajustar el valor de las tensiones U1 y U3 a 1.5 V Poner el conmutador en MAN (manual) y seleccionar los valores de U1 y U3 sucesivamente. 5) Observar la variación de la intensidad anódica como función del potencial de aceleración U2, haciendo variar este último entre 0 y 30 V. Observar en el osciloscopio la corriente en función del voltaje. Para ello colocar el conmutador en modo diente de sierra. Esto hace que la tensión haga periódicamente un barrido entre 0 y 30 V. Comprobar que se producen bajadas de la intensidad cada 5 V aproximadamente. Observar cómo cambia la curva si se varían ligeramente (sin superar 2 V) U1 y U3. 6) Tomar valores de la intensidad como función de la tensiónaintervalosde0.5v.(en el equipo 2 poner el conmutador en MAN manual). Al finalizar las medidas poner todas las tensiones a cero y desconectar el tubo y el horno. 7) Dibujar la curva correspondiente en papel milimetrado e interpretar los resultados de las medidas. B) Obtener la curva de excitación del neón 0) En este caso se trabaja a temperatura ambiente. 1) Fijar los parámetros de operación a U1=3V y U3=8V. 2) Repetir los pasos anteriores, variando el potencial de aceleración U2 hasta un valor

7 7 de 80 V. Primero visualizar en el osciloscopio con el selector en diente de sierra. Después tomar los datos a intervalos de 1V con el selector en MAN. 3) Para finalizar, disminuyendo la luz ambiental, obsérvense las franjas luminosas que corresponden a la desexcitación del neón a un estado intermedio. Por tanto las franjas se producen en las zonas de alta densidad de excitación del neón, pudiéndose comparar con los mínimos de la cuva de Franck y Hertz. Presentación de Resultados 1) Gráfica de Franck-Hertz para el mercurio y cálculo de su energía de excitación a partir de la diferencia entre máximos adyacentes. 2) Gráfica de Franck-Hertz para el neón y cálculo de su energía de excitación a partir de la diferencia entre máximos adyacentes. 3) Gráfica de la variación del potencial como función de la distancia, entre dos láminas planoparalelas entre las que existe una diferencia de potencial de a) 2.5 veces y b) 3.5 veces la energía de excitación del mercurio(neón). Señalar en ambos casos en el eje de abscisas los puntos en los que se produciría la excitación del mercurio(neón). 4) En el caso del neón, explicar si existe concordancia entre el número de puntos marcados en la abcisa de las gráficas anteriores y el número de franjas luminosas observadas.

Experimento de Franck Hertz para el argón

Experimento de Franck Hertz para el argón Experimento de Franck Hertz para el argón Objetivos del experimento: Demostrar que la transferencia de energía en colisiones inelásticas entre electrones acelerados con los átomos de argón está cuantizada,

Más detalles

Descarga Glow. Introducción. Características de la descarga glow

Descarga Glow. Introducción. Características de la descarga glow Descarga Glow Introducción La descarga glow es una descarga eléctrica autosostenida que se produce en un medio gaseoso. Consideremos un dispositivo como el que se esquematiza en la Figura 1. Una fuente

Más detalles

EL EXPERIMENTO DE FRANCK HERTZ

EL EXPERIMENTO DE FRANCK HERTZ EL EXPERIMENTO DE FRANCK HERTZ OBJETIVOS a) Conocer los parámetros y variables involucradas así como las precauciones en el manejo del equipo, para el experimento de Franck Hertz (F H). b) Verificar experimentalmente

Más detalles

Laboratorio 1. Efecto fotoeléctrico

Laboratorio 1. Efecto fotoeléctrico Laboratorio 1 Efecto fotoeléctrico 1.1 Objetivos 1. Determinar la constante de Planck h 2. Determinar la dependencia del potencial de frenado respecto de la intensidad de la radiación incidente. 1.2 Preinforme

Más detalles

Problemas de Capítulo sobre Teoría Cuántica y Modelos Atómicos

Problemas de Capítulo sobre Teoría Cuántica y Modelos Atómicos Problemas de Capítulo sobre Teoría Cuántica y Modelos Atómicos Teoría cuántica de Plank 1. Cuál es la energía de un fotón con una frecuencia de 5*10 5 Hz? 2. Cuál es la energía de un fotón con una longitud

Más detalles

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCINTIFIC PHYSICS quipo para la ejecución del experimento de Franck y Hertz (230, 50/60 Hz) quipo para la ejecución del experimento de Franck y Hertz (115, 50/60 Hz) 1012819 (230, 50/60 Hz) 1012818

Más detalles

Juan Martín, Luis Nieves, Fernando Dugarte

Juan Martín, Luis Nieves, Fernando Dugarte EXPERIMENTO DE FRANCK-HERTZ Juan Martín, Luis Nieves, Fernando Dugarte Objetivo: Obtener los potenciales de resonancia del Mercurio Obtener la curva característica del tubo de Franck-Hertz Introducción

Más detalles

Materiales Eléctricos

Materiales Eléctricos Materiales Eléctricos Conducción en Gases Mecanismos de Conducción Eléctrica en Gases Para estudiar el proceso de conducción en gases tenemos que considerar que el gas se encuentra contenido en una ampolla

Más detalles

RELACIÓN CARGA/MASA DEL ELECTRÓN

RELACIÓN CARGA/MASA DEL ELECTRÓN RELACIÓN CARGA/MASA DEL ELECTRÓN Objetivo Determinar el cociente de la carga eléctrica del electrón entre su masa. Introducción En 1897 J. J. Thomson realizó un experimento crucial que consistió en medir

Más detalles

PROBLEMAS DE FÍSICA CUÁNTICA

PROBLEMAS DE FÍSICA CUÁNTICA PROBLEMAS DE FÍSICA CUÁNTICA 2017 1) Qué velocidad ha de tener un electrón para que su longitud de onda sea 100 veces mayor que la de un neutrón cuya energía cinética es 6 ev? me = 9,11 10-31 kg; mn =

Más detalles

XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física

XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física PRUEBA EXPERIMENTAL A NOMBRE: RUT: CURSO: NUMERO TOTAL DE PAGINAS ESCRITAS: PUNTAJE TOTAL La constante de Planck de la física cuántica y

Más detalles

RELACIÓN CARGA - MASA DEL ELECTRÓN

RELACIÓN CARGA - MASA DEL ELECTRÓN Práctica 5 RELACIÓN CARGA - MASA DEL ELECTRÓN OBJETIVO Determinar la relación carga-masa del electrón (e/m e ), a partir de las trayectorias observadas de un haz de electrones que cruza una región en la

Más detalles

La Teoría Cuántica Preguntas de Multiopcion

La Teoría Cuántica Preguntas de Multiopcion Slide 1 / 71 La Teoría Cuántica Preguntas de Multiopcion Slide 2 / 71 1 El experimento de "rayos catódicos" se asocia con: A B C D E Millikan Thomson Townsend Plank Compton Slide 3 / 71 2 La carga del

Más detalles

TUTORIAL EMISIONES ELECTRÓNICAS

TUTORIAL EMISIONES ELECTRÓNICAS TUTORIAL EMISIONES ELECTRÓNICAS Las emisiones electrónicas son un fenómeno habitual con el que tratar en nuestro trabajo relacionado con la eficiencia de procesos y el lean manufacturing. Por ello esta

Más detalles

Junio Pregunta 4A.- a) b) Modelo Pregunta 5B.- a) b) Septiembre Pregunta 5A.- a) b) Modelo Pregunta 4A.

Junio Pregunta 4A.- a) b) Modelo Pregunta 5B.- a) b) Septiembre Pregunta 5A.- a) b) Modelo Pregunta 4A. Junio 2013. Pregunta 4A.- Los electrones emitidos por una superficie metálica tienen una energía cinética máxima de 2,5 ev para una radiación incidente de 350 nm de longitud de onda, Calcule: a) El trabajo

Más detalles

Capítulo 1: Introducción

Capítulo 1: Introducción Capítulo 1: Introducción En el presente capítulo se proporcionará una breve reseña de los antecedentes históricos del experimento de Franck-Hertz, así como una descripción general de los elementos que

Más detalles

Equipo Franck-Hertz. Modo de empleo Fig. 1: Estructura del experimento Franck-Hertz con tubo de mercurio y horno. 1 INDICACIONES DE SEGURIDAD

Equipo Franck-Hertz. Modo de empleo Fig. 1: Estructura del experimento Franck-Hertz con tubo de mercurio y horno. 1 INDICACIONES DE SEGURIDAD R Equipo Franck-Hertz 09105.99 PHYWE Systeme GmbH & Co. KG Robert-Bosch-Breite 10 D-37079 Göttingen Phone +49 (0) 551 604-0 Fax +49 (0) 551 604-107 El aparato satisface a las normas generales correspondientes

Más detalles

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Osciloscopio didáctico 1000902 Instrucciones de uso 05/16 CW/ALF/UD 1 Electrónica de operación 2 Bobinas de desviación 3 Imán anular 4 Tubo de Braun 5 Anillo metálico 1. Advertencias

Más detalles

Experimento: Espectro de gases

Experimento: Espectro de gases FACULTAD DE CIENCIAS FÍSICO - MATEMÁTICAS Experimento: Espectro de gases Equipo α-pulpo Alma Elena Piceno Martínez Luke Goodman Ernesto Benítez Rodríguez 2012 F Í S I C A M O D E R N A C O N L A B O R

Más detalles

Problema con el átomo de Rutherford

Problema con el átomo de Rutherford Atomo de Rutherford El modelo átomico aceptado actualmente consiste en un núcleo pesado con carga eléctrica positiva, compuesto por neutrones y protones, rodeado de una nube de electrones con carga eléctrica

Más detalles

FISICA IV. Física Cuántica Marco A. Merma Jara Versión

FISICA IV. Física Cuántica Marco A. Merma Jara   Versión FISICA IV Física Cuántica Marco A. Merma Jara http://mjfisica.net Versión 8.015 Contenido Inicios de la física moderna Constante de Planck El efecto fotoeléctrico Energía relativista Teoría cuántica de

Más detalles

Medición de la constante de Planck Efecto fotoeléctrico Faraggi Marisa y Sapoznik Marysol

Medición de la constante de Planck Efecto fotoeléctrico Faraggi Marisa y Sapoznik Marysol Medición de la constante de Planck Efecto fotoeléctrico Faraggi Marisa y Sapoznik Marysol Laboratorio 5- Curso de verano 2001 Resumen En el siguiente informe se quiere determinar la constante de Planck,

Más detalles

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Practica de FS-321 Espectroscopia

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Practica de FS-321 Espectroscopia Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Practica de FS-321 Espectroscopia Elaborada por: Mario Coto y Luis Alcerro I. Objetivos 1. Calibrar correctamente un espectroscopio

Más detalles

DINAMICA DE UN ELECTRON EN UN CAMPO ELECTRICO UNIFORME

DINAMICA DE UN ELECTRON EN UN CAMPO ELECTRICO UNIFORME DINAMICA DE UN ELECTRON EN UN CAMPO ELECTRICO UNIFORME D. Giraldo a, E. Valdes a J. Rodriguez a y A. Duarte a a Facultad de Ingeniería mecánica Universidad Pontificia Bolivariana de Medellín. Colombia

Más detalles

1.1. OBJETIVO GENERAL: Estudiar el movimiento de electrones en un campo eléctrico uniforme

1.1. OBJETIVO GENERAL: Estudiar el movimiento de electrones en un campo eléctrico uniforme 1 PRÁCTICA DE LABORATORIO: MOVIMIENTO DE ELCTRONES EN UN CAMPO ELÉCTRICO UNIFORME 1.1. OBJETIVO GENERAL: Estudiar el movimiento de electrones en un campo eléctrico uniforme 1.2. OBJETIVOS ESPECÍFICOS -

Más detalles

DESVIACIÓN DE UN HAZ DE ELECTRONES POR CAMPOS ELÉCTRICOS Y MAGNÉTICOS.

DESVIACIÓN DE UN HAZ DE ELECTRONES POR CAMPOS ELÉCTRICOS Y MAGNÉTICOS. PRÁCTICA Nº 1. DESVIACIÓN DE UN HAZ DE ELECTRONES POR CAMPOS ELÉCTRICOS Y MAGNÉTICOS. 1. OBJETIVOS: a) Observar la trayectoria de partículas cargadas en el seno de campos eléctricos y magnéticos. b) Determinar

Más detalles

TRABAJO PRÁCTICO. Medición del coeficiente de dilatación lineal en tubos de distintos materiales

TRABAJO PRÁCTICO. Medición del coeficiente de dilatación lineal en tubos de distintos materiales FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE FORMACIÓN BÁSICA DEPARTAMENTO DE FÍSICA Y QUÍMICA FÍSICA II TERMODINÁMICA TRABAJO PRÁCTICO Medición del coeficiente de dilatación lineal

Más detalles

Física III clase 21 (07/06/2011) Efecto Compton

Física III clase 21 (07/06/2011) Efecto Compton Física III clase 21 (07/06/2011) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería Civil Mecánica, Ingeniería

Más detalles

ACÚSTICA MATERIAL: GENERADOR DE FUNCIONES

ACÚSTICA MATERIAL: GENERADOR DE FUNCIONES MATERIAL: GENERADOR DE FUNCIONES MATERIAL: OSCILOSCOPIO DIGITAL MATERIAL: AURICULARES MICRÓFONO MATERIAL: ADAPTADOR BNC-BANANAS CABLE HEMBRA JACK-3 BANANAS MONTAJE EXPERIMENTO 1: Colocar el adaptador BNC-bananas

Más detalles

CORRIENTE CONTINUA II : CURVA CARACTERÍSTICA DE UNA LÁMPARA

CORRIENTE CONTINUA II : CURVA CARACTERÍSTICA DE UNA LÁMPARA eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

Cuociente entre Carga Eléctrica y Masa del Electrón: /

Cuociente entre Carga Eléctrica y Masa del Electrón: / Cuociente entre Carga Eléctrica y Masa del Electrón: / Objetivo Medir el cuociente entre la masa y la carga del electrón, usando la interacción del electrón con campos eléctricos y magnéticos. Materiales

Más detalles

Capítulo 1 SEMINARIO. 1. Suponiendo que el Sol se comporta como un cuerpo negro con una temperatura de 6000 K, determina:

Capítulo 1 SEMINARIO. 1. Suponiendo que el Sol se comporta como un cuerpo negro con una temperatura de 6000 K, determina: Capítulo 1 SEMINARIO FÍSICA CUÁNTICA 1. Suponiendo que el Sol se comporta como un cuerpo negro con una temperatura de 6000 K, determina: a) La energía por unidad de tiempo y de superficie radiada por el

Más detalles

Capítulo 2: El experimento de Franck- Hertz

Capítulo 2: El experimento de Franck- Hertz Capítulo : El experimento de Franck- Hertz En este capítulo se expondrán algunos conceptos teóricos preliminares relacionados con el experimento de Franck-Hertz, posteriormente se presentará el principio

Más detalles

LASER DE HELIO-NEON. (Juan Israel Rivas Sánchez)

LASER DE HELIO-NEON. (Juan Israel Rivas Sánchez) LASER DE HELIO-NEON (Juan Israel Rivas Sánchez) El láser de Helio-Neón fue el primer láser de gas construido y actualmente sigue siendo uno de los láseres más útil y frecuentemente utilizado. Esto a pesar

Más detalles

Experimento 12 LÍNEAS ESPECTRALES. Objetivos. Teoría. Postulados de Bohr. El átomo de hidrógeno, H

Experimento 12 LÍNEAS ESPECTRALES. Objetivos. Teoría. Postulados de Bohr. El átomo de hidrógeno, H Experimento 12 LÍNEAS ESPECTRALES Objetivos 1. Describir el modelo del átomo de Bohr 2. Observar el espectro del H mediante un espectrómetro de rejilla 3. Medir los largos de onda de las líneas de la serie

Más detalles

Departamento de Física Aplicada I. Escuela Politécnica Superior. Universidad de Sevilla. Física II

Departamento de Física Aplicada I. Escuela Politécnica Superior. Universidad de Sevilla. Física II Física II Osciloscopio y Generador de señales Objetivos: Familiarizar al estudiante con el manejo del osciloscopio y del generador de señales. Medir las características de una señal eléctrica alterna (periodo

Más detalles

Física P.A.U. FÍSICA MODERNA 1 FÍSICA MODERNA

Física P.A.U. FÍSICA MODERNA 1 FÍSICA MODERNA Física P.A.U. FÍSICA MODERNA FÍSICA MODERNA PROBLEMAS MECÁNICA CUÁNTICA.. En una célula fotoeléctrica, el cátodo metálico se ilumina con una radiación de λ = 5 nm, el potencial de frenado para los electrones

Más detalles

EL OSCILOSCOPIO. Funcionamiento y Manejo

EL OSCILOSCOPIO. Funcionamiento y Manejo EL OSCILOSCOPIO. Funcionamiento y Manejo El componente principal de todo osciloscopio es el tubo de rayos catódicos (TRC). Éste, por medio de su pantalla, es capaz de reflejar una imagen que represente

Más detalles

Práctica 3 Relación carga/masa del electrón

Práctica 3 Relación carga/masa del electrón Práctica 3 Relación carga/masa del electrón I.-Objeto de la práctica: Determinar la relación carga-masa de un electrón. II.-Fundamento teórico: Cuando una carga puntual q se mueve con velocidad v en el

Más detalles

TRABAJO PRÁCTICO N 14 ESPECTROMETRÍA REDES DE DIFRACCIÓN

TRABAJO PRÁCTICO N 14 ESPECTROMETRÍA REDES DE DIFRACCIÓN TRABAJO PRÁCTICO N 14 Introducción La luz blanca ordinaria (luz del sol, luz de lámparas incandescentes, etc.) es una superposición de ondas cuyas longitudes de onda cubren, en forma continua, todo el

Más detalles

Física Cuántica Problemas de Practica AP Física B de PSI

Física Cuántica Problemas de Practica AP Física B de PSI Física Cuántica Problemas de Practica AP Física B de PSI Nombre 1. El experimento de "rayos catódicos" se asocia con: (A) R. A. Millikan (B) J. J. Thomson (C) J. S. Townsend (D) M. Plank (E) A. H. Compton

Más detalles

ÁREA 2 INTERACCION DE LOS ELECTRONES CON LA MATERIA

ÁREA 2 INTERACCION DE LOS ELECTRONES CON LA MATERIA ÁREA 2 INTERACCION DE LOS ELECTRONES CON LA MATERIA 2.1 INTERACCION DE RADIACIONES DIRECTAMENTE IONIZANTES CON LA MATERIA. Las radiaciones constituidas por partículas cargadas se suelen denominar directamente

Más detalles

Relación Problemas Tema 11: Física Cuántica

Relación Problemas Tema 11: Física Cuántica 1.- Determinar la energía de un fotón para: a) Ondas de radio de 1500 khz b) Luz verde de 550 nm c) Rayos X de 0,06 nm Relación Problemas Tema 11: Física Cuántica Problemas (para todas, el medio de propagación

Más detalles

FÍSICA MODERNA. a) Explique las transformaciones energéticas en el proceso de fotoemisión y calcule la

FÍSICA MODERNA. a) Explique las transformaciones energéticas en el proceso de fotoemisión y calcule la FÍSICA MODERNA 2001 1. Un haz de luz de longitud de onda 546 10-9 m incide en una célula fotoeléctrica de cátodo de cesio, cuyo trabajo de extracción es de 2 ev: a) Explique las transformaciones energéticas

Más detalles

Tema 8: Física cuántica

Tema 8: Física cuántica Tema 8: Física cuántica 1. Insuficiencia de la física clásica: Emisión del cuerpo negro Espectros atómicos discontinuos Efecto fotoeléctrico 2. Hipótesis de Planck. Cuantización de la energía. Fotón. 3.

Más detalles

FENÓMENOS DE INDUCCIÓN ELECTROMAGNÉTICA LA LEY DE FARADAY

FENÓMENOS DE INDUCCIÓN ELECTROMAGNÉTICA LA LEY DE FARADAY 1. Objetivos Departamento de Física Laboratorio de Electricidad y Magnetismo FENÓMENOS DE INDUCCIÓN ELECTROMAGNÉTICA LA LEY DE FARADAY Observar el efecto producido al introducir un imán en una bobina.

Más detalles

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCINTIIC PHYSICS Tubo de ranck-hertz lleno de Hg y estufa de calefacción 1006795 (230 V, 50/60 Hz) 1006794 (115 V, 50/60 Hz) Instrucciones de uso 10/15 L 1. dvertencias de seguridad l aparato cumple

Más detalles

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS B SCIENTIFIC PHYSICS Tubo de deflexión de haz electrónico D 6 Instrucciones de manejo / LF 9 8 7 6 7 6 Pantalla fosforescente Placa deflectora inferior Soporte con ficha monopolar de mm. para conectar

Más detalles

MANUAL DE PRÁCTICAS 2 CAPÍTULO 5 PRÁCTICA 2.5 INFLUENCIA DE LA TEMPERATURA SOBRE LA RESISTENCIA DE LOS CONDUCTORES. Objeto de la práctica

MANUAL DE PRÁCTICAS 2 CAPÍTULO 5 PRÁCTICA 2.5 INFLUENCIA DE LA TEMPERATURA SOBRE LA RESISTENCIA DE LOS CONDUCTORES. Objeto de la práctica 2 CAPÍTULO 5 PRÁCTICA 2.5 INFLUENCIA DE LA TEMPERATURA SOBRE LA RESISTENCIA DE LOS CONDUCTORES Objeto de la práctica Estudiar el efecto de la temperatura sobre la resistencia de los conductores. Principio

Más detalles

Efecto de los tratamientos térmicos en la circona utilizada como electrolito en las pilas de combustible de óxido sólido. INDICE DEL ANEXO...

Efecto de los tratamientos térmicos en la circona utilizada como electrolito en las pilas de combustible de óxido sólido. INDICE DEL ANEXO... INDICE DEL ANEXO INDICE DEL ANEXO... 80 ANEXO 1... 81 1.1. Diseño del circuito para medición de resistividad eléctrica a partir del método de las 4 puntas.... 81 1.1.1. Objetivo... 81 1.1.2. Introducción...

Más detalles

DINÁMICA DE UN ELÉCTRON EN UN CAMPO ELÉCTRICO UNIFORME

DINÁMICA DE UN ELÉCTRON EN UN CAMPO ELÉCTRICO UNIFORME DINÁMICA DE UN ELÉCTRON EN UN CAMPO ELÉCTRICO UNIFORME Maicol Llano Moncada, Alex Rollero Dita, Carlos Martínez Agudelo, Luis Santos ID: 000294172, ID: 000293236, ID: 000170111, ID: 000292336 Maicol.llano@upb.edu.co,

Más detalles

FÍSICA de 2º de BACHILLERATO FÍSICA CUÁNTICA

FÍSICA de 2º de BACHILLERATO FÍSICA CUÁNTICA FÍSICA de 2º de BACHILLERATO FÍSICA CUÁNTICA EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2013) DOMINGO

Más detalles

Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 1 1. INSTRUMENTACIÓN DEL LABORATORIO.

Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 1 1. INSTRUMENTACIÓN DEL LABORATORIO. Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 1 1. INSTRUMENTACIÓN DEL LABORATORIO. Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 2 1.1. Fuente de alimentación CPS250

Más detalles

4. El diodo semiconductor

4. El diodo semiconductor 4. El diodo semiconductor Objetivos: Comprobar el efecto de un circuito rectificador de media onda con una onda senoidal de entrada. Observar cómo afecta la frecuencia en el funcionamiento de un diodo

Más detalles

LÁSER INTRODUCCIÓN. U5-T1 Introducción - 1

LÁSER INTRODUCCIÓN. U5-T1 Introducción - 1 LÁSER INTRODUCCIÓN Ahora se abordará el análisis de los elementos particulares que se requieren en un sistema optoelectrónico empezando con el primer elemento de la cadena: la fuente de luz. Como ya se

Más detalles

Osciloscopio y Generador de señales. Departamento de Física Aplicada I Escuela Politécnica Superior Universidad de Sevilla

Osciloscopio y Generador de señales. Departamento de Física Aplicada I Escuela Politécnica Superior Universidad de Sevilla Osciloscopio y Generador de señales Universidad de Sevilla El osciloscopio Es un instrumento que sirve para visualizar y medir las características de señales eléctricas variables en el tiempo. En concreto,

Más detalles

BENEMERITA UNIVERSIDAD AUTONOMA DE PUEBLA FACULTAD DE CIENCIAS FISICO-MATEMATICAS FISICA MODERNA CON LABORATORIO DIFRACCIÓN DE ELECTRONES

BENEMERITA UNIVERSIDAD AUTONOMA DE PUEBLA FACULTAD DE CIENCIAS FISICO-MATEMATICAS FISICA MODERNA CON LABORATORIO DIFRACCIÓN DE ELECTRONES BENEMERITA UNIVERSIDAD AUTONOMA DE PUEBLA FACULTAD DE CIENCIAS FISICO-MATEMATICAS FISICA MODERNA CON LABORATORIO DIFRACCIÓN DE ELECTRONES ARJONA SUDEK RODRIGO MIGUEL CHUMACERO ELIANE PATIÑO VILLAGOMEZ

Más detalles

Práctica de Laboratorio Tema 4: Laboratorio Nº 2: USO Y MANEJO DEL OSCILOSCOPIO MEDICIÓN DE VOLTAJES. Índice

Práctica de Laboratorio Tema 4: Laboratorio Nº 2: USO Y MANEJO DEL OSCILOSCOPIO MEDICIÓN DE VOLTAJES. Índice Práctica de Laboratorio Tema 4: Medidas Eléctricas: El Osciloscopio Laboratorio Nº 2: USO Y MANEJO DEL OSCILOSCOPIO MEDICIÓN DE VOLTAJES Índice 1 Medidas Eléctricas: El Osciloscopio... 2 1.1 Introducción

Más detalles

PRÁCTICA 3 CTE I 2018

PRÁCTICA 3 CTE I 2018 PRÁCTICA 3 CTE I 2018 ESPECTROSCOPÍA I) OBJETIVOS Obtener experimentalmente espectros en el visible de átomos y moléculas, y estudiar sus líneas de emisión más prominentes. Identificar especies desconocidas

Más detalles

CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍAS UPB FÍSICA II: Fundamentos de Electromagnetismo PRÁCTICA 7: RELACIÓN CARGA MASA DEL ELECTRÓN

CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍAS UPB FÍSICA II: Fundamentos de Electromagnetismo PRÁCTICA 7: RELACIÓN CARGA MASA DEL ELECTRÓN 1 1. OBJETIVOS: PRÁCTICA 7: RELACIÓN CARGA MASA DEL ELECTRÓN Medir la relación carga masa de un electrón (e/m), usando un campo magnético uniforme para desviar un haz de electrones, previamente acelerados

Más detalles

Efecto fotoeléctrico:

Efecto fotoeléctrico: ELECTRONES Y CUANTOS. EFECTO FOTOELÉCTRICO - EFECTO COMPTON - NATURALEZA DUAL DE LA LUZ En el siglo XIX ya era conocido el electrón. En 1897 Thomson midió la relación carga a masa: e m = 5.27 1017 u.e.s./g

Más detalles

Física P.A.U. FÍSICA MODERNA 1 FÍSICA MODERNA

Física P.A.U. FÍSICA MODERNA 1 FÍSICA MODERNA Física P.A.U. FÍSICA MODERNA FÍSICA MODERNA PROBLEMAS MECÁNICA CUÁNTICA.. En una célula fotoeléctrica, el cátodo metálico se ilumina con una radiación de λ = 5 nm, el potencial de frenado para los electrones

Más detalles

LOS RAYOS X FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI

LOS RAYOS X FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI LOS RAYOS X FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI -Se propagan en línea recta. -Ionizan el aire.

Más detalles

ENTRE PROTONES Y ELECTRONES EXISTEN FUERZAS DE ATRACCIÓN Y REPULSIÓN, LAS CARGAS CON EL MISMO SIGNO SE REPELEN, Y CON SIGNO CONTRARIO SE ATRAEN.

ENTRE PROTONES Y ELECTRONES EXISTEN FUERZAS DE ATRACCIÓN Y REPULSIÓN, LAS CARGAS CON EL MISMO SIGNO SE REPELEN, Y CON SIGNO CONTRARIO SE ATRAEN. INTRODUCCIÓN: LA MATERIA ESTÁ FORMADA POR ÁTOMOS CONSTITUIDOS POR PARTÍCULAS CARGADAS NEGATIVAMENTE (ELECTRONES), POSITIVAMENTE (PROTONES) Y NEUTRAS (NEUTRONES). LOS PROTONES Y NEUTRONES SE ENCUENTRAN

Más detalles

GUIA DE EXPERIMENTOS

GUIA DE EXPERIMENTOS GUIA DE EXPERIMENTOS LABORATORIO N. 03 CURSO: Tema: Dispositivos Electrónicos Curvas Características del Diodo Zener Alumnos Integrantes:...... Nota PAGINA 1 CARACTERISTICA DEL DIODO DE RUPTURA ZENER *

Más detalles

Interacción de la radiación con la materia

Interacción de la radiación con la materia Interacción de la radiación con la materia Fernando Mata Colodro Servicio de Radiofísica y Protección Radiológica. Hospital General Universitario Santa Lucía. Cartagena. RADIACION PARTICULAS FOTONES Colisiones

Más detalles

ELECTRICIDAD Y MAGNETISMO LABORATORIO PRESENCIAL 1. Coordinación Curso Agosto de 2016

ELECTRICIDAD Y MAGNETISMO LABORATORIO PRESENCIAL 1. Coordinación Curso Agosto de 2016 ELECTRICIDAD Y MAGNETISMO LABORATORIO PRESENCIAL 1 Coordinación Curso Agosto de 2016 TEMA : MOVIMIENTO DE ELECTRONES EN UN CAMPO ELÉCTRICO UNIFORME Hipótesis de trabajo: Siempre que un electrón entre a

Más detalles

RELACIÓN CARGA MASA DEL ELECTRÓN.

RELACIÓN CARGA MASA DEL ELECTRÓN. RELACIÓN CARGA MASA DEL ELECTRÓN. OBJETIVOS. *Identificar que cuando una carga eléctrica se acelera emite radiación electromagnética (luz). *Identificar la interacción de las cargas eléctricas con un campo

Más detalles

Tema 14 Mecánica Cuántica

Tema 14 Mecánica Cuántica Tema 14 Mecánica Cuántica 1 14.1 Fundamentos de la mecánica cuántica 14. La ecuación de Schrödinger 14.3 Significado físico de la función de onda 14.4 Soluciones de la ecuación de Schrödinger para el átomo

Más detalles

CORRIENTE CONTINUA I : RESISTENCIA INTERNA DE UNA FUENTE

CORRIENTE CONTINUA I : RESISTENCIA INTERNA DE UNA FUENTE eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

Física Experimental IV. Práctica XI Serie de Balmer. Funes, Gustavo Giordano, Leandro Gulich, Damián Sotuyo, Sara. Damián Gulich

Física Experimental IV. Práctica XI Serie de Balmer. Funes, Gustavo Giordano, Leandro Gulich, Damián Sotuyo, Sara. Damián Gulich Física Experimental IV Práctica XI Serie de Balmer Funes, Gustavo Giordano, Leandro Gulich, Damián Sotuyo, Sara Departamento de Física Facultad de Ciencias Exactas UNLP Sinopsis En el siguiente informe

Más detalles

Prueba experimental. Constante de Planck y comportamiento de un LED

Prueba experimental. Constante de Planck y comportamiento de un LED Prueba experimental. Constante de Planck y comportamiento de un LED Objetivo. Se va a construir un circuito eléctrico para alimentar LEDs de diferentes colores y obtener un valor aproximado de la constante

Más detalles

7.- Los corpúsculos de energía sin masa de la radiación electromagnética recibe el nombre de: a) Muones b) Electrones c) Rayos X d) Fotones

7.- Los corpúsculos de energía sin masa de la radiación electromagnética recibe el nombre de: a) Muones b) Electrones c) Rayos X d) Fotones EXAMEN PARCIAL 1.- El número de protones de un átomo se denomina a) número atómico A b) número másico A c) número atómico Z d) número másico Z 2.- En el núcleo se encuentran: a) Los protones y neutrones

Más detalles

1. Efecto fotoeléctrico 2. Física de Rayos X, Efecto Compton. efecto fotoeléctrico)

1. Efecto fotoeléctrico 2. Física de Rayos X, Efecto Compton. efecto fotoeléctrico) Prácticas de Física Cuántica I (2014-15) 1. Efecto fotoeléctrico 2. Física de Rayos X, Efecto Compton Espectros atómicos (incluido en la práctica de efecto fotoeléctrico) 3. Difracción ió de electrones

Más detalles

TÉCNICAS EXPERIMENTALES V FÍSICA CUÁNTICA

TÉCNICAS EXPERIMENTALES V FÍSICA CUÁNTICA TÉCNICAS EXPERIMENTALES V FÍSICA CUÁNTICA P1 Medida de la Constante de Planck. Efecto fotoeléctrico. RNB P2 Experimento de Franck-Hertz. Niveles de energía de los átomos RNB P3 Dispersión de Rutherford

Más detalles

Ec[J] x Velocidad [ms 1 ]x

Ec[J] x Velocidad [ms 1 ]x DEPARTAMENTO DE QUÍMICA SERIE DE EJERCICIOS (Basada en reactivos de exámenes colegiados) Estructura Atómica Semestre 2019-1 Experimento de Thomson 1. Cuando un electrón entra perpendicularmente a las líneas

Más detalles

Espectroscopía Clase integradora

Espectroscopía Clase integradora Espectroscopía Clase integradora Qué es la espectroscopía? La espectroscopia es el estudio de la INTERACCIÓN entre la materia y energía radiante, por ejemplo, radiación electromagnética. Busca relacionar

Más detalles

EL EFECTO FOTOELÉCTRICO

EL EFECTO FOTOELÉCTRICO EL EFECTO FOTOELÉCTRICO OBJETIVOS a) Identificar los conceptos básicos que definen al efecto fotoeléctrico. b) Verificar la naturaleza cuántica de la luz determinando la constante de Planck. EQUIPO Y MATERIAL

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com

Más ejercicios y soluciones en fisicaymat.wordpress.com FÍSICA MODERNA Y NUCLEAR 1- a) Enuncie y explique la Ley de desintegración exponencial radiactiva. El método de datación radiactiva 235 U- 207 Pb, se emplea para determinar la edad de las rocas. Se basa

Más detalles

Art : Receptor de radio para Marcadores Serie FS

Art : Receptor de radio para Marcadores Serie FS Art.302-01: Receptor de radio para Marcadores Serie FS Manual de instalación y servicio Índice general 1. INTRODUCCIÓN...1 2. MONTAJE DEL RECEPTOR DE RADIO...1 2.1 Posición de instalación...2 2.2 Montaje...2

Más detalles

Física de semiconductores. El diodo

Física de semiconductores. El diodo Fundamentos Físicos y Tecnológicos de la Informática Física de semiconductores. El diodo El diodo. Ley del diodo. Curvas características. Modelos eléctricos. Otros tipos de diodos: Zener y LED. Aplicación

Más detalles

Módulo 1.2 Lámparas: tipos y características. Héctor Beltrán San Segundo Universitat Jaume I - Fundación F2e

Módulo 1.2 Lámparas: tipos y características. Héctor Beltrán San Segundo Universitat Jaume I - Fundación F2e Módulo 1.2 Lámparas: tipos y características. Héctor Beltrán San Segundo Universitat Jaume I - Fundación F2e Contenido: Fenómenos que producen luz (principios físicos). Tipos de las lámparas según su modo

Más detalles

PRÁCTICA Nº2 TUBO DE RESONANCIA

PRÁCTICA Nº2 TUBO DE RESONANCIA PRÁCTICA Nº2 TUBO DE RESONANCIA 1.- Objetivo El objetivo de esta práctica es determinar la velocidad de propagación del sonido en el aire empleando el fenómeno de la resonancia en un tubo. Además se pretenden

Más detalles

Ingeniería Lumínica de Alta Eficiencia

Ingeniería Lumínica de Alta Eficiencia Ingeniería Lumínica de Alta Eficiencia ÍNDICE CATÁLOGO Tecnología Lámparas de Inducción Lámparas Serie Downlight Serie Techo Serie Industrial Serie Proyectores Serie Vial Serie Túnel Serie Empotrado Serie

Más detalles

EL OSCILOSCOPIO Introducción

EL OSCILOSCOPIO Introducción EL OSCILOSCOPIO Introducción Qué es un osciloscopio? El osciloscopio es basicamente un dispositivo de visualización gráfica que muestra señales electricas variables en el tiempo. El eje vertical, a partir

Más detalles

ENUNCIADOS. Cuestiones

ENUNCIADOS. Cuestiones ENUNCIADOS Cuestiones 1 a) Cuál es la hipótesis cuántica de Planck?. b) Para la explicación del efecto fotoeléctrico, Einstein tuvo en cuenta las ideas cuánticas de Planck. En qué consiste el efecto fotoeléctrico?.

Más detalles

Departamento de Física

Departamento de Física Departamento de Física ------------------------------------------------------------------------------------------------------------------------ LABORATORIO DE FUNDAMENTOS FÍSICOS II Grados TIC PRÁCTICA

Más detalles

PLANCHA DE CALOR SISER

PLANCHA DE CALOR SISER PLANCHA DE CALOR SISER Manual del operador de plancha Al utilizar su prensa de calor, Hay ciertas precauciones que se deben seguir, Incluyendo las siguientes Incluyendo las siguientes: 1.- lea las instrucciones

Más detalles

Radiaciones Ionizantes: Utilización y Riesgos RIUR. Guía de estudio

Radiaciones Ionizantes: Utilización y Riesgos RIUR. Guía de estudio Radiaciones Ionizantes: Utilización y Riesgos RIUR . Estructura y radiaciones atómicas Esta guía describe el conjunto de actividades que forman el tema 2 del módulo 1: " Estructura y radiaciones atómicas"

Más detalles

Espectroscopía. Qué es la espectroscopía? 18/10/2013

Espectroscopía. Qué es la espectroscopía? 18/10/2013 Espectroscopía Qué es la espectroscopía? La espectroscopia es el estudio de la INTERACCIÓN entre la materia y energía radiante, por ejemplo, radiación electromagnética. Busca relacionar la frecuencia de

Más detalles

COEFICIENTES DE DILATACIÓN

COEFICIENTES DE DILATACIÓN PRÁCTICA 3 COEFICIENTES DE DILATACIÓN OBJETIVO Determinación del coeficiente de dilatación del agua a temperatura ambiente utilizando un picnómetro. Determinación del coeficiente de dilatación lineal de

Más detalles

Determinación de h/e. Efecto fotoeléctrico.

Determinación de h/e. Efecto fotoeléctrico. Determinación de h/e. Efecto fotoeléctrico. Heinrich Hertz 1887 descubrió el efecto fotoeléctrico cuando llevaba a cabo experimentos para verificar la existencia de ondas electromagnéticas predichas por

Más detalles

IE-1117: Temas Especiales II en Máquinas Eléctricas: Energía Solar Fotovoltaica

IE-1117: Temas Especiales II en Máquinas Eléctricas: Energía Solar Fotovoltaica IE-1117: Temas Especiales II en Máquinas Eléctricas: Energía Solar Fotovoltaica César Andrés Salas Zamora A95664 Primera Sesión Práctica Resumen: En la primera sesión práctica se hicieron diversas pruebas

Más detalles

La crisis de la Física Clásica. Introducción a la Física Moderna

La crisis de la Física Clásica. Introducción a la Física Moderna La crisis de la Física Clásica. Introducción a la Física Moderna Cuestiones (96-E) Comente las siguientes afirmaciones: a) La teoría de Planck de la radiación emitida por un cuerpo negro afirma que la

Más detalles

INSTALACIÓN DE UNA LÁMPARA DE VAPOR DE MERCURIO ALTA PRESIÓN

INSTALACIÓN DE UNA LÁMPARA DE VAPOR DE MERCURIO ALTA PRESIÓN PRÁCTICA Nº 4 INSTALACIÓN DE UNA LÁMPARA DE VAPOR DE MERCURIO ALTA PRESIÓN Constitución Fig. 1 Detalles de la lámpara de vapor de mercurio alta presión En el interior de la ampolla de vidrio, se encuentra

Más detalles

Espectroscopía de Absorción Atómica

Espectroscopía de Absorción Atómica Espectroscopía de Absorción Atómica Comparación entre Técnicas Espectroscópicas Moleculares y Atómicas Clasificación de las Técnicas Espectroscópicas Atómicas Espectroscopía Atómica Absorción Emisión Fluorescencia

Más detalles