ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO 1 (NOVALES 2.1)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO 1 (NOVALES 2.1)"

Transcripción

1 ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO (NOVALES.) Cosideremos P P e g. Dado que dicha fució es coiua y que exise y so coiuas las derivadas de odos los órdees, podemos aplicar Taylor a P e el puo. Resula: '( ).( ) P () P () + + R () P dode R () es u ifiiésimo, cuado, de orde mayor que uo. Por lo ao, como P () P, P () P ge g y P () P g, resula: P () P + P.g. [P () - P ] / P g., que es la expresió requerida. Además ésa es lieal e (puede verse como la fórmula de ua reca ) para valores de próximos a cero. a) Como P P (+π), π e g, usado la oació que (a ) a.la: Por lo ao:! P P P ) g [ P L( + π) ]( + π) [ P L( + e ) ]( + π) P g( + π P g( + π) P ( + π) P P g b) Si P P e g eoces P - P e g(-) y por lo ao: P P P Pe P e g g( ) Pe g( ) Co lo que sacado e el umerador facor comú P e g(-) : g( ) g Pe (e ) g e g( ) Pe P P P π y recordado EJERCICIO (NOVALES.3) Elaboramos el siguiee cuadro: MES i i IP i IP i Dic ee-95,74,7 86,4 86,3 feb-95,4, 86,8 86,7 mar-95,53,5 87,8 87,6 abr-95,64,6 89, 88,7 may-95,83,8 9,6 9, ju-95,44,4 9,4 9, Dode: i la asa de aumeo iermesual co dos decimales ere el mes i y el i+. i la asa de aumeo iermesual co u decimal ere el mes i y el i+. IP i el valor ídice mesual omado la asa co dos decimales.

2 IP i el valor ídice mesual omado la asa co u decimal. Por lo ao el valor umérico del ídice e juio de 995 es para ua asa de crecimieo iermesual co dos decimales es IP 9,4 y co u decimal es IP 9,. El crecimieo del ídice co dos decimales es (9,4568 / 85),3468 y co u decimal es (9,9979 / 85),34. Las asas aualizadas so, para dos decimales,3468,756 y para u decimal,34,6589. Se cocluye que, co el redodeo, al cabo de 6 meses se iee ciera disorsió del verdadero valor del ídice. EJERCICIO 3 ),5,5,5 VENTAS AÑOS ) La fórmula de la reca (que oaremos como Y β ˆ + βˆ X) será discuida más adelae e el curso e el ema que raa sobre regresió lieal. Se acepará como válidas, por ahora y si jusificació que: (xi x).(yi y) βˆ y β ˆ y ˆ x (x x) i β Co dichos cálculos obeemos que la fórmula de la reca de edecia es: y,88 x - 374,6,5,5,5 VENTAS y,88x - 374,6 AÑOS

3 3 3) La edecia, uilizado promedios móviles, se calcula de la siguiee maera: a) Si la caidad de iempo e la que se hace el promedio móvil es impar (oaremos + ) eoces la edecia e el momeo i es: Ti + Ti Ti Ti + + Ti + T i + b) Si, e cambio es par (): T i 5 Ti + Ti Ti Ti + +,5 Ti + E la abla siguiee hemos calculado dichas edecias por promedios móviles. Resula claro que la edecia para el primer y úlimo año de orde 3 o se puede calcular, así como e la de orde 4 o es posible para los dos primeros y dos úlimos años. Esa dificulad se podría subsaar repiiedo el primer dao hacia arás y el úlimo hacia delae ao como sea ecesario. AÑO Y i 989, T 3 i T 4 i 99,4,367 99,5,6,65 99,9,833, ,,67, 994,5,3,5 995,3,3,35 996,,367,45 997,7,567,65 998,9, ,3,5 T3,5,5

4 4 4) La edecia de orde cuaro esá calculada arriba y su gráfica es:,5 T4,5, ) Esa pare esá e las gráficas de arriba. EJERCICIO 4 (PRIMERA REVISIÓN DEL ) a) Para resolver esa pare aplicamos la fórmula mecioada e el ejercicio aerior, bajo la suposició de que la edecia es ua reca (Y β ˆ + βˆ X): (xi x).(yi y) βˆ y β ˆ y βˆ x (x x) Aplicamos, además, las siguiees fórmulas: ( xi x ) ( yi y) i x i yi ( x i ) ( y i ) Por lo ao: βˆ ( xi x ) ,57 495,78 βˆ x 53 x i x 53 x 4,7 ( x i ) 7,73 885,5 53,84 x 8,665,84 b) El coeficiee de correlació de la muesra esá dado por la fórmula: r XY ( x (x x).(y y) i i i x ) (yi y )

5 5 ( 3795 x ,78 x 53 x 4,7 ) (8345,88 x 4,57 ) r XY,976 c) Exise ua fuere correlació lieal posiiva ere el mes y el valor de la uidad reajusable dado que r XY es muy cercao a uo. EJERCICIO 5 ) Para deermiar la edecia cosiderado que ésa es lieal hacemos u cambio de coordeadas co respeco a los rimesres de los diferees años represeados e el eje de las abcisas. El primer rimesre de 995 va a esar represeado por el valor, el segudo por el valor y así sucesivamee hasa el cuaro rimesre de 999, el cual va a esar represeado por el valor. De ese modo obeemos la gráfica y la ecuació de la reca de edecia la cual se calcula como e el ejercicio aerior: INGRESOS y,43x + 3,484 TRIMESTRES Debe eerse e cuea, si embargo, que ésa es ua primera aproximació de la edecia, la cual oaremos como T. Para calcular la esacioalidad, E, se le resa a la serie origial Y esa primera aproximació de la edecia -la cual se puede deermiar por medio de ua reca o por promedios móviles- (Y T ). Para el compoee esacioal hallamos los promedios de los diferees rimesres de los diversos años de (Y T ) y fialmee calculamos la edecia T defiiiva, sobre la serie desesacioalizada Y E. ) Elaboramos eoces el siguiee cuadro e el cual hallamos la esacioalidad E, la compoee de edecia defiiiva T y la serie si esacioalidad i edecia Y -E -T.

6 6 X Y T Y -T E Y --E T Y -E -T 9 3,94-4,94-5,9549 4,9549 5,469 -,9 6 4,344,6558 -,85 6,85 5,3578, ,7743 3,57,3849 5,65 5,6687 -, ,44 5,7956 3,7548 7,45 5,9796, ,6345-5,6345-5,9549 5,9549 6,95 -, ,646 -,646 -,85 5,85 6,64 -, ,4947,553,3849 5,65 6,93 -,97 8 6,948 3,75 3,7548 6,45 7,3 -, ,3549-4,3549-5,9549 8,9549 7,534,48 7,785 4,5 -,85,85 7,845 4,34 7 8,5 -,5,3849 4,65 8,559-3, ,645 5,3548 3,7548,45 8,4668, ,753-8,753-5,9549 6,9549 8,7777 -, ,554 -,554 -,85 7,85 9,886 -, ,9355 5,645,3849,65 9,3995 3,56 6,3656,6344 3,7548 7,45 9,74 -, ,7957-6,7957-5,9549 9,9549,3 -, ,58-3,58 -,85 8,85,33 -,47 9 5,6559 3,344,3849,65,643,97 6,86 3,94 3,7548,45,954,9 Es decir que para hallar E (compoee esacioal) del primer rimesre, e ese caso, sumamos los igresos de los primeros rimesres de los cico años de la serie origial meos la aproximació de la edecia (Y -T ) y dividimos la suma ere la caidad de años. Obsérvese que la compoee esacioal de cada rimesre es la misma para los diferees años, eso es E E 5 E 9 E 3 E 7 ; E E 6 E E 4 E 8 ; ec. Para eer ua mejor visualizació, podemos graficar los daos origiales (Y ) comparádolos co la suma de las compoees esacioales y de edecia (E +T ): Y comparado co E+T ) Podemos observar por la gráfica aerior que las compoees de esacioalidad y de edecia explica co mucha aproximació la serie origial.

7 7 EJERCICIO 6 (CONTROL DEL ) a) Idizado los rimesres,, 3, ec., y eiedo e cuea los parámeros de la reca de edecia, resula: Tˆ,48 +,68. Y Tˆ + Tˆ ( ) ( 6 6 ) ( ) Eoces: E, 9 Y 3 Tˆ ˆ + Y b) Procediedo como e los ejercicios aeriores, se obiee ua primera esimació de la edecia para, T ˆ 9, 8, y e la úlima columa del * cuadro siguiee la esimació de la edecia ( Tˆ ) a parir de los daos desesacioalizados (peúlima columa). Observado la úlima columa, se * deduce: Tˆ 8,34. * Ê Y Ê 9 3,668-4,668-5,3 4,3 4,68 6 3,8486,54,9 4,9 5, ,534 3,4696,4 7,59 5,49 4 5, 5,7878 3,73 7,7 5,9 5 5,894-5,894-5,3 5,3 6, ,5758 -,5758,9 3,9 6, ,576,744,4 7,59 7, 8 7,9394,66 3,73 6,7 7, ,6-5,6-5,3 8,3 7,93 9,33,697,9,9 8,34 7 9,9848 -,9848,4 6,59 8,75 4,6666 3,3334 3,73,7 9,6 Y Tˆ Y Tˆ Tˆ EJERCICIO 7 (PRIMERA REVISIÓN DEL ) Aplicado la fórmula de T para,,..., 6, podemos hallar la edecia (columa T ) e la siguiee abla: UNIDADES VENDIDAS Cuarimesre Año Y T Y T E I 999 9,957 -,957-3,385 II 999 4,384,766,3335 III ,54 4,4759 3,4735 I 4 4,898-4,898-3,385 II 5 5 6,955 -,955,3335 III 6 9 7,38,688 3,4735 Luego, e la sexa columa, compuamos los daos origiales meos la edecia, para poseriormee calcular la esacioalidad: como cada uo de los dos años esá dividido e cuarimesres habrá res compoees esacioales:,957 4,898 E E 4 3,38

8 8,766,955 E E 5,33 4,4759 +,688 E 3 E 6 3,5 b) E promedio, durae el primer cuarimesre, se vede 338 uidades meos de lo que idica la edecia; e el segudo, e promedio, aumea e 33 y e el ercero aumea, e promedio, e 35 uidades por ecima de la edecia. 8 5 c) MM + + I 4, MM + + II 4,67 3 MM III o se puede calcular co los daos dispoibles Ua aproximació acepable para MM III sería operar como e el ejercicio 3.3.b), es decir repeir el úlimo dao, co lo cual resularía: MM + + III 7,67 3 EJERCICIO 8 Se llama modelo adiivo cuado: dode: Y E + T + C + I E es la compoee esacioal T la compoee de edecia C la compoee cíclica I la compoee irregular (lo o previsible o aleaorio) Las res primeras compoees so deermiísicas es decir que se puede esablecer, mieras que la úlima o y por ello se llama irregular o aleaoria. E ese ejercicio vamos a esablecer ua primera aproximació a la edecia por medio de Medias Móviles Ceradas de orde 3 (óese que co eso promediamos daos a lo largo de u año ya que ésos esá dados por cuarimesres), y que deoaremos MM 3. Poseriormee, ua vez elimiada gra pare de la edecia por ese méodo, calcularemos la compoee esacioal E. Fialmee a los daos desesacioalizados Y d Y E le calculamos la edecia T por medio de ua reca de la forma ya esablecida. X Y 3 3 d MM Z Y - MM E Y Y E T Y -E -T E +T 5 37,5 36,5 37,57 54,93 445, ,67-6, ,79 56, 93, ,83 37,83 3, 5,8 99, ,5 3,5 36,3-3,73 463, ,33 6, ,45 37,55 3, ,83 3,83 338,67-7,84 7, ,5,5 344,89-3,39 48, ,33-33,33-35, -3, 33, ,83 7,83 357,33-86,5 36, ,5 4,5 363,55 48,95 5, ,33-33, ,77,3 349, ,33-33,33 -,83 37,83 375,99-5,6 55, ,5 4,5 38, 3,9 59, ,33-33, ,43 3,57 368, ,83 47,83 394,65 76,8 73,8

9 9 Para visualizar mejor los resulados graficaremos Y comparádolo co E + T así como C + I (la suma de las compoees cíclica e irregular) que es igual a Y E T Y comparado co E+T C+I Y-E-T Por esas gráficas observamos que las compoees E y T aproxima basae a Y salvo e la pare ceral dode exise u poco más de diferecia. EJERCICIO 9 Se llama modelo muliplicaivo cuado: Y E.T. C. I El procedimieo para hallar cada ua de las compoees es prácicamee el mismo cambiado las diferecias por divisió. Los cálculos so los siguiees: X Y 3 3 d 3 MM Z Y / MM E Y Y /E T MM Y /(E. T ) E.T 5,48 355, ,67,954,94 37,5 374,93, , ,,74, ,8 36,95,8964 9, ,,86,48 39,6 36,95,8844 5, ,33,5,94 37,5 335,9745, , ,,667,633 35,8 3,39,53 97, ,,4,48 48,6 59,846, , ,33,857,94,9 3,7666,945 8, ,,5,633 36,9 8,39, , ,,57,48 39,6 333,33, , ,33,93,94 37,5 385,966, , ,33,65, ,8 385,966,88 44, ,,375,48 39,6 43,749, , ,33,93,94 45,7 456,347,939 48, ,633 55,7

10 Y comparado co E.T Preseamos las siguiees gráficas relacioadas:,4,,8,6,4, C.I Y/(E.T) 5 5 E las gráficas precedees observamos u correco ajuse de Y co respeco a E. T. Por ora pare, al o presear aas diferecias e la pare ceral como el modelo adiivo, lo cosideramos más adecuado que él.

Seminario de problemas. Curso Hoja 9

Seminario de problemas. Curso Hoja 9 Semiario de prolemas. Curso 05-6. Hoja 9 49. Alero, Berardo y Carla se ha coocido e ua red social. Ellos pregua a Carla cuádo es su cumpleaños; e lugar de respoderles direcamee, ella decide poerles u prolema.

Más detalles

TALLER 06 (AJUSTE POR MÍNIMOS CUADRADOS

TALLER 06 (AJUSTE POR MÍNIMOS CUADRADOS hp://www.maemaicaaplicada.ifo 1 de 8 Maizales, 23 de Mao de 2014 Para los siguiees problemas aplicar el procedimieo para grado uo grado dos; deermiado cual reprearía el mejor ajuse a los daos aporados.

Más detalles

CURSO CONVOCATORIA:

CURSO CONVOCATORIA: PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 6-7 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, dero de ella, sólo debe respoder (como

Más detalles

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A . Resolver Solució. l sisema lo defie dos marices la mari de coeficiees la mari ampliada. rg ' rg ' ' Rago de (méodo de ramer) S..D. rg ' rg. Resolver Solució. l sisema lo defie dos marices la mari de

Más detalles

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS. Prof. J.L.Cotto

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS. Prof. J.L.Cotto UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS MAEC 2140: Méodos Cuaiaivos Prof. J.L.Coo DISCUSION Y EJEMPLOS SOBRE EL TEMA FUNCIONES EXPONENCIALS El valor del diero

Más detalles

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden:

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden: Sisemas. Marices y Deermiaes.- Si y B so marices orogoales del mismo orde: a) 2 b) B c) B 2.- Dadas dos marices iversibles y B NO se verifica e geeral que: a) ( ) ( ) b) ( B) B c) 3.- Dadas las marices

Más detalles

PRONÓSTICOS. Tema Nº 2 FACILITADOR LIC. ESP. MIGUEL OLIVEROS

PRONÓSTICOS. Tema Nº 2 FACILITADOR LIC. ESP. MIGUEL OLIVEROS UNIVERSIDAD DE LOS ANDES FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES ESCUELA DE ADMINISTRACIÓN Y CONTADURÍA PUBLICA DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS ADMINISTRACIÓN DE LA PRODUCCIÓN Y LAS OPERACIONES

Más detalles

Planificación contra stock. Presentación. Introducción

Planificación contra stock. Presentación. Introducción Plaificació cora sock 09.0.07 Preseació Fabricar cora sock? No iee que ser cero el iveario? Se vio e el capíulo de iroducció. Plaificar cora sock Ciclo de pedido y fabricació idepediees. Demada aual coocida.

Más detalles

FUNCIONES EXPONENCIALES

FUNCIONES EXPONENCIALES 1 FUNCIONES EXPONENCIALES Las fucioes epoeciales iee muchas aplicacioes, e especial ellas describe el crecimieo de muchas caidades de la vida real. Defiició.-La fució co domiio odos los reales y defiida

Más detalles

4. VARIABLES ALEATORIAS Y SUS PROPIEDADES

4. VARIABLES ALEATORIAS Y SUS PROPIEDADES 4. VARIABLES ALEATORIAS Y SUS PROPIEDADES Dr. hp://mah.uprm.edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ 4. Variables Aleaorias Ua variable aleaoria es ua fucio que asume sus

Más detalles

CAPÍTULO 3 MARCO TEÓRICO. A lo largo de este capítulo se explican los conceptos básicos que se debieron tener y

CAPÍTULO 3 MARCO TEÓRICO. A lo largo de este capítulo se explican los conceptos básicos que se debieron tener y Capíulo 3 Marco eórico CAPÍTULO 3 MARCO TEÓRICO A lo largo de ese capíulo se explica los cocepos básicos que se debiero eer y cosiderar para la elaboració de la clasificació de maerias primas, los modelos

Más detalles

i 1,2,..., m (filas) j 1,2,..., n (columnas) t

i 1,2,..., m (filas) j 1,2,..., n (columnas) t MTRICES Y DETERMINNTES Cocepos básicos Deermiaes Mariz iversa CONCEPTOS BÁSICOS MTRIZ de m filas y columas: a11 a12 a1 a21 a22 a 2 am1 am2 am i1,2,..., m (filas) Se represea por a j 1,2,..., (columas)

Más detalles

MS-1 Modelos de supervivencia Página 1 de 20

MS-1 Modelos de supervivencia Página 1 de 20 CURSO: - TEMA : Pricipales modelos de moralidad. Modelizació esocásica. Ley de De Moivre. Leyes de Dormoy y de Sag. Leyes de Gomperz y de Makeham. Oros modelos de moralidad. Esudiaremos aquí disios modelos

Más detalles

85.- Sea B j (t) la función polinómica: n j. Demostrar que: iii) Solución: Consideremos la identidad: (t+x) n =

85.- Sea B j (t) la función polinómica: n j. Demostrar que: iii) Solución: Consideremos la identidad: (t+x) n = Hoa Problemas Aálisis II /9 85.- Sea la fució oliómica: N R Demosrar que: i ii iii iv Solució: Cosideremos la ideidad: R N. Derivado e ambos miembros reseco de mulilicado desués or se obiee: - Derivado

Más detalles

TEMA 5: CAPITALIZACIÓN COMPUESTA 1.- INTRODUCCIÓN

TEMA 5: CAPITALIZACIÓN COMPUESTA 1.- INTRODUCCIÓN TEMA 5: CAPITALIZACIÓN COMPUESTA 1- INTRODUCCIÓN Llamamos capializació compuesa a la ley fiaciera segú la cual los iereses producidos por u capial e cada periodo se agrega al capial para calcular los iereses

Más detalles

SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso 03-04

SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso 03-04 SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - - Comprobr que culquier mriz cudrd M se puede expresr de form úic como sum de dos mrices, u siméric

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

PRÁCTICA 1. Sistemas eléctricos de primer y segundo orden

PRÁCTICA 1. Sistemas eléctricos de primer y segundo orden PRÁCTICA 1 Sisemas elécricos de rimer y segudo orde Objeivo: Deermiar la resisecia iera de u geerador. Realizar medicioes de la cosae de iemo de circuios de rimer orde asabajas y de los arámeros de diseño

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

Valor de Rescate. Elementos Actuariales para su Determinación Por: Pedro Aguilar Beltrán. Octubre de 2008

Valor de Rescate. Elementos Actuariales para su Determinación Por: Pedro Aguilar Beltrán. Octubre de 2008 alor de escae Elemeos Acuariales ara su Deermiació Por: Pedro Aguilar Belrá Ocubre de 28 El alor de rescae es u coceo que se refiere al moo que le oorgará la aseguradora al asegurado o beeficiario, e caso

Más detalles

Tema 8B El análisis fundamental y la valoración de títulos

Tema 8B El análisis fundamental y la valoración de títulos PARTE III: Decisioes fiacieras y mercado de capiales Tema 8B El aálisis fudameal y la valoració de íulos 8B.1 Iroducció. 8B.2 El aálisis fudameal y la valoració de íulos. 8B.3 Modelos para la valoració

Más detalles

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier Series de Fourier. Traamieo Digial de Señal. Series de Fourier Series de Fourier. Preámbulo El aálisis de Fourier fue iroducido e 8 e la Théorie aalyiique de la chaleur para raar la solució de problemas

Más detalles

Procesado digital de imagen y sonido

Procesado digital de imagen y sonido ema a zabal zazu Uiversidad del País Vasco Deparameo de Arquiecura Tecología de Compuadores upv ehu Tema 3_ Sisemas Procesado digial de image soido Defiició Descripció: Erada Salida Diagramas de bloques

Más detalles

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES UNIDD.- Marces (ema del lbro). MTRICES Ua mar se puede eeder como ua abla de úmeros ordeados e flas columas Defcó.- Se llama mar de dmesó m a u cojuo de úmeros reales dspuesos e m flas columas de la sguee

Más detalles

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx .7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )

Más detalles

NORMA DE CARACTER GENERAL N

NORMA DE CARACTER GENERAL N NORMA DE CARACTER GENERAL N REF.: MODIFICA EL TÍTULO III DEL LIBRO IV, SOBRE VALORIZACIÓN DE LAS INVERSIONES DEL FONDO DE PENSIONES Y DEL ENCAJE, DEL COMPENDIO DE NORMAS DEL SISTEMA DE PENSIONES. Saiago,

Más detalles

TRANSFORMADA z Y DE FOURIER

TRANSFORMADA z Y DE FOURIER Uiversidad de Medoa Dr Ig Jesús Rubé Aor Mooya Aálisis de Señales OBJEIVOS: RANSFORMADA Y DE FOURIER - Expoer los cocepos de fucioes discreas e cuao a la visió del proceso de raamieo de señales que pare

Más detalles

TEMA 10. La autofinanciación o financiación interna de la empresa

TEMA 10. La autofinanciación o financiación interna de la empresa Iroducció a las Fiazas TEM La auofiaciació o fiaciació iera de la empresa La fiaciació iera y sus compoees La auofiaciació esá formada por los recursos fiacieros que afluye a la empresa desde ella misma

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

2. MATRICES Y DETERMINANTES

2. MATRICES Y DETERMINANTES Marices y Deermiaes 2. MTRICES Y DETERMINNTES SUMRIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRIC 1.- Marices. 2.- Operacioes co Marices. 3.- Equivalecia de Marices. Trasformacioes Elemeales de Marices.

Más detalles

t T 1 Y Y T Y = T Y = 3 [ T Y m EJERCICIOS DE FORMAS DE ONDA y DESARROLLOS EN SERIE DE FOURIER.

t T 1 Y Y T Y = T Y = 3 [ T Y m EJERCICIOS DE FORMAS DE ONDA y DESARROLLOS EN SERIE DE FOURIER. EJERCICIOS DE FORMAS DE ONDA DESARROLLOS EN SERIE DE FOURIER. EJERCICIO. Hallar el valor eficaz,, e las foras e oa repreaas e la figura. RESOLUCIÓN: Los valores eficaces e las res foras e oa so iguales.

Más detalles

PLANEACIÓN Y CONTROL DE LA PRODUCCIÓN

PLANEACIÓN Y CONTROL DE LA PRODUCCIÓN PLANEACIÓN Y CONTROL E LA PROUCCIÓN GRUPO: 0 M. I. Silvia Herádez García M. I. Susaa Casy Téllez Balleseros TEMARIO: I. Iroducció. II. Programació y corol de la producció. III. Balaceo de líea. IV. Sisemas

Más detalles

21 EJERCICIOS de POTENCIAS 4º ESO opc. B. impar (-2)

21 EJERCICIOS de POTENCIAS 4º ESO opc. B. impar (-2) EJERCICIOS de POTENCIAS º ESO opc. B RECORDAR a m a a m m ( a ) a b a a (a b) a m a a b m a m+ b a a - a b a - b a Tambié es importate saber que algo ( base egativa) par (- ) ( base egativa) impar (- )

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

TEMA NÚMEROS INDICES Y NÚMEROS INDICES BURSÁTILES.

TEMA NÚMEROS INDICES Y NÚMEROS INDICES BURSÁTILES. Dpo. Ecoomía Fiaciera y Coabilidad MATEMATCAS EMRESARALES TEMA 3.3 :roducció a los úmeros ídices y úmeros ídices bursáiles rof. María Jesús Herádez García. TEMA 3.3.- NÚMEROS NDCES NÚMEROS NDCES BURSÁTLES.

Más detalles

REVISTA INVESTIGACION OPERACIONAL Vol. 23, No. 3, 2002

REVISTA INVESTIGACION OPERACIONAL Vol. 23, No. 3, 2002 REVISTA INVESTIGACION OPERACIONAL Vol. 23, No. 3, 22 MATRICES ESCALONADAS Y METODOS PRIMAL DUAL DE PUNTO INTERIOR Alibei Kakes Cruz, Deparameo de Maemáica Aplicada, Faculad de Maemáica y Compuació, Uiversidad

Más detalles

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i I.T. INDUSTRIAL METODOS ESTADÍSTICOS FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a k modalidades x 1,x,..., x k ; datos i x i Media x = i x Variaza poblacioal σ i = x i (x i x) Variaza muestral S = 1 (x i

Más detalles

Métodos de Previsión de la Demanda Datos

Métodos de Previsión de la Demanda Datos Daos Pronósico de la Demanda para Series Niveladas Esime la demanda a la que va a hacer frene la empresa "Don Pinzas". La información disponible para poder esablecer el pronósico de la demanda de ese produco

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

Apéndice C: Datos Experimentos

Apéndice C: Datos Experimentos Apédice C: Datos Experimetos Experimetos Los experimetos permitiero evaluar la afectividad de los usuarios al iteractuar etre ellos detro del IM. La realizació de los experimetos se basa e los siguietes

Más detalles

ECUACIONES DIFERENCIALES Problemas de Valor Frontera

ECUACIONES DIFERENCIALES Problemas de Valor Frontera DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DPTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS APROXIMADOS EN ING. QUÍMICA TF-33 ECUACIONES DIFERENCIALES Problemas de Valor Frotera Esta guía fue elaborada

Más detalles

UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5

UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5 UNIDAD 3 a Escribe los cico primeros térmios de las sucesioes: a.1) a 2, a 3 1 2 a a a 1 2 a.2 b 2 + 1 b Halla el térmio geeral de cada ua de estas sucesioes: b.1 3, 1, 1, 3, 5,... b.2 2, 6, 18, 54,...

Más detalles

3Soluciones a los ejercicios y problemas PÁGINA 79

3Soluciones a los ejercicios y problemas PÁGINA 79 Solucioes a los ejercicios y problemas PÁGINA 79 Pág. P RACTICA Sucesioes formació térmio geeral Escribe los cico primeros térmios de las siguietes sucesioes: a) Cada térmio se obtiee sumado 7 al aterior.

Más detalles

PROGRESIONES ARITMÉTICAS.-

PROGRESIONES ARITMÉTICAS.- PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.

Más detalles

LECCIÓN N 9 CÁLCULO CINETOSTÁTICO DE MECANISMOS PLANOS 9.1 FUERZAS DE INERCIA DE LOS ESLABONES DE LOS MECANISMOS PLANOS

LECCIÓN N 9 CÁLCULO CINETOSTÁTICO DE MECANISMOS PLANOS 9.1 FUERZAS DE INERCIA DE LOS ESLABONES DE LOS MECANISMOS PLANOS LEIÓN N 9 ÁLULO INETOSTÁTIO DE MEANISMOS PLANOS 9. UERZAS DE INERIA DE LOS ESLAONES DE LOS MEANISMOS PLANOS omo se sabe del curso de mecáica, e el caso más geeral odas las fuerzas de iercia del eslabó

Más detalles

3. Volumen de un sólido.

3. Volumen de un sólido. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos

Más detalles

TRABAJO PRACTICO Nº 1

TRABAJO PRACTICO Nº 1 TRABAJO PRACTICO Nº 1 DEMANDA DE TRANSPORTE: ELASTICIDAD OFERTA DE TRANSPORTE: COSTOS AJUSTE DE FUNCIONES ANÁLISIS DE REGRESIÓN Objetivo: Aplicar a u caso práctico utilizado las herramietas básicas de

Más detalles

Mercado de Capitales. Tema 6. Valoración n de bonos. Gestión n de carteras de renta fija

Mercado de Capitales. Tema 6. Valoración n de bonos. Gestión n de carteras de renta fija Mercado de Capiales Tema 6. Valoració de boos. Gesió de careras de rea fija Liceciaura e Admiisració y Direcció de Empresas Cuaro Curso Liceciaura e Derecho y Admiisració y Direcció de Empresas Sexo Curso

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

ANÁLISIS DE LA RENTABILIDAD

ANÁLISIS DE LA RENTABILIDAD ANÁLISIS DE LA RENTABILIDAD DE LOS FONDOS DE PENSIÓN COMISIÓN TÉCNICA DE INVERSIONES DE LA AIOS. INTRODUCCION El documeo cosa del aálisis de cico aspecos écicos referidos al ema de reabilidad: El cálculo

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción CAPÍTULO UNO SEÑALES Y SISTEMAS. Iroducció Los cocepos de señales y sisemas surge e ua gra variedad de campos y las ideas y écicas asociadas co esos cocepos juega u papel imporae e áreas a diversas de

Más detalles

Modelo De Simulación de Ingresos para el Agro

Modelo De Simulación de Ingresos para el Agro Modelo De Simulación de Ingresos para el Agro Basado en el programa AgRisk desarrollado en Ohio Sae Universiy hp://www-agecon.ag.ohio-sae.edu/programs/agrisk/defaul.hm CP. Menichini Amilcar 1 Lic. Lazzai

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

Macroeconomía y pobreza: Lecciones desde Latinoamérica *

Macroeconomía y pobreza: Lecciones desde Latinoamérica * Macroecoomía y obreza: Leccioes desde Laioamérica * Versió 1.2 Luis F. Lóez-Calva Uiversidad de las Américas, Puebla Dearameo de Ecoomía y Mabel A. Adaló Lóez Cero de Aálisis Esraégico y Tecologías de

Más detalles

Para las comparaciones hay que tener en cuenta dos aspectos importantes:

Para las comparaciones hay que tener en cuenta dos aspectos importantes: Esadísica Descriiva: Números Ídices Faculad Ciecias Ecoómicas y Emresariales Dearameo de Ecoomía Alicada Profesor: Saiago de la Fuee Ferádez NÚMEROS ÍNDCES Los úmeros ídices so ua medida esadísica que

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Uiversidad Carlos III de Madrid. El mudo físico: represeació co señales y sisemas Señales: Fucioes co las que represeamos variacioes de ua magiud física Volaje, iesidad, fuerza, emperaura, posició r ()

Más detalles

Facultad de Ciencias del Mar. Curso 2007/08 11/07/08

Facultad de Ciencias del Mar. Curso 2007/08 11/07/08 Esadísica Convocaoria de Junio Faculad de Ciencias del ar. Curso 007/08 /07/08 El galludo (Squalus egalops) es una especie de iburón de aguas empladas a ropicales, que habia la plaaforma coninenal exerior

Más detalles

SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO

SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO CAPÍTULO DOS SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO. Iroducció E ese capíulo se iroduce y discue varias propiedades básicas de los sisemas. Dos de ellas, la liealidad y la ivariabilidad e el iempo,

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

CAPÍTULO 1: ESTIMACIÓN DE LOS INTERESES FUTUROS MEDIANTE NÚMEROS BORROSOS

CAPÍTULO 1: ESTIMACIÓN DE LOS INTERESES FUTUROS MEDIANTE NÚMEROS BORROSOS Pare II: Esimació de la esrucura emporal de los ipos de ierés a ravés de subcojuos borrosos y esimació de los ipos de ierés fuuros APÍTULO : ESTIMAIÓN DE LOS INTERESES FUTUROS MEDIANTE NÚMEROS BORROSOS

Más detalles

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007 CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y

Más detalles

Práctica 5. Aproximar numéricamente la derivada de una función a partir de valores conocidos de la función. f a h f a h

Práctica 5. Aproximar numéricamente la derivada de una función a partir de valores conocidos de la función. f a h f a h PRÁCTICA DERIVACIÓN NUMÉRICA Prácticas Matlab Objetivos Práctica 5 Aproximar uméricamete la derivada de ua fució a partir de valores coocidos de la fució. Comados de Matlab eps Es el epsilo máquia, su

Más detalles

Tema 8: SERIES TEMPORALES

Tema 8: SERIES TEMPORALES Inroducción a la Economería Tema 8: ERIE TEMPORALE Tema 8: ERIE TEMPORALE. Concepo y componenes de una serie emporal. Definiremos una serie emporal como cualquier conjuno de N observaciones cuaniaivas

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos.

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos. CAPÍTULO VIII CONVERGENCIA DE SUCESIONES SECCIONES A Criterios de covergecia B Ejercicios propuestos 347 A CRITERIOS DE CONVERGENCIA Ua fució cuyo domiio es el cojuto de los úmeros aturales se dice sucesió

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito.

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito. MATEMÁTICAS 24, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES JOHN GOODRICK. Para cada sucesió ifiita abajo, determie si coverge o o a u valor fiito. (a) {! } e = (a): No coverge. El úmero e está etre

Más detalles

PRÁCTICA 4 TEMA 6: SERIES TEMPORALES

PRÁCTICA 4 TEMA 6: SERIES TEMPORALES PRÁCTICA 4 TEMA 6: SERIES TEMPORALES En las prácicas aneriores se habían analizado observaciones de variables de ipo ransversal (por ejemplo, obenidas para diferenes municipios). Llamaremos Serie Temporal

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14

PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14 GUIA DE TRABAJO PRACTICO Nº 4 PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 4 OBJETIVOS: Lograr que el Alumo: Resuelva correctamete aritmos y aplique sus propiedades. Resuelva ecuacioes epoeciales.

Más detalles

ANÁLISIS DE FOURIER. m(el asterisco indica el conjugado complejo), se desea expandir una función arbitraria f (t) en una serie infinita de la forma

ANÁLISIS DE FOURIER. m(el asterisco indica el conjugado complejo), se desea expandir una función arbitraria f (t) en una serie infinita de la forma CAPÍULO RES ANÁLISIS DE FOURIER IEMPO CONINUO Iroducció La represeació de la señal de erada a u sisema (eediedo como sisema u cojuo de elemeos o bloques fucioales coecados para alcazar u objeivo deseado)

Más detalles

Página 1 de 34. FILTROS ADAPTIVOS LMS RMS Filtro Kalman INTRODUCCION

Página 1 de 34. FILTROS ADAPTIVOS LMS RMS Filtro Kalman INTRODUCCION Págia de 34 Uiversidad Nacioal de Cordoba FILTROS ADAPTIVOS LMS RMS Filro Kalma INTRODUCCION El cocepo de filro adapaivo, sugiere el de u disposiivo que iea modelizar la relació ere señales e iempo real

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE:

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE: Ua progresió es geométrica, si cada termio después del primero se obtiee multiplicado el aterior por u valor costates Este valor costate se llama razó geométrica (q) E geeral: a a : a......... a ; 3 Si

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

UNIVERSIDAD AUTÓNOMA CHAPINGO CÁLCULO MULTIVARIADO Y ECUACIONES DIFERENCIALES

UNIVERSIDAD AUTÓNOMA CHAPINGO CÁLCULO MULTIVARIADO Y ECUACIONES DIFERENCIALES UNIVERSIDAD AUTÓNOMA CHAPINGO PREPARATORIA AGRÍCOLA ÁREA DE MATEMÁTICAS CÁLCULO MULTIVARIADO Y ECUACIONES DIFERENCIALES f : R R ( ) h p AUTOR Vícor Rafael Valdovios Chávez Ooño de AUTOR Vícor Rafael Valdovios

Más detalles

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 3: Teoría de errores. Implementos

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 3: Teoría de errores. Implementos ITM, Istitució uiversitaria Guía de Laboratorio de Física Mecáica Práctica 3: Teoría de errores Implemetos Regla, balaza, cilidro, esfera metálica, flexómetro, croómetro, computador. Objetivos E esta práctica

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS 1. Medidas de resume descriptivas Para describir u cojuto de datos utilizamos ua serie de medidas, de igual forma que para describir a u persoa podemos utilizar

Más detalles

FUNCIONES ACTUARIALES COMO VARIABLES ALEATORIAS SOBRE UNA SOLA VIDA Por Oscar Aranda Martínez Nadia Araceli Castillo García Abril 2010

FUNCIONES ACTUARIALES COMO VARIABLES ALEATORIAS SOBRE UNA SOLA VIDA Por Oscar Aranda Martínez Nadia Araceli Castillo García Abril 2010 FUNCIONES ACUARIALES COMO VARIABLES ALEAORIAS SOBRE UNA SOLA VIDA Por Oscar Arada Maríez Nadia Araceli Casillo García Abril E ese primer documeo se presea el ueo efoque del cálculo acuarial, e dode las

Más detalles

UNIDAD 4. INFERENCIA ESTADÍSTICA

UNIDAD 4. INFERENCIA ESTADÍSTICA UNIDAD 4. INFERENCIA ESTADÍSTICA. Eimació por Iervalo Se puede eablecer u iervalo de eimació para la media, i la muera e eleccioa de ua població ormal o i e grade 30, coiderado la diribució mueral de X.

Más detalles

Aplicaciones de la Probabilidad en la Industria

Aplicaciones de la Probabilidad en la Industria Aplicaciones de la Probabilidad en la Indusria Cuara pare Final Dr Enrique Villa Diharce CIMAT, Guanajuao, México Verano de probabilidad y esadísica CIMAT Guanajuao,Go Julio 010 Reglas para deección de

Más detalles

1 EXPRESIONES ALGEBRAICAS

1 EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS E el leguaje matemático, se deomia expresioes algebraicas a toda combiació de letras y/o úmeros viculados etre si por las operacioes de suma, resta, multiplicació y poteciació de

Más detalles

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,

Más detalles

1 Valores individuales del conjunto

1 Valores individuales del conjunto 5/03/00 METROLOGÍA ESTADÍSTICA ANÁLISIS DE DATOS Cuado se obtiee uo o más grupos de datos, producto de repeticioes i e ua medida, la mejor forma de represetarlas, es mediate las Medidas de tedecia cetral

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

Un modelo para el cálculo de la pérdida esperada en una cartera de préstamos hipotecarios

Un modelo para el cálculo de la pérdida esperada en una cartera de préstamos hipotecarios U modelo para el cálculo de la pérdida esperada e ua carera de présamos hipoecarios Jua Bazerque a Jorge ader b BCU F Depo. Esudios BCU F Depo. Esudios Resume E ese rabao se aaliza u aspeco deado de lado

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Mó duló 21: Sumatória

Mó duló 21: Sumatória INTERNADO MATEMÁTICA 16 Guía del estudiate Mó duló 1: Sumatória Objetivo: Coocer y aplicar propiedades para el cálculo de sumatorias. Para calcular alguas sumatorias es ecesario coocer sus propiedades

Más detalles

ANEXO Las instituciones calcularán mensualmente los puntos en riesgo utilizando el procedimiento que a continuación se detalla:

ANEXO Las instituciones calcularán mensualmente los puntos en riesgo utilizando el procedimiento que a continuación se detalla: ANEXO 5 METODOLOGIA A SEGUIR PARA DETERMINAR EL MONTO MÍNIMO DEL FIDEICOMISO, ASÍ COMO EL IMPORTE DE LAS CUOTAS SOBRE LAS CUALES SE CALCULARÁN LAS APORTACIONES A QUE SE REFIERE EL ARTÍCULO 55 BIS DE LA

Más detalles

Profr. Efraín Soto Apolinar. Área bajo una curva

Profr. Efraín Soto Apolinar. Área bajo una curva Profr. Efraí Soto Apoliar. Área bajo ua curva Nosotros coocemos muchas fórmulas para calcular el área de diferetes figuras geométricas. Por ejemplo, para calcular el área A de u triágulo co base b altura

Más detalles

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables.

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables. ASAS DE VARIACIÓN ( véase Inroducción a la Esadísica Económica y Empresarial. eoría y Pácica. Pág. 513-551. Marín Pliego, F. J. Ed. homson. Madrid. 2004) Un aspeco del mundo económico que es de gran inerés

Más detalles