DIFERENCIAL DE UNA FUNCIÓN REAL DE DOS VARIABLES REALES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DIFERENCIAL DE UNA FUNCIÓN REAL DE DOS VARIABLES REALES"

Transcripción

1 Cálculo III- Dierecial-TVMCD-Geeralizació Diereciabilidad DIFERENCIL DE UN FUNCIÓN REL DE DOS VRILES RELES a R : R b R R z : E las codicioes ateriores si llaaos a la ució : R R observaos que es ua trasoració lieal co coeicietes e tério de la cual se puede epresar la deiició de diereciabilidad de la ució e el puto coo sigue: es diereciable e : R R dode Deiició : R R z La trasoració lieal trasoració lieal tal que es u puto del doiio de próio a tal que es diereciable e : R R es la dierecial de e usaos para ella la otació d p ó d z Los valores de la d se deota d ( ) ó calcula e Δ Δ Esto es d Toado calculado Observaos que d z calculado d resulta que d d d resulta que d d Luego poeos Iterpretació geoétrica d d d d p es ua ució de las cuatro variables d d La ecuació z e es diereciable e ( ) cuado se Toado represeta al plao tagete Q a la supericie z gráica de por deiició Lic María Teresa acios- Mg Silvia Rut Góez

2 Cálculo III- Dierecial-TVMCD-Geeralizació Diereciabilidad d Coparado las dos igualdades resulta: d z Etoces la d Q cuado pasaos del puto al puto gráica de e uestra la igura siguiete es la variació que eperieta la cota del plao tagete a la segú z S Q Q T R ( ) dz ( ) z ( ) D E la isa se visualiza ua porció de S supericie de ecuació z del plao tagete a la isa e Q iage e S de dode es diereciable Los putos Q T so respectivaete las iágees de e la supericie S e el plao z d la aproiació etre abos cuado el puto se odeos observar a acerca a Se observa tabié el tério adicioal que tiede a cuado tiede a Epresada la deiició de diereciabilidad de la ució e el puto e tério de la aplicació lieal resulta que Del cual se sigue que: Etoces cuado so pequeños esto es cuado e vale que: d z d Esta igualdad epresa que La variació de la ució cuado pasaos del puto co e es aproiadaete igual a d calculada e e o a la dierecial de Lic María Teresa acios- Mg Silvia Rut Góez

3 Cálculo III- Dierecial-TVMCD-Geeralizació Diereciabilidad Resulta etoces e el caso diereciable e que podeos aproiar los valores de e u etoro de co los de ua trasoració aí (traslació de ua lieal): tal que Esto es: si Si observaos que el segudo iebro de la epresió aterior da la coordeada z de los putos del plao tagete a la gráica de e es clara la airació siguiete: Geoétricaete e u etoro de dode es diereciable se puede aproiar la supericie gráica de co el plao tagete a la isa e el puto Observació Es iportate darse cueta que la dierecial de ua ució se deie e la ipótesis de diereciabilidad de Esto sigiica que úicaete podeos usarla coo aproiació lieal para cuado ésta es diereciable Ejeplos de plicació - : R R z Hallar z dz e el puto para z ; ( () ) - ( ) (66 ) ( - ) 4 d z La ució de este ejeplo es diereciable e ( ) (pues es u polioio) para valores de pequeños coparados co e se veriica que z dz deás veos que ; 55 5 d ; aproiar los valores de e u etoro del puto ás d ; Lic María Teresa acios- Mg Silvia Rut Góez Luego podeos dode es diereciable co - Ecuetre ua aproiació lieal para la ució e se e el puto La ució es diereciable e luego ua aproiació lieal para e es la ució: g e e Coclusió Si : R R es diereciable e etoces: ) La supericie gráica de tiee e el puto e Q plao tagete de ecuació:

4 z Lic María Teresa acios- Mg Silvia Rut Góez Cálculo III- Dierecial-TVMCD-Geeralizació Diereciabilidad ) odeos obteer ua aproiació lieal para e u etoro de ésta es: E térios geoétricos esto sigiica que e las proiidades de podeos reeplazar la supericie gráica de por el plao tagete a la isa e DIFERENCILES DE ORDEN SUERIOR Dada : R R z d icreetos de las variables idepedietes es: d la dierecial de e calculada e d d d d d La dierecial llaadas a veces dierecial total es ua ució de cuatro variables idepedietes: las coordeadas e del puto iterior del doiio de e el que se estudia la dierecial los icreetos d d de las variables idepedietes Si es diereciable e iterior de su doiio la d tiee derivadas parciales de segudo orde respecto de las variables e cotiuas e podreos costruir d d dierecial seguda de e se idica d d d d d d dd d d Esta tiee la ora: d d d d d d d d que se llaa d d De la isa aera si tiee derivadas parciales cotiuas respecto a e asta el orde e d d que se llaa dierecial tercera de e se idica d podreos costruir d d d d d d dd d d d d d d d d d d d d d d d d d uede ácilete probarse por iducció que si tiee derivadas parciales cotiuas respecto a e asta el orde e podreos costruir la Esta tiee la ora: d d d d que se llaa dierecial eésia de e 4

5 d d d Cálculo III- Dierecial-TVMCD-Geeralizació Diereciabilidad d d d d Esta últia órula puede epresarse sibólicaete: d d d d d E la que priero debe desarrollarse oralete por edio del teorea del bioio la epresió de la dereca luego debe sustituirse: d d Ejeplo : R - por por R z d d ; Hallar d z e el puto d d d por d d d d d d d d 6 d d - si Eiste la dierecial tercera de e? Vios que d o eiste Luego o es diereciable e Tapoco eiste la dierecial seguda i la tercera de la ució d d por lo tato o eiste TEOREM DEL VLOR MEDIO DEL CÁLCULO DIFERENCIL : D R R diereciable e el iterior de D D D tales que el segeto de etreos está coteido e el iterior de D etoces eiste C perteeciete al segeto tal que C Hareos luego la deostració del teorea utilizado la Regla de la Cadea para la derivació de las ucioes copuestas Vereos aora ua iterpretació geoétrica para la tesis del teorea Iterpretació geoétrica Supoeos que vale las ipótesis del Teorea del Valor Medio para D co Etoces eiste Lic María Teresa acios- Mg Silvia Rut Góez : D R R C tal que: C D 5

6 Cálculo III- Dierecial-TVMCD-Geeralizació Diereciabilidad Si la igualdad de la tesis se puede dividir iebro a iebro por se obtiee ero sabeos: C s traza e z a la recta que cotiee a deás: C siedo " " la pediete de" s " recta que ue los putos s está coteida e el plao vetical que tiee por C (por propiedades del producto escalar de la derivada direccioal de ua ució diereciable) D Mietras que segú la coocida iterpretació geoétrica de la derivada direccioal ide la pediete de la recta tagete e el puto C C C C C cota de C e la supreicie S a la curva " " itersecció de la supericie gráica de co el seiplao vertical cua traza e el plao XOY es la seirecta que cotiee al segeto or ipótesis es diereciable e C D C C D luego la curva itersecció de la gráica de co el plao vertical que cotiee al segeto tiee e el puto C cota de C recta tagete su pediete es igual a D C z t C s S O D C Etoces: La tesis del teorea e el caso e que asegura que eiste u puto C e la curva itersecció de la supericie " S " gráica de co el plao vertical que cotiee al segeto e el que la recta tagete tiee la isa pediete que la secate que ue los putos de dica curva Este resultado adite la siguiete represetació gráica: Lic María Teresa acios- Mg Silvia Rut Góez 6

7 Cálculo III- Dierecial-TVMCD-Geeralizació Diereciabilidad GENERLIZCIÓN DE L NOCIÓN DE DIFERENCIILIDD Geeralizareos la oció de diereciabilidad a ucioes reales de variable vectorial luego a ucioes vectoriales de variable vectorial I) FUNCIONES RELES DE VRILES RELES La geeralizació de la oció de diereciabilidad a a estas ucioes es iediata a partir de la deiició dada para ucioes de dos variables realesse epresa coo sigue: Deiició : R R es diereciable e : z i a R i a a a Se prueba que las ucioes diereciables e u puto iterior de su doiio so cotiuas adite todas las derivadas parciales todas las derivadas direccioales e dico puto deás vale para ellas los Teoreas del Valor Medio del Cálculo Dierecial de Talor II) FUNCIONES VECTORILES DE VRILE VECTORIL Geeralizareos la oció de diereciabilidad a ucioes vectoriales de variable vectorial ara ello epresaos coveieteete la deiició de diereciabilidad para ucioes reales de dos variables reales Deiició : R R z es diereciable e : R R trasoració lieal tal que La trasoració lieal de R e R a la que podeos asociar respecto de las bases caóicas la atriz ) es la dierecial de e que podeos poer: siguiete: ( d : R R ( ) Coo resulta que luego el líite Lic María Teresa acios- Mg Silvia Rut Góez 7

8 Cálculo III- Dierecial-TVMCD-Geeralizació Diereciabilidad 8 Lic María Teresa acios- Mg Silvia Rut Góez puede poerse Epresar la diereciabilidad de ua ució real de dos variables reales e tério de este líite perite geeralizar la oció de diereciabilidad a ucioes vectoriales de variable vectorial Deiició R R : es diereciable e R R : trasoració lieal tal que La trasoració lieal se llaa dierecial de e se deota p d Coo toda trasoració lieal de R e R ijadas las bases caóicas e dicos espacios a la dierecial de e correspode ua úica atriz la atriz jacobiaa de e que se idica '( ) tiee la ora: Etoces: R R d : Observació: Deiios p d sólo cuado es ua ució diereciable e Coo para las ucioes reales de dos variables reales se puede probar que si ua ució vectorial de variable vectorial es diereciable e u puto iterior de su doiio vale que: la ució es cotiua e dico puto la ució adite todas sus derivadas parciales e dico puto Se prueba la siguiete codició ecesaria suiciete que perite deteriar la diereciabilidad de las ucioes vectoriales estudiado la diereciabilidad de sus copoetes (ucioes reales)

9 Teorea : R R es diereciable e Cálculo III- Dierecial-TVMCD-Geeralizació Diereciabilidad j j es diereciable e Etoces d : R R d d d Observació ara cada j : R R iplica: d j : R R j j j Luego d j Ejeplos ) j j diereciable e j j j j j j : R R Es diereciable e u v u cos v u sev v Las ucioes u v u cos v u vu sev u v v? Si eiste ecuetre d p tiee derivadas parciales cotiuas e R por lo tato la codició suiciete para la diereciabilidad idica que so or el teorea euciado es diereciable e diereciables e R e particular e de lo que se sigue que eiste d p la atriz jacobiaa de e u v cosv sev u v u v la dierecial de e es: d : R R d ó : R R es la atriz que sigue: u sev u cos v Lic María Teresa acios- Mg Silvia Rut Góez 9

10 Cálculo III- Dierecial-TVMCD-Geeralizació Diereciabilidad ) Ecuetre la dierecial de la ució diereciable La atriz jacobiaa de e ( ) es la atriz : : R R z e se z e ( ) Etoces d : R R z z e se z e Ejercicios d e cos z : R R ó e ruebe que las ucioes dadas so diereciables calcule el deteriate de la atriz jacobiaa de e los putos dode eiste: : R R : R R a) cos se se cos se se cos b) Lic María Teresa acios- Mg Silvia Rut Góez

X si existe una transformación lineal. : de modo que se verifique que: 0 =

X si existe una transformación lineal. : de modo que se verifique que: 0 = Pro. Adrea Capillo Aálisis ateático II Diereciabilidad Deiició: Sea el capo vectorial D : y sea puto iterior de D. Se dice que es diereciable e si eiste ua trasoració lieal : de odo que se veriique que:

Más detalles

Definición: f(x) f(z) x z. x z. f(x) f(z) x z. x z. f(z+h) f(z) h 0. Interpretaciones de la derivada: f(x) f(z) f(x) f(z) - 1 -

Definición: f(x) f(z) x z. x z. f(x) f(z) x z. x z. f(z+h) f(z) h 0. Interpretaciones de la derivada: f(x) f(z) f(x) f(z) - 1 - LA DERIVADA Defiició: Sea f: [ a,b] R y z [ a,b]. U úero L es la derivada de f e z, si dado u ε > 0 eiste u δ( f, ε ) > 0 talque si z < δ etoces f() f(z) L < ε. Es decir, la fució f es z f() f(z) derivable

Más detalles

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES.

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES. Tema 6 Derivada de ua ució e u puto Fució derivada Derivadas sucesivas Aplicacioes TEMA 6 DERIVADA DE UNA FUNCIÓN EN UN PUNTO FUNCIÓN DERIVADA DERIVADAS SUCESIVAS APLICACIONES ÍNDICE INTRODUCCIÓN DERIVADA

Más detalles

Tema II: Interpolación. Polinomios de Lagrange Diferencias Divididas Interpolación Lineal

Tema II: Interpolación. Polinomios de Lagrange Diferencias Divididas Interpolación Lineal Poliomios de Lagrage Dierecias Divididas Iterpolació Lieal Deiició: es el cálculo de valores para ua ució tabulada, e putos que o se tiee Posició X =?? 4 7 78 48 8 Tiempo Supogamos la cúbica de la siguiete

Más detalles

IES SANTIAGO RAMÓN Y CAJAL. PRIMER TRIMESTRE. EJERCICIOS DE REPASO.

IES SANTIAGO RAMÓN Y CAJAL. PRIMER TRIMESTRE. EJERCICIOS DE REPASO. IES SANTIAGO RAMÓN Y CAJAL PRIMER TRIMESTRE EJERCICIOS DE REPASO Falta ejercicios del Tea Estos ejercicios so eraete orietativos - Hallar los siguietes líites: a) b) c) - E ua progresió geoétrica sabeos

Más detalles

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS. Matemáticas Examen de Ubicación 2012 Ingenierías Diciembre 26 de 2011

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS. Matemáticas Examen de Ubicación 2012 Ingenierías Diciembre 26 de 2011 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS Mateáticas Eae de Ubicació 0 Igeierías Diciebre 6 de 0 Nobre: Paralelo: VERSIÓN. Si A B so cojutos iitos es ua ució de A e B g

Más detalles

METODO DE ITERACION DE NEWTON

METODO DE ITERACION DE NEWTON METODO DE ITERACION DE NEWTON Supogamos que queremos resolver la ecuació f( ) y lo que obteemos o es la solució eacta sio sólo ua buea aproimació, para obteer esta aproimació observemos la siguiete figura

Más detalles

Diferencial Total. se define. en el punto x

Diferencial Total. se define. en el punto x Dierecial Total El propio ombre derivada parcial os debiera idicar que e cotraposició al caliicativo parcial eiste otro que lo complemeta Tal ombre el correspodiete cocepto eiste se le llama dierecial

Más detalles

Tema 8. Derivabilidad y reglas de derivación. 8.1 Derivada de una función

Tema 8. Derivabilidad y reglas de derivación. 8.1 Derivada de una función Tema 8 Derivabilidad y reglas de derivació 8. Derivada de ua fució f : I R es derivable e a I si eiste el límite que llamaremos f 0 (a) f() f(a) lim a a Ejercicio 8.. Si f() 3 calcular f 0 () f(a + ) f(a)

Más detalles

TEMA 2 CÁLCULO DIFERENCIAL DE DE UNA UNA VARIABLE

TEMA 2 CÁLCULO DIFERENCIAL DE DE UNA UNA VARIABLE TEMA CÁLCULO DIFERENCIAL DE DE UNA UNA VARIABLE Derivada de ua ució e u puto Sea : D y u puto iterior de Se dice que es derivable e eiste lim Dicho límite recibe el ombre de derivada de e Notas ) Notaremos

Más detalles

CAPÍTULO 7: GENERALIDADES SOBRE TRANSFORMACIONES (V)

CAPÍTULO 7: GENERALIDADES SOBRE TRANSFORMACIONES (V) PÍTULO 7: GENERLIDDES SORE TRNSFORIONES (V) Date Guerrero-haduví Piura, 015 FULTD DE INGENIERÍ Área Departaetal de Igeiería Idustrial y de Sisteas PÍTULO 7: GENERLIDDES SORE TRNSFORIONES (V) Esta obra

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

5.- Teoremas de Cauchy y del Residuo

5.- Teoremas de Cauchy y del Residuo 5.- Teoreas de auchy y del esiduo a) Itroducció. b) Putos sigulares aislados. c) esiduo. d) Teorea de auchy. e) esiduos y polos. f) eros de fucioes aalíticas. g) Aplicació de los residuos. a).- Itroducció.

Más detalles

Unidad 10: LÍMITES DE FUNCIONES

Unidad 10: LÍMITES DE FUNCIONES Uidad 1: LÍMITES DE FUNCIONES LÍMITES 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Ua sucesió de úmeros reales es u cojuto ordeado de iiitos úmeros reales. Los úmeros reales a1, a,..., a,... se llama térmios,

Más detalles

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera La Capitalizació co ua Tasa de Iterés Siple El Iterés Siple La característica ás resaltate de la capitalizació co tasa de iterés siple es que el valor futuro de u capital aueta de aera lieal. Sea u pricipal

Más detalles

DERIVACIÓN Y DIFERENCIACIÓN DE FUNCIONES DE UNA VARIABLE REAL. APROXIMACIÓN POLINÓMICA. DESARROLLOS EN SERIE

DERIVACIÓN Y DIFERENCIACIÓN DE FUNCIONES DE UNA VARIABLE REAL. APROXIMACIÓN POLINÓMICA. DESARROLLOS EN SERIE DEIVACIÓN Y DIFEENCIACIÓN DE FUNCIONES DE UNA VAIABLE EAL. APOXIMACIÓN POLINÓMICA. DESAOLLOS EN SEIE.- Calcular, aplicado la defiició, las derivadas de las siguietes fucioes e el puto : a) f ( ) se( )

Más detalles

Diédrico 15. Abatimientos

Diédrico 15. Abatimientos α 2 Dibujar las proyeccioes y verdadera agitud de u robo áureo, apoyado e el plao α, cuya diagoal ayor AC, que ide 70, tiee su vértice C e la traza horizotal, α1, del plao y a la izquierda del vértice

Más detalles

de funciones en un punto. Función deriva- da. Derivadas sucesivas. Aplicaciones.

de funciones en un punto. Función deriva- da. Derivadas sucesivas. Aplicaciones. TEMA 6. Derivadas de ucioes e u puto. Fució derivada. Derivadas sucevas. TEMA 6. Derivadas de ucioes e u puto. Fució deriva- da. Derivadas sucevas. Aplicacioes. : D tal que D se cumple que es úico.. Itroducció

Más detalles

propaga en un medio, es decir aquellos rayos que tienen la misma fase. Al referirnos a

propaga en un medio, es decir aquellos rayos que tienen la misma fase. Al referirnos a Capítulo Coceptos de Óptica Física.1 Frete De Oda El frete de oda se puede defiir coo ua superficie iagiaria que ue todos los putos e el espacio que so alcazados e u iso istate por ua oda que se propaga

Más detalles

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2 Calcula: L L a Dada ua sucesió que tiede a idica a partir de qué térmio se cumple la codició que se idica: a a Si a a Si 7 Si a partir del térmio 9 Si Hallar: d) 7 a partir del térmio 97 d) Deduce los

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecuacioes Difereciales de Primer Orde Defiició lasificació de las Ecuacioes Difereciales Ua ecuació diferecial es aquélla que cotiee las derivadas o difereciales de ua o más variables depedietes

Más detalles

Profesora: María José Sánchez Quevedo FUNCIÓN DERIVADA

Profesora: María José Sánchez Quevedo FUNCIÓN DERIVADA Proesora: María José Sáchez Quevedo FUNCIÓN DERIVADA. DERIVADA DE UNA FUNCIÓN EN UN PUNTO ( Siiicado eométrico). ECUACIÓN DE LA RECTA TANGENTE Y DE LA NORMAL A UNA CURVA EN UN PUNTO. FUNCIÓN DERIVADA 4.

Más detalles

b n 1.8. POTENCIAS Y RADICALES.

b n 1.8. POTENCIAS Y RADICALES. .. POTENCIAS Y RADICALES. La potecia es ua epresió ateática que coprede dos partes: la base el epoete. b (b)(b)(b)(b)...dode b es la base el epoete. Para ecotrar el resultado de la potecia, la base se

Más detalles

TEMA I OPTICA GEOMÉTRICA APLICADA AL OJO

TEMA I OPTICA GEOMÉTRICA APLICADA AL OJO Diplomatura e Óptica y Optometría Adelia Felipe Marcet TEMA I OPTICA GEOMÉTRICA APLICADA AL OJO I Adaptació de las relacioes paraiales II.- Proimidades y potecias III.- Ecuació de Gauss IV.- Ecuació de

Más detalles

Números complejos. Un cuerpo conmutativo es un conjunto de números que pueden sumarse, restarse, multiplicarse y dividirse.

Números complejos. Un cuerpo conmutativo es un conjunto de números que pueden sumarse, restarse, multiplicarse y dividirse. Núeros coplejos 1. Cuerpos U cuerpo coutativo es u cojuto de úeros que puede suarse, restarse, ultiplicarse y dividirse. Los úeros racioales, esto es, los úeros que puede escribirse e fora de fracció,

Más detalles

Automá ca. Capítulo6.LugardelasRaíces. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez

Automá ca. Capítulo6.LugardelasRaíces. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez Autoáca Capítulo6.LugardelasRaíces JoséRaóLlataGarcía EstherGozálezSarabia DáasoFerádezPérez CarlosToreFerero MaríaSadraRoblaGóez DepartaetodeTecologíaElectróica eigeieríadesisteasyautoáca Lugar de las

Más detalles

P en su plano, siendo C las correspondientes

P en su plano, siendo C las correspondientes PRINIPIO DE OS TRBJOS VIRTUES El Pricipio de los Trabajos Virtuales se expresa diciedo: Para ua deforació virtual ifiitaete pequeña de u cuerpo que se ecuetra e equilibrio, el trabajo virtual de las fuerzas

Más detalles

si G es abierto. La función del conjunto m tiene las siguientes propiedades: de partes de se dice que es una , entonces E.

si G es abierto. La función del conjunto m tiene las siguientes propiedades: de partes de se dice que es una , entonces E. LA INTGRAL D LBSGU PARA FUNCIONS D UNA SOLA VARIABL RSULTADOS TÓRICOS LA MDIDA D LBSGU CONJUNTOS MDIBLS Dado u couto abierto o vació G de la recta real, existe ua amilia iita o umerable {V: œl}, ormada

Más detalles

CAPÍTULO DOS. TRANSFORMADA Z.

CAPÍTULO DOS. TRANSFORMADA Z. CAPÍULO DOS. RANSORMADA Z. II.. INRODUCCIÓN. E el capítulo aterior se demostró que la trasormada de Laplace de ua señal muestreada (t) puede ser expresada e distitas ormas: ( ) s e s (2-) ( ) s ( s j )

Más detalles

a. Tetraedro: Tiene 4 caras (triángulos equiláteros), 4 vértices, 6 aristas.

a. Tetraedro: Tiene 4 caras (triángulos equiláteros), 4 vértices, 6 aristas. POLIEDROS Y VOLUMEN POLIEDRO: Cuerpo liitado por cuatro o ás polígoos dode cada polígoo se deoia cara, sus lados so aristas y la itersecció de las aristas se llaa vértices. PRISM: Poliedro liitado por

Más detalles

Ejercicios para exámenes de Matemáticas (CCAA y CTA) Vectores

Ejercicios para exámenes de Matemáticas (CCAA y CTA) Vectores Ejercicios para exámees de Matemáticas (CCAA y CTA Vectores Jua-Miguel Gracia 7 de octubre de 014 Ejercicio Sea a, b vectores de R 5 que satisface a = 10, a + b = 11, a b = 9 Demostrar que existe u β R

Más detalles

FACULTAD DE CIENCIAS EXACTAS, INGENIERIA Y AGRIMENSURA SERIES Y RESIDUOS

FACULTAD DE CIENCIAS EXACTAS, INGENIERIA Y AGRIMENSURA SERIES Y RESIDUOS AIOAL DE ROSARIO FAULTAD DE IEIAS EXATAS, IGEIERIA Y AGRIMESURA ŀuiversidad SERIES Y RESIDUOS Agélica Arulfo itia iaciardo Alicia Kurdobri Maria Morá José Seitiel Itegrates el Proyecto de Ivestigació EO58

Más detalles

Sucesiones y series numéricas

Sucesiones y series numéricas PROBLEMAS E MATEMÁTICAS Cálculo Primero de Ciecias Químicas FACULTA E CIENCIAS QUÍMICAS epartameto de Matemáticas Uiversidad de Castilla-La Macha Cálculo Sucesioes y series uméricas Sucesioes y series

Más detalles

CAPÍTULO 5: SEGMENTOS PROPORCIONALES (II)

CAPÍTULO 5: SEGMENTOS PROPORCIONALES (II) PÍTULO 5: SEGMENTOS PROPORIONLES (II) Date Guerrero-haduví Piura, 2015 FULTD DE INGENIERÍ Área Departaetal de Igeiería Idustrial y de Sisteas PÍTULO 5: SEGMENTOS PROPORIONLES (II) Esta obra está bajo ua

Más detalles

EJERCICIO S DE FUNCIO NES. i)f(x)= 3 2. k)f(x)= )

EJERCICIO S DE FUNCIO NES. i)f(x)= 3 2. k)f(x)= ) Dadas las guiet ucio: 6 a e b EJERCICIO S DE FUNCIO NES g c 9 d h i 9 j log k log l L9 Hallar su domiio. Hallar los putos de corte co los ej. Comprobar las ucio b, c,, g, y h so par o impar. E las ucio

Más detalles

Límites y continuidad

Límites y continuidad I.E.S. Ramó Giraldo CONTENIDOS.- MAPA CONCEPTUAL DE LA UNIDAD....- CONCEPTO DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO....- LÍMITES LATERALES: CARACTERIZACIÓN....- LÍMITES Y OPERACIONES CON FUNCIONES: ÁLGEBRA

Más detalles

Ejercicios de Combinatoria,

Ejercicios de Combinatoria, Ejercicios de Cobiatoria, 0 0 00 E ua caja hay bolas blacas, todas iguales e taaño, y otras bolas, de igual taaño que las ateriores pero todas de diferete color (o hay dos que tega el iso) De cuátas foras

Más detalles

DISEÑO Y ANÁLISIS DE DATOS II. NOVIEMBRE con la variable Y. Disponemos de las puntuaciones observadas en Y y de las puntuaciones residuales.

DISEÑO Y ANÁLISIS DE DATOS II. NOVIEMBRE con la variable Y. Disponemos de las puntuaciones observadas en Y y de las puntuaciones residuales. DIEÑO ANÁLII DE DATO II. NOVIEMBRE 00 Problea.- Relacioaos la variable X co la variable. Dispoeos de las putuacioes observadas e de las putuacioes residuales. ) Deteriar R. OL: Calculeos la sua de cuadrados

Más detalles

CONVEXIDAD R 2. Conjuntos convexos. Combinación lineal convexa de m puntos. λ x. Ejemplos de conjuntos convexos en R 2

CONVEXIDAD R 2. Conjuntos convexos. Combinación lineal convexa de m puntos. λ x. Ejemplos de conjuntos convexos en R 2 Cojutos coveos Ejeplos de cojutos coveos e R CONVEXIDAD Cojutos coveos Coveidad de fucioes DEFINICION: U cojuto A es coveo cuado, y A y λ [0,] se cuple λ + ( λ) y A R λ + ( λ) y λ = / y λ = 0 Cojuto coveo:

Más detalles

ESTAS NOTAS NO PUEDEN SUSTITUIR A BUEN LIBRO, NI EL ESFUERZO PERSONAL CONTINUADO PARA ASIMILAR Y APLICAR LAS IDEAS EXPUESTAS!!!

ESTAS NOTAS NO PUEDEN SUSTITUIR A BUEN LIBRO, NI EL ESFUERZO PERSONAL CONTINUADO PARA ASIMILAR Y APLICAR LAS IDEAS EXPUESTAS!!! . SERIES MM_III. EDO HOMOGÉNEAS: SOLUCIONES TIPO SERIE.. Clasificació de las siglaridades de a EDO hoogéea de º orde lieal.. Solcioes ptos siglares de a EDO hoogéea de º orde lieal..3 Método de Frobeis..4

Más detalles

IES Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti

IES Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti ES Mediterráeo de Málaga Juio Jua Carlos loso Giaoatti UNVERSDD DE CTLUÑ PRUES DE CCESO L UNVERSDD CONVOCTOR DE JUNO Resoda a CNCO de las siguietes seis cuestioes. E las resuestas, elique siere qué quiere

Más detalles

Análisis Matemático II

Análisis Matemático II Aálisis Matemático II ítesis de los fudametos teóricos correspodietes al cursado de la asigatura para las carreras de Igeiería Idustrial, Iformática, Metalúrgica, Química, de Mias Liceciatura e istemas

Más detalles

Principio de multiplicación. Supongamos que un procedimiento designado como 1, puede hacerse de n 1

Principio de multiplicación. Supongamos que un procedimiento designado como 1, puede hacerse de n 1 MÉTODOS DE ENUMERACIÓN Y CONTEO. Pricipio de ultiplicació. Supogaos que u procediieto desigado coo puede hacerse de aeras. Supogaos que u segudo procediieto desigado coo se puede hacer de aeras. Tabié

Más detalles

ECUACIONES DIFERENCIALES (0256)

ECUACIONES DIFERENCIALES (0256) ECUACIONES DIFERENCIALES (056) SEMANA 0 CLASE 0 LUNES 09/04/. Presetació de la asigatura. Coteido programático, pla de evaluació, software de apoyo, bibliografía recomedada. Se sugiere ver los archivos

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL Viceç Fot Departamet de Didàctica de les CCEE i de la Matemàtica de la Uiversitat de Barceloa Resume: E este artículo se muestra como las trasformacioes

Más detalles

ANÁLISIS MATEMÁTICO I - EXAMEN FINAL - 16 de julio de 2015 APELLIDO Y NOMBRE:... CORRIGIÓ:...REVISÓ:...

ANÁLISIS MATEMÁTICO I - EXAMEN FINAL - 16 de julio de 2015 APELLIDO Y NOMBRE:... CORRIGIÓ:...REVISÓ:... ANÁLISIS MATEMÁTICO I - EXAMEN FINAL - 6 de julio de 5 APELLIDO Y NOMBRE:... CORRIGIÓ:...REVISÓ:... Ejercicio Ejercicio Ejercicio Ejercicio 4 Ejercicio 5 NOTA Todas sus respuestas debe ser justificadas

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

FUNCIONES VECTORIALES DE VARIABLE ESCALAR

FUNCIONES VECTORIALES DE VARIABLE ESCALAR CAPITULO II CALCULO II Competecia FUNCIONES VECTORIALES DE VARIABLE ESCALAR Recooce y aplica satisfactoriamete las operacioes, procedimietos, reglas y métodos del cálculo itegral y diferecial e las fucioes

Más detalles

DESTILACIÓN FRACCIONADA

DESTILACIÓN FRACCIONADA UNIVERSIA NACIONAL EXPERIMENTAL RANCISCO E MIRANA ÁREA E TECNOLOGÍA COMPLEJO ACAÉMICO EL SABINO OPERACIONES UNITARIAS II ESTILACIÓN RACCIONAA 7. MÉTOO MCCABE THIELE. udaeto: McCabe y Thiele ha desarrollado

Más detalles

(3 ) (6 ) 5 (3 x ) 5 81x. log (3 4) log 5 3log 5 5 (3log 5) y x x. cos 7 4 ( 1) 2 (3 ) 2 4

(3 ) (6 ) 5 (3 x ) 5 81x. log (3 4) log 5 3log 5 5 (3log 5) y x x. cos 7 4 ( 1) 2 (3 ) 2 4 E.T.S.I. Idustriales y Telecomuicació Curso 010-011 Tema : Fucioes reales de ua variable real Cálculo de derivadas Calcular la derivada primera de las siguietes fucioes: 1. y 5 1 6 6 y 5 ( ) (6 ) 5 5 5

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

Tema 5. APLICACIONES DE LAS DERIVADAS: REPRESENTACIÓN GRÁFICA DE CURVAS Y FÓRMULA DE TAYLOR

Tema 5. APLICACIONES DE LAS DERIVADAS: REPRESENTACIÓN GRÁFICA DE CURVAS Y FÓRMULA DE TAYLOR Tema. ALICACIONES DE LAS DERIVADAS: RERESENTACIÓN GRÁFICA DE CURVAS Y FÓRMULA DE TAYLOR Aplicacioes de la derivada primera El sigo de la derivada primera de ua fució permite coocer los itervalos de crecimieto

Más detalles

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568.

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568. Hoja de Probleas º Algebra. Hallar u úero cuadrado perfecto de cico cifras sabiedo que el producto de esas cico cifras es 568. Solució: Sea x 0 4 x 0 3 x 3 0 x 4 0 x 5 el úero que buscaos y sea a 0 b 0

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Cálculo de raíces de ecuaciones no lineales.

Cálculo de raíces de ecuaciones no lineales. 4 Cálculo de raíces de ecuacioes o lieales. Itroducció. La resolució de ecuacioes e ua variable es uo de los problemas clásicos de la aproimació umérica. Se trata de hallar ua raíz de ua ecuació de la

Más detalles

a n = Ejemplo: Representa las gráficas de las funciones f(x) = 1/x, g(x) = x 2 y h(x) =

a n = Ejemplo: Representa las gráficas de las funciones f(x) = 1/x, g(x) = x 2 y h(x) = TEMA 9: LÍMITE Y CONTINUIDAD DE UNA FUNCIÓN. 9. Cocepto de límite lateral. Límite. 9. Operacioes co fucioes covergetes. 9.3 Cálculo de límites. 9.4 Cotiuidad de ua fució. 9.5 Asítotas: Verticales, horizotales

Más detalles

UNIDAD 10.- DERIVADAS

UNIDAD 10.- DERIVADAS UNIDAD.- DERIVADAS. DERIVADA DE UNA EN UN PUNTO. DERIVADAS LATERALES Defiici.- Se llama derivada de ua fuci f ( e u puto de abscisa al siguiete ite si eiste: f ( f '( sigifica lo mismo. f (. Se suele represetar

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

Apellidos y Nombre: Aproximación lineal. dy f x dx

Apellidos y Nombre: Aproximación lineal. dy f x dx INGENIERÍA DE TELECOMUNICACIÓN HOJA 0 Aproximació lieal Defiició (Diferecial).- Sea y = f ( x) ua fució derivable e u itervalo abierto que cotiee al úmero x, - La diferecial de x es igual al icremeto de

Más detalles

Límites en el infinito y límites infinitos de funciones.

Límites en el infinito y límites infinitos de funciones. Límites e el ifiito y límites ifiitos de fucioes. 1 Calcula 2 Límite e el ifiito Cuado se calcula el límite de ua fució e el ifiito se trata de determiar la tedecia que tedrá la fució (los valores que

Más detalles

CLAUSURA ALGEBRAICA Y NÚMEROS COMPLEJOS

CLAUSURA ALGEBRAICA Y NÚMEROS COMPLEJOS Clausura algebraica y úmeros complejos CLAUSURA ALGEBRAICA Y NÚEROS COPLEJOS. Itroducció Nos pregutamos Porqué o podemos resolver ciertas ecuacioes poliómicas e u determiado campo de úmeros?. Geeralmete,

Más detalles

Métodos Numéricos. La solución es una relación funcional entre dos variables. No todas las ecuaciones diferenciales tienen solución analítica.

Métodos Numéricos. La solución es una relación funcional entre dos variables. No todas las ecuaciones diferenciales tienen solución analítica. Métodos Numéricos Métodos aalíticos Solució de ecuacioes difereciales Métodos Numéricos Métodos aalíticos: La solució es ua relació fucioal etre dos variables. No todas las ecuacioes difereciales tiee

Más detalles

Matemáticas Aplicadas a las Ciencias Sociales II. UNIDAD 5: Límites de funciones. Continuidad ACTIVIDADES INICIALES-PÁG.114

Matemáticas Aplicadas a las Ciencias Sociales II. UNIDAD 5: Límites de funciones. Continuidad ACTIVIDADES INICIALES-PÁG.114 UNIDAD : Líites de fucioes. Cotiuidad ACTIVIDADES INICIALES-PÁG.. E la fució y f, cuya gráfica aparece e el dibujo, calcula: f ; f ; f f ; f ; f f ; f ; f f ; f f ; f y f Asítotas verticales, horizotales

Más detalles

INGENIERÍA DE TELECOMUNICACIÓN PRÁCTICA 7

INGENIERÍA DE TELECOMUNICACIÓN PRÁCTICA 7 E esta práctica se aalizará la aproximació de ua ució mediate su poliomio de Taylor estimado esta aproximació. Los coceptos y resultados que se utilizará so los siguietes: Supogamos que ( x ) es ua ució

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 1 Conjuntos en C - Topología en C - Sucesiones de números complejos

MATEMATICAS ESPECIALES I PRACTICA 1 Conjuntos en C - Topología en C - Sucesiones de números complejos MATEMATICAS ESPECIALES I - 07 PRACTICA Cojutos e C - Topología e C - Sucesioes de úmeros complejos. Represetar e el plao complejo la familia de curvas defiidas por: a) Re( z ) = c b) Re(z ) = c c) Im(z)

Más detalles

Existen varios montajes experimentales que permiten la determinación del momento magnético. Aquí discutiremos tres de ellos.

Existen varios montajes experimentales que permiten la determinación del momento magnético. Aquí discutiremos tres de ellos. Solució Problea xiste varios otajes experietales que perite la deteriació del oeto agético. Aquí discutireos tres de ellos. 1) Atracció frotal etre iaes La figura uestra el otaje experietal que propoeos

Más detalles

CURSO DE GEOMETRÍA ANALÍTICA. Oscar Cardona Villegas Héctor Escobar Cadavid

CURSO DE GEOMETRÍA ANALÍTICA. Oscar Cardona Villegas Héctor Escobar Cadavid CURSO DE GEOMETRÍA ANAÍTICA Oscar Cardoa Villegas Héctor Escobar Cadavid UNIVERSIDAD PONTIFICIA BOIVARIANA ESCUEA DE INGENIERÍAS 06 MÓDUO VARIEDADES INEAES Esta uidad abarca el estudio de la líea recta

Más detalles

SISTEMAS DE ECUACIONES LINEALES: Igualación y Sustitución

SISTEMAS DE ECUACIONES LINEALES: Igualación y Sustitución INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0

Más detalles

EJERCICIOS RESUELTOS. t +

EJERCICIOS RESUELTOS. t + BXX5744_07 /6/09 4: Págia 49 EJERCICIOS RESUELTOS Calcula la tasa de variació media de la fució f() = + e los itervalos [, 0] y [0, ], aalizado el resultado obteido y la relació co la fució. La fució f()

Más detalles

Apéndice. A.1. Definición y notaciones.

Apéndice. A.1. Definición y notaciones. Apédice. Apédice A.1. Defiició y otacioes. Los polioios de Zerike so u cojuto ifiito de fucioes polióicas, ortogoales e el circulo de radio uidad. So uy útiles para represetar la fora del frete de oda

Más detalles

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN I. CONTENIDOS: 1. Regresió lieal simple.. Iterpretació de gráficas de regresió. 3. Cálculo de coeficiete de correlació. 4. Iterpretació del coeficiete de correlació.

Más detalles

CURSO DE GEOMETRÍA ANALÍTICA. Oscar Cardona Villegas Héctor Escobar Cadavid

CURSO DE GEOMETRÍA ANALÍTICA. Oscar Cardona Villegas Héctor Escobar Cadavid CURSO DE GEOMETRÍA ANAÍTICA Oscar Cardoa Villegas Héctor Escobar Cadavid UNIVERSIDAD PONTIFICIA BOIVARIANA ESCUEA DE INGENIERÍAS 6 MÓDUO VARIEDADES INEAES Esta uidad abarca el estudio de la líea recta

Más detalles

NÚMEROS COMPLEJOS. el conjunto de todos los pares ordenados

NÚMEROS COMPLEJOS. el conjunto de todos los pares ordenados NÚMEROS COMPLEJOS 0.- INTRODUCCIÓN Represetareos por reales: el cojuto de todos los pares ordeados Dicho cojuto se deoia plao cartesiao. xy, : xy, x, y de úeros Recuerda que sabeos suar pares ordeados

Más detalles

Capítulo 5. Oscilador armónico

Capítulo 5. Oscilador armónico Capítulo 5 Oscilador aróico 5 Oscilador aróico uidiesioal 5 Reescalaieto 5 Solució e series 53 Valores propios 54 Noralizació 55 Eleetos de atriz 5 Operadores de creació y de aiquilació 5 Ecuació de valores

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

Fórmula de Taylor. Si f es continua en [a,x y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) f(x) f(a) f '(c)(x a)

Fórmula de Taylor. Si f es continua en [a,x y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) f(x) f(a) f '(c)(x a) Aproimació de ua fució mediate u poliomio Cuado y=f tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio

Más detalles

TRABAJO DE GRUPO Series de potencias

TRABAJO DE GRUPO Series de potencias DPTO. MATEMÁTICA APLICADA FACULTAD DE INFORMÁTICA (UPM) TRABAJO DE GRUPO Series de potecias CÁLCULO II (Curso 20-202) MIEMBROS DEL GRUPO (por orde alfabético) Nota: Apellidos Nombre Este trabajo sobre

Más detalles

1.- En el dispositivo óptico de la figura inferior, la lente convergente tiene una distancia focal f 1 y la divergente f 2

1.- En el dispositivo óptico de la figura inferior, la lente convergente tiene una distancia focal f 1 y la divergente f 2 Óptica y otros.- E el dispositivo óptico de la igura ierior, la lete covergete tiee ua distacia ocal y la divergete h α a distacia ocal de es e valor absoluto ayor que. a distacia etre las letes coicide

Más detalles

1. INTRODUCCIÓN AL CONCEPTO DE LÍMITE

1. INTRODUCCIÓN AL CONCEPTO DE LÍMITE 1. INTRODUCCIÓN AL CONCEPTO DE LÍMITE 1. Cocepto de límite 1.1 Defiició de etoro o vecidad: Si a es u úmero real (supógase que a está e el eje X), etoces, u etoro o vecidad de a de radio es u itervalo

Más detalles

Lí mite de una funció n en un puntó

Lí mite de una funció n en un puntó Uidad 9. Límites, cotiuidad y ramas iiitas Lí mite de ua ució e u putó Matemáticas I - º Bachillerato Para apreder bie el cocepto de límite comezaremos co amiliarizaros co la siguiete termiología. c c

Más detalles

Propiedades generales de los radicales

Propiedades generales de los radicales Propiedades geerales de los radicales Cosiderarque,mykso úmeros aturales, además e y soúmerosrealespositivos. ( ) Propiedad : y y y y Propiedad : Matemáticas I Propiedades geerales de los radicales Propiedad

Más detalles

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con Curso -3 OBJETIVOS Objetivos Geerales Itroducir el cálculo de fucioes de ua variable como fudameto del aálisis ecoómico margial y los problemas de optimizació. Matemáticas Empresariales Doble Grado e ADE

Más detalles

Cód. Carrera: Área de Matemática Fecha: MODELO DE RESPUESTAS Objetivos 1 al 11.

Cód. Carrera: Área de Matemática Fecha: MODELO DE RESPUESTAS Objetivos 1 al 11. rueba Itegral Lapso 03-7-76-77 /0 Uiversidad Nacioal Abierta Matemática I (Cód. 7-76-77) icerrectorado Académico Cód. Carrera: 6-36-80-08- -60-6-6-63 Fecha: 0 0-0 MODELO DE RESUESTAS Objetivos al. OBJ

Más detalles

Material interactivo con teoría y ejercicios resueltos. Para acceder a ello deberá pulsar sobre los siguientes enlaces una vez dentro de la asignatura

Material interactivo con teoría y ejercicios resueltos. Para acceder a ello deberá pulsar sobre los siguientes enlaces una vez dentro de la asignatura E el Aula Virtual se ecuetra dispoible: Material iteractivo co teoría y ejercicios resueltos. Para acceder a ello deberá pulsar sobre los siguietes elaces ua vez detro de la asigatura Pagia Pricipal >Aputes>4.

Más detalles

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma: Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios

Más detalles

1. Relaciones de recurrencia homogéneas con coeficiente

1. Relaciones de recurrencia homogéneas con coeficiente 1. Relacioes de recurrecia homogéeas co coeficiete costate 1. Demuestra que la sucesió {a } es ua solució de la recurrecia a = a 1 + 2a 2 + 2 9 si a) a = + 2 b) a = 5( 1) + 2 c) a = 3( 1) + 2 + 2 d) a

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

A lo largo de este tema vamos a considerar que en conjunto ρν no contiene al elemento 0. Por tanto ρν={1, 2, 3, }.

A lo largo de este tema vamos a considerar que en conjunto ρν no contiene al elemento 0. Por tanto ρν={1, 2, 3, }. 1. SUCESIONES DE NÚMEROS REALES. A lo largo de este tea vaos a cosiderar que e cojuto ρν o cotiee al eleeto 0. Por tato ρν={1,, 3, }. DEF Llaareos sucesió de Núeros Reales a toda aplicació f: ρν ΙΡ. Es

Más detalles

ÁREA DE INGENIERÍA QUÍMICA Prof. Isidoro García García. Operaciones Básicas de Transferencia de Materia. Tema 4

ÁREA DE INGENIERÍA QUÍMICA Prof. Isidoro García García. Operaciones Básicas de Transferencia de Materia. Tema 4 ÁRE DE IGEIERÍ QUÍMIC Operacioes Básicas de Trasferecia de Materia Tea 4 Operacioes Básicas de Trasferecia de Materia ITRODUCCIÓ a aoría de las corrietes de u proceso quíico está costituidas por varios

Más detalles

Objetivos partir de su. nte de una función, Relacionar ASÍN CON CLA 11.4.

Objetivos partir de su. nte de una función, Relacionar ASÍN CON CLA 11.4. CONTENIDOS.- MAPA CONCEPTUAL DE LA UNIDAD....- CONCEPTO DE LÍMITE DE UNA FUNCIÓNN EN UN PUNTO....- LÍMITES LATERALES: CARACTERIZACIÓN....- LÍMITES Y OPERACIONES CON FUNCIONES: ÁLGEBRA DE LÍMITES... 5.-

Más detalles

Área de Matemáticas. Curso 2015/2016 RELACIÓN DE EJERCICIOS RESUELTOS TEMA 8 Geometría Analítica en el Plano

Área de Matemáticas. Curso 2015/2016 RELACIÓN DE EJERCICIOS RESUELTOS TEMA 8 Geometría Analítica en el Plano Área de Mateáticas. Curso 05/06 TEMA 8 Geoetría Aalítica e el Plao Ejercicio º a Escribe la ecuació de la recta r que pasa por los putos. b Obté la ecuació de la recta s que pasa por tiee pediete. c Halla

Más detalles

Límite de una función en un punto

Límite de una función en un punto Límite de ua ució e u puto Para apreder bie el cocepto de límite comezaremos co amiliarizaros co la siguiete termiología. c ( tiede a c por la izquierda ): toma valores cada vez más cercaos a c, pero meores

Más detalles

Cálculo II (0252) TEMA 6 SERIES DE POTENCIAS. Semestre

Cálculo II (0252) TEMA 6 SERIES DE POTENCIAS. Semestre Cálculo II (5) Semestre - TEMA 6 SERIES DE POTENCIAS Semestre - José Luis Quitero Julio Departameto de Matemática Aplicada UCV FIUCV CÁLCULO II (5) José Luis Quitero Las otas presetadas a cotiuació tiee

Más detalles

OPERACIONES CON POLINOMIOS.

OPERACIONES CON POLINOMIOS. OPERACIONES CON POLINOMIOS. EXPRESIONES ALGEBRAICAS. Ua epresió ateática que usa úeros o variables o abos para idicar productos o cocietes es u tério. Los térios,, (ab), so todos epresioes algebraicas.

Más detalles

CUADRATURA GAUSSIANA

CUADRATURA GAUSSIANA CUADRATURA GAUSSIANA Este método de basa e muestrear el itegrado de la fució cuya itegral se desea ecotrar, a valores que represeta raíces de poliomios ortogoales Los más populares de éstos so los poliomios

Más detalles