3.2. El método del «vecino más cercano»

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3.2. El método del «vecino más cercano»"

Transcripción

1 3.2. El método del «vecino más cercano» Disponemos de una tabla resumen de tipo T(n,p) Los elementos de T(n,p) presentan una estructura de grupo o de jerarquía de grupos encajados. Aplicamos las etapas ya vistas del proceso de clasificación : Primera etapa : Con una distancia d ij podemos evaluar la disimilaridad entre los objetos a clasificar. Podemos crear una tabla D(n,n), simétrica, que resume las distancias entre los n objetos a clasificar, comparados dos a dos. Suponemos que es aceptable considerar que la distancia entre dos clases que contienen un solo objeto cada una es igual a la distancia entre los objetos: d( {}{} x, y ) = d( x, y) " x, y ÎI Los términos diagonales de D(n,n) son nulos, puesto que, si d ij es una distancia : d( {}{} x, x ) = d( x, x) = 0 " x Î I d = d mínimo. Segunda etapa : Buscamos en la tabla D(n,n) el término extra-diagonal mínimo, es decir el valor ({}{} x, y ) ( x,y) Formamos una nueva clase que reagrupa esos dos objetos: { x} y { y }. Iteración : Se recomienza a partir de la primera etapa, pero ahora sólo con n - 1 objetos a comparar, puesto que una clase contiene ahora dos objetos. Programa PRESTA Eduardo CRIVISQUI Tr. N 22

2 Para calcular la Tabla D (n-1, n-1) correspondiente a la nueva situación debemos darnos un criterio para calcular la distancia entre una clase que contiene dos objetos y las clases restantes que sólo contienen un objeto. La estrategia de agregación responde a ese problema... La estrategia del «vecino más cercano» consiste en elegir como distancia entre la clase{ x ;y} y la clase { k } la más pequeña de las dos distancias siguientes: d ({}{} x, k ) o bien d( {}{} y, k ) En cada etapa t de iteración del proceso de agregación por el método del «vecino más cercano», la Tabla D(n-t, n-t) es construida con la siguiente distancia ultramétrica : d = Min ( ) d ; d ({ x,y}{, k} ) { x,k} { y,k } Ventaja del método : simplicidad de cálculo. No requiere el cálculo de la matriz D t (n-t, n-t) en cada etapa de agregación. Inconveniente del método : tiene tendencia a producir un «efecto de encadenamiento» Programa PRESTA Eduardo CRIVISQUI Tr. N 23

3 3.3. El método del «vecino más cercano» : un ejemplo numérico a) Tabla de Datos y Representación gráfica en R 2 Tabla T(n,p) Representación gráfica Programa PRESTA Eduardo CRIVISQUI Tr. N 24

4 b) Primera agregación Utilizando la distancia euclidiana, d = x - x 2 + y - y 2 = ; " ( i,j) ( i j) ( i j) i 1, K,n j = 1, K, n podemos calcular la matriz D 1 (6, 6) siguiente : " Primera agregación : Como la distancia más pequeña se verifica entre los objetos A y B, formamos la clase {A, B}. Representación gráfica de la primera agregación Dendrograma Programa PRESTA Eduardo CRIVISQUI Tr. N 25

5 c) Segunda agregación Utilizando la distancia ultramétrica del «vecino más cercano», calculamos la tabla D 2 (5, 5) siguiente : Segunda agregación : Dos pares de objetos presentan la distancia más pequeña :( E, F) y ((A, B), C). Formamos primero la clase{e, F}. Representación gráfica de la segunda agregación Dendrograma Programa PRESTA Eduardo CRIVISQUI Tr. N 26

6 d) Tercera agregación Utilizando la distancia ultramétrica del «vecino más cercano», calculamos la tabla D 3 (4, 4) siguiente : Tercera agregación : Como la distancia más pequeña se verifica entre los objetos (A, B) y (C), formamos la clase {A, B, C}. Representación gráfica de la tercera agregación Dendrograma Programa PRESTA Eduardo CRIVISQUI Tr. N 27

7 e) Cuarta agregación Utilizando la distancia ultramétrica del «vecino más cercano», calculamos la tabla D 4 (3, 3) siguiente : Cuarta agregación : Dos pares de objetos presentan la distancia más pequeña :( {A, B, C} y {E, F}) y ({E, F} y {D}). Formamos primero la clase{a, B, C, E, F} : Representación gráfica de la cuarta agregación Dendrograma Programa PRESTA Eduardo CRIVISQUI Tr. N 28

8 f) Quinta agregación Utilizando la distancia ultramétrica del «vecino más cercano», calculamos la tabla D 5 (2, 2) siguiente : Quinta agregación : Se agrupan por último los objetos {A,B,C, E, F} y {D}, formando la clase {A,B,C,E,F,D} que reúne todos los objetos de T(n, p) Representación gráfica de la quinta agregación Dendrograma final Programa PRESTA Eduardo CRIVISQUI Tr. N 29

9 g) Resultados de la clasificación Descripción de las clases encajadas sucesivas Histograma de índices de nivel Programa PRESTA Eduardo CRIVISQUI Tr. N 30

I. PRIMERA PARTE. Introducción a los métodos de clasificación. Programa PRESTA Eduardo CRIVISQUI Tr. N 1

I. PRIMERA PARTE. Introducción a los métodos de clasificación. Programa PRESTA Eduardo CRIVISQUI Tr. N 1 I. PRIMERA PARTE Introucción a los métoos e clasificación Programa PRESTA - 1999 - Euaro CRIVISQUI Tr. N 1 1. QUÉ SIGNIFICA CLASIFICAR UN CONJUNTO DE UNIDADES DE OBSERVACIÓN? Aplicar un métoo e clasificación

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

2. Formas cuadráticas. Expresiones diagonales. Clasificación respecto a su signo.

2. Formas cuadráticas. Expresiones diagonales. Clasificación respecto a su signo. 2. Formas cuadráticas. Expresiones diagonales. Clasificación respecto a su signo. 2.1 Formas cuadráticas. Expresión matricial y analítica. Expresiones diagonales. Definición 2.1 (Expresión matricial) Una

Más detalles

Capítulo 5. Escalado Multidimensional 5.1. ESCALADO MÉTRICO

Capítulo 5. Escalado Multidimensional 5.1. ESCALADO MÉTRICO Capítulo 5 Escalado Multidimensional 5.1. ESCALADO MÉTRICO Dada una matriz de distancias D = (d ij ) o de disimilaridades = (δ ij ) entre n objetos, el escalado métrico consiste en encontrar las coordenadas

Más detalles

FACTORIAL DE CORRESPONDENCIAS SIMPLES Y MÚLTIPLES CRIVISQ

FACTORIAL DE CORRESPONDENCIAS SIMPLES Y MÚLTIPLES CRIVISQ PRESENTACIÓN DEL MÉTODO DE ANÁLISIS FACTORIAL DE CORRESPONDENCIAS SIMPLES Y MÚLTIPLES EDU DUARDO CRIVISQ RIVISQUI PRESENTACIÓN DE LOS MÉTODOS DE ANÁLISIS FACTORIAL DE CORRESPONDENCIAS SIMPLES Y MÚLTIPLES

Más detalles

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 4 Métodos iterativos para sistemas de ecuaciones

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 4 Métodos iterativos para sistemas de ecuaciones ETS Minas: Métodos Matemáticos Soluciones Tema Métodos iterativos para sistemas de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

Métodos Numéricos: Ejercicios resueltos

Métodos Numéricos: Ejercicios resueltos Métodos Numéricos: Ejercicios resueltos Tema 6: Resolución aproximada de sistemas de ecuaciones lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 22 MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 3, Opción B Junio, Ejercicio 4, Opción A Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio

Más detalles

Definición de grupos: clasificación. Capítulos 10 y 11 de McCune y Grace 2002

Definición de grupos: clasificación. Capítulos 10 y 11 de McCune y Grace 2002 Definición de grupos: clasificación Capítulos 10 y 11 de McCune y Grace 2002 Clasificar Proceso natural humano para interpretar el mundo Pero estamos acostumbrados a sólo observar pocas dimensiones Más

Más detalles

Matrices y sistemas de ecuaciones lineales. Autovalores y autovectores.

Matrices y sistemas de ecuaciones lineales. Autovalores y autovectores. Tema 5 Matrices y sistemas de ecuaciones lineales Autovalores y autovectores 5 Introducción Una matriz es una disposición ordenada de elementos de la forma: a a a m a a a m a n a n a nm Sus filas son las

Más detalles

E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 4 Métodos iterativos para sistemas de ecuaciones

E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 4 Métodos iterativos para sistemas de ecuaciones ETS Minas: Métodos Matemáticos Ejercicios Tema Métodos iterativos para sistemas de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

CLASIFICACIÓN AFÍN DE CÓNICAS

CLASIFICACIÓN AFÍN DE CÓNICAS Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS CLASIFICACIÓN AFÍN DE CÓNICAS Sea E un R-espacio vectorial de dimensión. Sean E = e 1, e un plano vectorial de E y e 0 un

Más detalles

A.M. Urbano, R. Cantó, B. Ricarte Institut de Matemàtica Multidisciplinar, Universitat Politècnica de València, E Valencia

A.M. Urbano, R. Cantó, B. Ricarte Institut de Matemàtica Multidisciplinar, Universitat Politècnica de València, E Valencia Factorización de Cholesky de matrices singulares A.M. Urbano, R. Cantó, B. Ricarte Institut de Matemàtica Multidisciplinar, Universitat Politècnica de València, E-460 Valencia amurbano@mat.upv.es,rcanto@mat.upv.es,bearibe@mat.upv.es,

Más detalles

Problemas Sesión 5: Matrices I

Problemas Sesión 5: Matrices I Problemas Sesión 5: Matrices I P) Sean A 2 3 6 sin embargo B C. ; B 3 8 2 3 y C 5 2 2. Comprueba que AB AC y que El resultado de calcular los productos es: AB AC 7 2 2 6 P2) Considera las matrices A y

Más detalles

6.3.4. 4 Etapa : Caracterización de la partición P 4 de los n individuos de la tabla T(22, 3)

6.3.4. 4 Etapa : Caracterización de la partición P 4 de los n individuos de la tabla T(22, 3) 6.3.4. 4 Etapa : Caracterización de la partición P 4 de los n individuos de la tabla T(22, 3) - Resultados y conclusiones Las tres variables contribuyen significativamente a caracterizar las clases de

Más detalles

E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 5: Valores y vectores propios

E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 5: Valores y vectores propios E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 5: Valores y vectores propios Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso

Más detalles

Matemáticas Empresariales II. Formas cuadráticas

Matemáticas Empresariales II. Formas cuadráticas Matemáticas Empresariales II Lección 7 Formas cuadráticas Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales II 1 / 17 Definición de Formas cuadráticas Sea V

Más detalles

Traza de una Matriz Cuadrada

Traza de una Matriz Cuadrada Traza de una Matriz Cuadrada Departamento de Matemáticas, CSI/ITESM 10 de septiembre de 2008 Índice 7.1. Definiciones y propiedades básicas.................................. 1 7.2. La traza de un producto........................................

Más detalles

Resolverlo mediante el método de Gauss con aritmética exacta y sin pivoteo.

Resolverlo mediante el método de Gauss con aritmética exacta y sin pivoteo. Asignatura Cálculo Numérico Página de Sistemas Lineales lineales (Gauss con variantes y estudio iterativo) Examen Diciembre 000 Ejercicio. Dado el sistema lineal 4x+ y+ z = 9 x+ 4y z = 5, x+ y z = 9 (a)

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 3, Opción A Reserva, Ejercicio

Más detalles

DETERMINANTES. Página 77 REFLEXIONA Y RESUELVE. Determinantes de orden 2

DETERMINANTES. Página 77 REFLEXIONA Y RESUELVE. Determinantes de orden 2 DETERMINANTES Página 77 REFLEXIONA Y RESUELVE Determinantes de orden 2 Resuelve los siguientes sistemas y calcula el determinante de cada matriz de coeficientes: 2x + y = 29 5x y = 8 a b x y = 5 0x + 6y

Más detalles

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Método de Jacobi. Juan Manuel Rodríguez Prieto

Método de Jacobi. Juan Manuel Rodríguez Prieto Juan Manuel Rodríguez Prieto Objetivos resolver un sistema de ecuaciones de la forma Ax en qué situaciones los métodos iterativos son más convenientes a los métodos directos b 5 2 1 1 4 x La solución del

Más detalles

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2 CONJUNTO R n.- Considerar los vectores u = (, -3, ) y v = (, -, ) de 3 : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué valores de x es el

Más detalles

Ortogonalización de Gram Schmidt

Ortogonalización de Gram Schmidt Ortogonalización de Gram Schmidt Objetivos. Estudiar el proceso de ortogonalización de Gram Schmidt que permite construir de una lista arbitraria de vectores a,..., a m una lista ortogonal b,..., b m que

Más detalles

Matrices simétricas y antisimétricas

Matrices simétricas y antisimétricas Matrices simétricas y antisimétricas Ejercicios Objetivos Definir matrices simétricas y antisimétricas estudiar sus propiedades básicas Requisitos Matriz transpuesta propiedades de la matriz transpuesta

Más detalles

MATRICES OPERACIONES BÁSICAS CON MATRICES

MATRICES OPERACIONES BÁSICAS CON MATRICES MATRICES OPERACIONES BÁSICAS CON MATRICES ANTECEDENTES En el año 1850, fueron introducidas por J.J. Sylvester El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A.

Más detalles

Clase No. 13: Factorización QR MAT 251. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 16

Clase No. 13: Factorización QR MAT 251. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 16 Clase No 13: Factorización QR MAT 251 Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) 03102011 1 / 16 Factorización QR Sea A R m n con m n La factorización QR de A es A = QR = [Q 1 Q 2 ] R1 = Q 0 1 R

Más detalles

Ejercicios Resueltos Tema 4

Ejercicios Resueltos Tema 4 Ejercicio 1 Estudiar si la aplicación f : R 2 R 2 R definida por f ((x 1, x 2 ), (y 1, y 2 )) = x 1 y 1 3x 1 x 2 es una forma bilineal. Solución. No es forma bilineal ya que y f (α(x 1, x 2 ) + β(x 1,

Más detalles

Análisis de Conglomerados

Análisis de Conglomerados Diplomatura en Estadística 1 Diplomatura en Estadística 2 Análisis de Conglomerados (Cluster analysis) Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid Antecedente histórico Las

Más detalles

Matemáticas I Grado de Administración y Dirección de Empresas Examen de Febrero Curso 2011/ ?

Matemáticas I Grado de Administración y Dirección de Empresas Examen de Febrero Curso 2011/ ? Matemáticas I Grado de Administración y Dirección de Empresas Examen de Febrero Curso 011/1 1) (1 punto) Dado el subespacio vectorial,,,,,,,,,,, a) Obtener la dimensión, unas ecuaciones implícitas, unas

Más detalles

UNIDAD 3 : ELEMENTOS GEOMÉTRICOS

UNIDAD 3 : ELEMENTOS GEOMÉTRICOS UNIDAD 3 : ELEMENTOS GEOMÉTRICOS 3.A.1 Características de un lugar geométrico 3.A ELEMENTOS DE GEOMETRÍA PLANA Se denomina lugar geométrico a todo conjunto de puntos que cumplen una misma propiedad o que

Más detalles

Ecuaciones de recurrencia. Abraham Sánchez López FCC/BUAP Grupo MOVIS

Ecuaciones de recurrencia. Abraham Sánchez López FCC/BUAP Grupo MOVIS Ecuaciones de recurrencia Abraham Sánchez López FCC/BUAP Grupo MOVIS Introducción, I Cuando se analiza la complejidad de un algoritmo recursivo, es frecuente que aparezcan funciones de costo también recursivas,

Más detalles

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II)

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II) Método de diferencias finitas para ecuaciones diferenciales parciales elípticas (Parte II) Métodos numéricos para sistemas lineales Solución numérica de EDPs requiere resolver sistemas de ecuaciones lineales

Más detalles

Al consejero A no le gusta ninguno de sus colegas como presidente. Dos consejeros (C y E) están de acuerdo en los mismos candidatos (B, C y D).

Al consejero A no le gusta ninguno de sus colegas como presidente. Dos consejeros (C y E) están de acuerdo en los mismos candidatos (B, C y D). ÁLGEBRA DE MATRICE Página 48 Ayudándote de la tabla... De la tabla podemos deducir muchas cosas: Al consejero A no le gusta ninguno de sus colegas como presidente. B solo tiene un candidato el C. Dos consejeros

Más detalles

Capítulo 3. Números Índice Introducción Números índices simples

Capítulo 3. Números Índice Introducción Números índices simples Capítulo 3 Números Índice 31 Introducción En temas anteriores se ha tratado de caracterizar la distribución de una o más variables mediante una serie de medidas (posición, dispersión, ) En este tema se

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 1 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio

Más detalles

Solución de sistemas de ecuaciones lineales: Métodos de Jácobi y Gauss-Seidel

Solución de sistemas de ecuaciones lineales: Métodos de Jácobi y Gauss-Seidel Solución de sistemas de ecuaciones lineales: Métodos de Jácobi y Gauss-Seidel Ing Jesús Javier Cortés Rosas M en A Miguel Eduardo González Cárdenas M en A Víctor D Pinilla Morán Facultad de Ingeniería,

Más detalles

Cap 3: Álgebra lineal

Cap 3: Álgebra lineal Universidad Nacional de Ingeniería Facultad de Ciencias Cálculo Numérico 1 IF321 Cap 3: Álgebra lineal Prof: J. Solano 2018-I INTRODUCCION Aqui trabjaremos con operaciones basicas con matrices, tales como

Más detalles

Parte 4. Métodos iterativos para la resolución de sistemas de ecuaciones lineales

Parte 4. Métodos iterativos para la resolución de sistemas de ecuaciones lineales Parte 4. Métodos iterativos para la resolución de sistemas de ecuaciones lineales Gustavo Montero Escuela Técnica Superior de Ingenieros Industriales Universidad de Las Palmas de Gran Canaria Curso 2006-2007

Más detalles

MATRICES UNIDAD 2. Página 50

MATRICES UNIDAD 2. Página 50 UNIDAD MATRICE Página 50 1. A tres amigos, M, N, P, se les pide que contesten a lo siguiente: Crees que alguno de vosotros aprobará la selectividad? Di quiénes. Estas son las respuestas: M opina que él

Más detalles

1.2 Valores y vectores propios. Método de las potencias y Rayleigh.

1.2 Valores y vectores propios. Método de las potencias y Rayleigh. 20 Prelininares. 1.2 Valores y vectores propios. Método de las potencias y Rayleigh. 1.2.1 Cálculo del Polinomio Caracterstico: ALGORITMO DE SOURIAU. ENTRADA: la matriz A 1 = A, p 1 = traza(a 1 ), n =

Más detalles

y C= determinar la matriz X que verifica la ecuación matricial A B X=C X+I, siendo I =

y C= determinar la matriz X que verifica la ecuación matricial A B X=C X+I, siendo I = EJERCICIOS: TEMA 1: MATRICES. 1º/ Dadas las matrices: A= 2 1 1 0 1 1 1 1, B= 2 0 3 1 y C= 2 1 0 1 determinar la matriz X que verifica la ecuación matricial A B X=C X+I, siendo I = 1 0 0 1. 2º/ Determinar

Más detalles

DIAGONALIZACIÓN DE MATRICES

DIAGONALIZACIÓN DE MATRICES Tema 2 DIAGONALIZACIÓN DE MATRICES 2.1. Introducción El álgebra matricial proporciona herramientas elementales para simplificar y resolver problemas donde intervienen un número elevado de datos. El siguiente

Más detalles

Caminos y Flujos optimales. 2da y 3er clase 2007

Caminos y Flujos optimales. 2da y 3er clase 2007 Caminos y Flujos optimales 2da y 3er clase 2007 ESQUELETOS OPTIMALES (mínimo) Esqueleto de G =(X,U) es un subgrafo que es un árbol y que contiene todos los vértices de G. Esqueleto Mínimo de G = (X, U,

Más detalles

TEST DE DETERMINANTES

TEST DE DETERMINANTES Página 1 de 7 TEST DE DETERMINANTES 1 Si A es una matriz cuadrada de orden 3 con A = -2, a qué es igual -A? A -2 B 2 C 0 D -6 2 A -144 B 44 C 88 D -31 3 Indicar qué igualdad es falsa: A B C D 4 A -54 B

Más detalles

Tema 1: Interpolación. Cá álculo umérico

Tema 1: Interpolación. Cá álculo umérico Tema : Interpolación Problema Dada una nube de puntos del plano Interpolación polinomial. Polinomios de Lagrange: cota del error. Método de Newton: diferencias divididas y finitas. se pretende encontrar

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC1003 Relaciones entre Conjuntos: Propiedades Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Relaciones entre Conjuntos: Propiedades Matemáticas Discretas - p.

Más detalles

Guía. Álgebra III. Examen parcial I. Determinantes. Formas cuadráticas.

Guía. Álgebra III. Examen parcial I. Determinantes. Formas cuadráticas. Guía. Álgebra III. Examen parcial I. Determinantes. Formas cuadráticas. Teoremas con demostraciones que se pueden incluir en el examen: 1. Teorema del determinante de la matriz transpuesta. 2. Propiedad

Más detalles

Universidad Nacional de Ingeniería Facultad de Ciencias. Física Computacional CC063. Algebra Lineal. Prof: J. Solano 2012-I

Universidad Nacional de Ingeniería Facultad de Ciencias. Física Computacional CC063. Algebra Lineal. Prof: J. Solano 2012-I Universidad Nacional de Ingeniería Facultad de Ciencias Física Computacional CC063 Algebra Lineal Prof: J. Solano 2012-I Introduccion Aqui trabjaremos con operaciones basicas con matrices, tales como solucion

Más detalles

Parte 5. Métodos iterativos para la resolución de sistemas de ecuaciones no lineales

Parte 5. Métodos iterativos para la resolución de sistemas de ecuaciones no lineales Parte 5. Métodos iterativos para la resolución de sistemas de ecuaciones no lineales Gustavo Montero Escuela Técnica Superior de Ingenieros Industriales Universidad de Las Palmas de Gran Canaria Curso

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES CONCEPTO MATRICES Se llama matriz de orden (dimensión) m n a un conjunto de m n elementos dispuestos en m filas y n columnas Se representa por A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn j=1,2,,n

Más detalles

SISTEMA DE ECUACIONES LINEALES Y NO LINEALES

SISTEMA DE ECUACIONES LINEALES Y NO LINEALES TEMA N o SISTEMA DE ECUACIONES LINEALES Y NO LINEALES SISTEMA DE ECUACIONES LINEALES Los metodos de resolucion de sistemas de ecuaciones lineales se dividen en dos grupos: a) MÉTODOS EXACTOS. Son algoritmos

Más detalles

Tema 6 Extensiones y aplicaciones (Máquinas de vectores soporte, SVM)

Tema 6 Extensiones y aplicaciones (Máquinas de vectores soporte, SVM) Tema 6 Extensiones y aplicaciones (Máquinas de vectores soporte, SVM) José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 6 El problema de clasificación supervisada:

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 8 de Septiembre de 23 25 puntos Dado el problema lineal máx x + x 2 x 3 sa x + x 2 + x 3 2 2x x 2 x 3 2 x, se pide

Más detalles

Conjuntos de Vectores y Matrices Ortogonales

Conjuntos de Vectores y Matrices Ortogonales Conjuntos de Vectores y Matrices Ortogonales Departamento de Matemáticas, CCIR/ITESM 28 de junio de 2011 Índice 21.1.Introducción............................................... 1 21.2.Producto interno............................................

Más detalles

G. SERRANO SOTELO. H = e 0 + E

G. SERRANO SOTELO. H = e 0 + E CLASIFICACIÓN AFÍN DE CÓNICAS Y CUÁDRICAS G. SERRANO SOTELO 1. Cuádricas en un hiperplano afín Sea E un R-espacio vectorial de dimensión n +1. Sean E = e 1,...,e n un hiperplano vectorial de E y e un vector

Más detalles

Cónicas. Clasificación.

Cónicas. Clasificación. Tema 7 Cónicas. Clasificación. Desde el punto de vista algebraico una cónica es una ecuación de segundo grado en las variables x, y. De ese modo, la ecuación general de una cónica viene dada por una expresión

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

Tema 5: Determinantes.

Tema 5: Determinantes. Tema 5: Determinantes. 1. El grupo simétrico. Definición. Una permutación del conjunto {1,..., n} es una aplicación biyectiva de {1,..., n} en si mismo. Se define el conjunto Σ n = {f : {1,..., n} {1,...,

Más detalles

Problemas Tema 8 Solución a problemas sobre Determinantes - Hoja 07 - Todos resueltos

Problemas Tema 8 Solución a problemas sobre Determinantes - Hoja 07 - Todos resueltos Asignatura: Matemáticas II ºBachillerato página 1/8 Problemas Tema 8 Solución a problemas sobre Determinantes - Hoja 07 - Todos resueltos Hoja 7. Problema 1 1. Sea A=( 1 1 1 1. Calcula: a A 1 b (5A 1 c

Más detalles

Álgebra Lineal - Grado de Estadística. Examen final 26 de junio de 2013 APELLIDOS, NOMBRE:

Álgebra Lineal - Grado de Estadística. Examen final 26 de junio de 2013 APELLIDOS, NOMBRE: Álgebra Lineal - Grado de Estadística Examen final de junio de APELLIDOS, NOMBRE: DNI: Firma Primer parcial Ejercicio ( Sea A una matriz simétrica definida positiva de orden n y v R n Pruebe que la matriz

Más detalles

MATRICES Y DETERMINANTES.

MATRICES Y DETERMINANTES. MATRICES Y DETERMINANTES. Estas a punto de entrar en el maravilloso mundo de las matrices y un carajo! Intenta seguirme. Una matriz es una tabla de números ordenados de la manera siguiente. Las matrices

Más detalles

Química Cuántica I Formas cuadráticas

Química Cuántica I Formas cuadráticas Formas cuadráticas/jesús Hernández Trujillo p. 1/16 Química Cuántica I Formas cuadráticas Prof. Jesús Hernández Trujillo Facultad de Química, UNAM Formas cuadráticas/jesús Hernández Trujillo p. 2/16 Ecuación

Más detalles

MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN

MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Teoría

Más detalles

Matrices, determinantes y sistemas de ecuaciones lineales

Matrices, determinantes y sistemas de ecuaciones lineales Matrices, determinantes y sistemas de ecuaciones lineales David Ariza-Ruiz 10 de octubre de 2012 1 Matrices Una matriz es una tabla numérica rectangular de m filas y n columnas dispuesta de la siguiente

Más detalles

PRESENTACIÓN DE LOS MÉTODOS DE CLASIFICACIÓN. Eduardo CRIVISQUI

PRESENTACIÓN DE LOS MÉTODOS DE CLASIFICACIÓN. Eduardo CRIVISQUI PRESENTACIÓN DE LOS MÉTODOS DE CLASIFICACIÓN Eduardo CRIVISQUI ADVERTENCIA SÓLO EL CONOCIMIENTO DE LAS PROPIEDADES LÓGICAS DE LOS MÉTODOS ESTADÍSTICOS PERMITE EVITAR EL EMPLEO «A CIEGAS» DE LOS MISMOS.

Más detalles

MATRICES Y SISTEMAS DE ECUACIONES

MATRICES Y SISTEMAS DE ECUACIONES MATRICES Y SISTEMAS DE ECUACIONES Definición Una matriz real de orden m n es una tabla ordenada de m n números reales a 11 a 12 a 1n a A = 21 a 22 a 2n a m1 a m2 a mn en la cual las líneas horizontales

Más detalles

Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se denomina

Más detalles

Redes neuronales Back Propagation. Enrique Calot 4 de octubre de 2009

Redes neuronales Back Propagation. Enrique Calot 4 de octubre de 2009 Redes neuronales Back Propagation Enrique Calot 4 de octubre de 2009 1 1. Introducción Una red neuronal de tipo back propagation permite aprender mediante un conjunto de ejemplo (entrada-salida) comunmente

Más detalles

Capítulo 2. Medidas Estadísticas Básicas Medidas estadísticas poblacionales

Capítulo 2. Medidas Estadísticas Básicas Medidas estadísticas poblacionales Capítulo 2 Medidas Estadísticas Básicas 2.1. Medidas estadísticas poblacionales Sea X una variable aleatoria con función de probabilidad p(x) si es discreta, o función de densidad f(x) si es continua.

Más detalles

Matemáticas Empresariales II. Continuidad y Derivabilidad

Matemáticas Empresariales II. Continuidad y Derivabilidad Matemáticas Empresariales II Lección 9 Continuidad y Derivabilidad Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales II 1 / 25 Continuidad Sea la función f :

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 s de Vectores y Matrices es Departamento de Matemáticas ITESM s de Vectores y Matrices es Álgebra Lineal - p. 1/44 En esta lectura veremos conjuntos y matrices ortogonales. Primero

Más detalles

Francisco J. Hernández López

Francisco J. Hernández López Francisco J. Hernández López fcoj23@cimat.mx Estructura de datos no lineales donde cada componente o nodo puede tener uno o más predecesores (a diferencia de los árboles) y sucesores Un grafo esta formado

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

Ing. Cecilia B. Sánchez UTN FRC 2002 ENCAMINAMIENTO

Ing. Cecilia B. Sánchez UTN FRC 2002 ENCAMINAMIENTO ENCAMINAMIENTO!"Es una de las funciones principales de la capa de red!"se representa con la teoría de grafos!"objetivo: búsqueda de rutas desde un punto origen a un destino, satisfaciendo una serie de

Más detalles

Sistema de ecuaciones lineales

Sistema de ecuaciones lineales 1 El sistema de ecuaciones lineales Sistema de ecuaciones lineales puede ser escrito en forma matricial como, donde: es llamada matriz de los coeficientes (reales) del sistema es el vector de las incógnitas

Más detalles

Colegio San Agustín (Santander) Página 1

Colegio San Agustín (Santander) Página 1 Colegio San Agustín (Santander Página OPERACIONES CON MATRICES Dadas las matrices A= ( B= ( C= ( a Calcula (A+B C t b Comprueba que (A+B C t = AC t +BC t a (A+B C t = ( ( = ( b AC t +BC t = ( ( + ( ( =

Más detalles

Factorización QR Método iterativo de Jacobi

Factorización QR Método iterativo de Jacobi Clase No. 13: MAT 251 Factorización QR Método iterativo de Jacobi Dr. Alonso Ramírez Manzanares CIMAT A.C. e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/ Dr. Joaquín Peña Acevedo CIMAT

Más detalles

Tema 1: MATRICES. OPERACIONES CON MATRICES

Tema 1: MATRICES. OPERACIONES CON MATRICES Tema 1: MATRICES. OPERACIONES CON MATRICES 1. DEFINICIÓN Y TIPO DE MATRICES DEFINICIÓN. Una matriz es un conjunto de números reales dispuestos en filas y columnas. Si en ese conjunto hay m n números escritos

Más detalles

ELEMENTOS DE ALGEBRA LINEAL

ELEMENTOS DE ALGEBRA LINEAL ELEMENTOS DE ALGEBRA LINEAL Matriz Una matriz de orden o dimensión n x p es una ordenación rectangular de elementos dispuestos en n filas y p columnas de la siguiente forma: a11 a1 a1p a1 a a p A an1 an

Más detalles

TEMA III: DIAGONALIZACIÓN.

TEMA III: DIAGONALIZACIÓN. TEMA III: DIAGONALIZACIÓN. OBJETIVOS: Generales: 1. Captar el motivo que justifica el problema de la diagonalización de endomorfismos. 2. Resolver y aplicar dicho problema cuando sea posible. Específicos:

Más detalles

Práctica 8 Resolución de ecuaciones y sistemas de ecuaciones con Mathematica

Práctica 8 Resolución de ecuaciones y sistemas de ecuaciones con Mathematica Práctica 8 Resolución de ecuaciones y sistemas de ecuaciones con Mathematica Resolver una ecuación o un sistema de ecuaciones es un problema que se presenta con mucha frecuencia en matemáticas. En esta

Más detalles

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Matriz Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n A = a i1 a ij a in a m1 a

Más detalles

MATRICES. 2º Bachillerato. Se llama matriz a una disposición rectangular de números reales, a los cuales se les denomina elementos de la matriz.

MATRICES. 2º Bachillerato. Se llama matriz a una disposición rectangular de números reales, a los cuales se les denomina elementos de la matriz. Concepto de matriz. Igualdad de matrices MATRICES 2º Bachillerato Concepto de matriz. Igualdad de matrices Concepto de matriz. Igualdad de matrices Se llama matriz a una disposición rectangular de números

Más detalles

Contenido. 1 Definiciones y propiedades. 2. Método de la potencia. 3. Método de la potencia inversa. 4. Método de la potencia inversa desplazada

Contenido. 1 Definiciones y propiedades. 2. Método de la potencia. 3. Método de la potencia inversa. 4. Método de la potencia inversa desplazada ETS Minas: Métodos Matemáticos Resumen y ejemplos Tema 5: Valores y vectores propios Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Octubre

Más detalles

Estadística Descriptiva 2da parte

Estadística Descriptiva 2da parte Universidad Nacional de Mar del Plata Facultad de Ingeniería Estadística Descriptiva 2da parte 2 Cuatrimestre 2018 COMISIÓN :1. Prof. Dr. Juan Ignacio Pastore. Qué es la estadística? El contenido de la

Más detalles

Introducción a la optimización con algoritmos. Ejercicios. 0 2 f(x + t(y x))(y x)dt. J(x + t(y x))(y x)dt siendo J la matriz Jacobiana de F.

Introducción a la optimización con algoritmos. Ejercicios. 0 2 f(x + t(y x))(y x)dt. J(x + t(y x))(y x)dt siendo J la matriz Jacobiana de F. Introducción a la optimización con algoritmos Ejercicios Preliminares 1. Demostrar que si f C 2 (IR n ), f : IR n IR entonces f(y) f(x) = 1 0 2 f(x + t(y x))(y x)dt. 2. Demostrar que si F C 1 (IR n ),

Más detalles

Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria.

Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria. Dualidad 1 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. Condiciones de holgura complementaria. 6 Solución dual óptima en la tabla. 7 Interpretación

Más detalles

Tema 2.- Formas Cuadráticas.

Tema 2.- Formas Cuadráticas. Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas

Más detalles

Eigenvalores y eigenvectores. Método de la potencia

Eigenvalores y eigenvectores. Método de la potencia Clase No. 12: MAT 251 Eigenvalores y eigenvectores. Método de la potencia Dr. Alonso Ramírez Manzanares CIMAT A.C. e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/ Dr. Joaquín Peña Acevedo

Más detalles

Guía de Matrices 2i, para i = j

Guía de Matrices 2i, para i = j Wilson Herrera Guía de Matrices { i, para i = j. Escribir la matriz [a ij ] x si a ij = j, para i j. 0, para i < j. Escribir la matriz [a ij ] x si a ij =, para i = j, para i > j.. Escribir la matriz [i

Más detalles

Matrices 1. Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Matrices 1. Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Matrices 1 Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se

Más detalles