INTERVALOS DE CONFIANZA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INTERVALOS DE CONFIANZA"

Transcripción

1 Gestió Aeroáutica: Estadística Teórica Facultad Ciecias Ecoómicas y Empresariales Departameto de Ecoomía Aplicada Profesor: Satiago de la Fuete Ferádez NTERVALOS DE CONFANZA

2 Gestió Aeroáutica: Estadística Teórica Facultad Ciecias Ecoómicas y Empresariales Departameto de Ecoomía Aplicada Profesor: Satiago de la Fuete Ferádez NTERVALOS DE CONFANZA a) tervalo de cofiaza para la media de ua distribució ormal N(μ, σ) de variaza coocida σ ( ) z b) tervalo de cofiaza para la media de ua distribució ormal N(μ, σ) de variaza descoocida σ Muestras grades 30 ( ) z ŝ Muestras pequeñas 30 ( ) t ; ŝ c) tervalo de cofiaza para la variaza ( ) ()s ˆ ; ()sˆ ; ; σ de ua distribució ormal d) tervalo de cofiaza para la diferecia de medias de dos distribucioes ormales Las variazas poblacioes y so coocidas ( ) (y) z E todos los itervalos de cofiaza ŝ i ( ) i es la cuasivariaza muestral. Las variazas poblacioes y so descoocidas: - Caso e que la suma ( ) 30 co sˆ sˆ ( ) (y) z

3 - Caso e que los tamaños muestrales so pequeños ( ) 30 y las variazas so descoocidas, pero iguales ( ): ˆ ( ) (y) t ;.s p. ŝ p es la media poderada de las cuasivariazas muestrales: ŝ ( )s ˆ ( )sˆ p - Caso e que los tamaños muestrales so pequeños ( ) 30 y las variazas so descoocidas y distitas ( ): sˆ sˆ ( ) (y) t ; f f es la aproimació de Welch: sˆ sˆ f (sˆ (sˆ ) ) Cuado el itervalo cubre el 0 o hay diferecia sigificativa etre las medias poblacioales. e) tervalo de cofiaza para la razó de variazas de dos poblacioes ormales sˆ sˆ sˆ sˆ ( ) ; F ; (), () F ( ); (), () Cuado el itervalo cubre el o hay diferecia sigificativa etre las variazas poblacioales. Hay que cosiderar la relació: F ;, F ( );, f) tervalo de cofiaza para el parámetro p de ua distribució biomial de parámetros, p, B(, p) (p) pˆ z p( ˆ p) ˆ

4 g) tervalo de cofiaza para la diferecia de parámetros (p p ) de dos distribucioes biomiales p ˆ(p ˆ) p ˆ (p ˆ) ˆ ˆ (pp ) (pp ) z h) tervalo de cofiaza para el parámetro de ua distribució de Poisso ( ) ˆ z ˆ i) tervalo de cofiaza para la diferecia de datos apareados Para muestras grades 30 d z ŝ d i i i ˆ i d i i i d d d s (d d) Para muestras pequeñas 30 d t, ( ) ŝ d 3

5 CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA..- El peso (e gramos) de las cajas de cereales de ua determiada marca sigue ua distribució N(, 5). Se ha tomado los pesos de 6 cajas seleccioadas aleatoriamete, y los resultados obteidos ha sido: 506, 508, 499, 503, 504, 50, 497, 5, 54, 505, 493, 496, 506, 50, 509, 496. a) Obteer los itervalos de cofiaza del 90%, 95% y 99% para la media poblacioal. b) Determiar cuál sería el tamaño muestral ecesario para coseguir, co u 95% de cofiaza, u itervalo de logitud igual a gramos. c) Supoiedo ahora que es descoocida, calcular los itervalos de cofiaza para la media al 90%, 95% y 99%. Solució: a) Se trata de costruir u itervalo de cofiaza para la media poblacioal de variaza coocida 5. El itervalo de cofiaza de ivel viee dado por: Error muestral media z muestral L z L logitud o amplitud logitud ( ) z Error muestral z 6 i 503,75 6 i 0,90 0,0 0,05 z,645 0,05 0,05 z,96 0,99 0,0 0,005 z,575 Los itervalos de cofiaza solicitados será: ,90 ( ) 503,75, ,75,645, 503,75, ( ) 50,69 ; 505,8 P 50,69 505,8 0,90 0, ( ) 503,75,96 503,75,96,503,75, ( ) 50,30 ; 506,0 P 50,30 506, ,99 ( ) 503,75, ,75,575, 503,75, ( ) 500,53 ; 506,97 P 500,53 506,97 0,99 0,99 La logitud de cada uo de los itervalos de cofiaza: L 0,90 ( ) 505,8 50,69 4, El primer it ervalo de cofiaza es de meor logitud, L ( ) 506,0 50,30 4,9 y, por ta to, podría parecer de más preciso, L recordado que s 0,99 ( ) 506,97 500,53 6,44 u ivel de cofiaza tambié es meor. 4

6 b) La amplitud o logitud vedrá dado por la fórmula: ( ) z amplitud o z z z z logitud amplitud siedo,., cajas de cereales c) Se trata de costruir u itervalo de cofiaza para la media poblacioal de variaza poblacioal descoocida, co muestras pequeñas ( 30). El itervalo de cofiaza de ivel ( ), viee dado por: 0,90 0,0 t0,05;5,753 s ( ) t ( ), 0,05 t0,05;5,3 0,99 0,0 t0,005;5,947 cuasivariaza muestral: 6 i ( ) i s 36,037 s 6 5 cuasidesviació típica Los itervalos de cofiaza solicitados será: ,90 ( ) 503,75, ,75,753, 503,75, ,90 ( ) 50, ; 506,38 P 50, 506,38 0, ( ) 503,75,3 503,75,3, 503,75, ( ) 500,55 ; 506,95 P 500,55 506, ,99 ( ) 503,75, ,75,947, 503,75, ,99 ( ) 499,33 ; 508,7 P 499,33 508,7 0,99 Señalar que a mayor ivel de cofiaza ( ) mayor es la amplitud del itervalo, y, e cosecuecia, los itervalos de cofiaza so mayores. 5

7 CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA..- Ua muestra aleatoria etraída de ua població ormal de variaza 00, preseta ua media muestral 60. Co ua muestra de tamaño 44, se pide: a) Calcular u itervalo de cofiaza del 95 por cieto para la media poblacioal. b) Calcular u itervalo de cofiaza del 90 por cieto para la media poblacioal. c) Comparar ambos itervalos, desde el puto de vista de la iformació que geera. d) Si se quiere teer ua cofiaza del 95 por cieto de que su estimació se ecuetra a ua distacia de, cm más o meos de la verdadera media poblacioal, cuátas observacioes adicioales debe tomarse? Solució: a) Hay que costruir u itervalo de cofiaza para la media poblacioal de variaza coocida 00. El itervalo de cofiaza de ivel, viee dado por: Error muestral media z muestral L z L logitud o amplitud logitud ( ) z Error muestral z se tiee que: 0,05 0,05 z, tervalo de cofiaza: ( ) 60,96 ; 60,96 58,37 ; 6, b) Es aáloga su costrucció; la úica variació es el ivel de cofiaza: 0,90 0,0 0,05 z,645 co lo cual, ( ) 60,645 ; 60,645 58,63 ; 6,37 0, c) Calculado la logitud de cada uo de los dos itervalos de cofiaza: L 6,63 58,37 3,6 L 0,90 6,37 58,63,74 El segudo itervalo de cofiaza es de logitud meor, y, por tato, podría parecer más preciso, pero o olvidemos que su ivel de cofiaza es tambié meor (el 90 por 00 frete al 95 por cieto del primer itervalo). d) El error absoluto que se quiere cometer es de,, aplicado la fórmula para la determiació de la muestra a u ivel de cofiaza del 95 por 00, se tiee: 6

8 Error media muestral z ( ) z z muestral, , E cosecuecia, se debería tomar ua muestra adicioal de 3 elemetos ( ). CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA Y LA VARANZA CON PARÁMETROS POBLACONALES DESCONOCDOS. 3.- La afluecia de visitates al parque de Mofragüe durate u mes, medida a través de ua muestra aleatoria durate 0 días elegidos aleatoriamete, ha sido los siguietes: 68, 553, 555, 666, 657, 649, 5, 568, 700, 55 Supoiedo que los iveles de afluecia sigue ua distribució ormal, y que la desviació típica muestral es de 56,99. a) Se podría afirmar, co u 95 por cieto de cofiaza, que la afluecia media al parque es de 600 persoas al mes. b) Los adjudicatarios de la eplotació al parque, e egociacioes co la Juta de Etremadura, afirmaro que la afluecia media era costate y que la dispersió sería de uas 5 persoas. Queda esta afirmació probada co los datos dispoibles co u 95% de cofiaza? Solució: a) Se trata itervalo de cofiaza para la media de ua distribució ormal de variaza poblacioal descoocida siedo la muestra pequeña 30 ()s s ( ) s 0. 56,99 ( ) t ( ), s 3608,73 s 3608,73 60, i i 60,04 s 60,07 0 0,05 0,05 t ;() t 0,05;9,6 60,07 60,07 60,07 ( ) 60,04,6 60,04,6, 60,04, ( ) 567,07 ; 653,0 P 567,07 653,0 Como 567, ,0 se puede afirmar que co u 95 por cieto de cofiaza la afluecia media es de 600 persoas al mes. 7

9 b) tervalo de cofiaza para la variaza de ua distribució ormal: s 3608,73 ( )s ( )s ; () 0,05;9 ; () ; () ;() 0,975;9,70 ( ) ; 0,05 9,03 9.(3608,73) 9.(3608,73) 9,03,70 ( ) ; 707,33 ; 09, ( ) 707,33 ; 09, P 707,33 09, 9.(3608,73) 9.(3608,73) ( ) ; 707,33 ; 09, 4,3 ; 09,68 9,03,70 ( ) 4,3 ; 09,68 P 4,3 09,68 5 4,3 ; 09,68. El itervalo de la desviació típica o cotiee el valor 5, co lo cual o se puede afirmar co ua cofiaza del 95% que la dispersió de afluecia sea de 5 persoas. CÁLCULO DE UN NTERVALO DE CONFANZA PARA LA DFERENCA DE MEDAS CON DESVACONES TÍPCAS POBLACONALES CONOCDAS. 4.- El gasto diario e llamadas telefóicas de dos departametos X e Y de ua misma empresa sigue ua distribució ormal, co gasto medio descoocido e ambos. Si embargo, se cooce las desviacioes típicas, que so 00 y 0 cétimos de euro para X e Y, respectivamete. La direcció ha observado que ua muestra aleatoria de 0 días, el gasto medio diario e llamadas realizadas por el departameto X ha sido de 00 cétimos, y de 400 e el departameto Y. Obteer u itervalo de cofiaza para la diferecia de gastos medios etre ambos departametos. Solució: La variables aleatorias sigue, respectivamete, las distribucioes ormales N(,00) y N(,0). El itervalo de cofiaza para la diferecia de medias ( ) co variazas poblacioales coocidas viee dado por la epresió: 00 0 ( ) ( y) z 00 0 y ,90 0,05 z, ,90 ( ) (00 400) (,645) 354,68 ; 45,3 0 0 El itervalo de cofiaza o cubre el 0 por 00, lo que idica que eiste diferecia sigificativa e el gasto de llamadas telefóicas. Como el itervalo de cofiaza es egativo, se deduce que el gasto medio e llamadas telefóicas del departameto Y es superior al del departameto X, co ua cofiaza del 90 por cieto. 8

10 CÁLCULO DE UN NTERVALO DE CONFANZA PARA LA PROPORCÓN CON APROXMACÓN A UNA NORMAL, AL SER LA MUESTRA SUFCENTEMENTE GRANDE. 5.- Se seleccioa ua muestra aleatoria de 600 familias, a las que se preguta si tiee o o ordeador e casa. Cotestaro afirmativamete 40 familias. Obteer u itervalo de cofiaza al ivel del 95% para la proporció real de familias que posee ordeador e casa. Solució: La característica e estudio es dicotómica, hay que costruir u itervalo de cofiaza para el parámetro p (proporció) de la variable aleatoria biomial asociada al estudio de la característica. Como el tamaño de la muestra es suficietemete grade, = 600, se puede utilizar la aproimació ormal. p( ˆ p) ˆ pˆ ,4 qˆ pˆ 0,6 600 ˆ (p) p z ( ) 0,05 0,05 z z 0,05,96 0, 4. 0,6 (p) 0, 4 (,96) 0,36 ; 0, (p) 0,36 ; 0, 44 P 0,36 p 0, 44 Co ua cofiaza del 95% se puede afirmar que las familias posee ordeador etre el 36% y el 44%. CÁLCULO DE UN NTERVALO DE CONFANZA PARA LA PROPORCÓN Y PARA LA DFERENCA DE PROPORCONES. CÁLCULO DE LA AMPLTUD Y ANÁLSS DEL ERROR DE ESTMACÓN. 6.- Segú los dirigetes del partido A, la iteció de voto del partido rival B, e Adalucía, es la misma que la que tiee e Madrid. Se realiza ua ecuesta a 00 persoas e Adalucía de los que 5 mostraro su apoyo al partido B, y a otras 00 persoas e Madrid de las que 30 se icliaro por el partido B. a) Costruir u itervalo de cofiaza del 90% para la proporció de persoas que votaría al partido B e Adalucía b) A cuátas persoas habría que ecuestar para obteer u marge de error o error de estimació %, al ivel de cofiaza aterior?. c) Costruir u itervalo de cofiaza al 90% para la diferecia de proporcioes e la estimació del voto del partido B e las dos comuidades. Podemos afirmar que los dirigetes del partido A tiee razó?. Solució: a) La característica e estudio e ambas comuidades es dicotómica, teemos que costruir u itervalo de cofiaza para el parámetro p (proporció) de la variable aleatoria biomial asociada al estudio de la característica e la comuidad de Adalucía. Como el tamaño de la muestra es suficietemete grade, = 00, se puede utilizar la aproimació ormal. 9

11 p( ˆ p) ˆ pˆ ˆ ˆ ,5 q p 0,75 00 ˆ (p) p z( ) 0,90 0,0 0,05 z z 0,05,645 0,5. 0,75 0,90(p ) 0,5 (,645) 0,79 ; 0,3 00 0,90(p ) 0,79 ; 0,3 P 0,79 p 0,3 0, 90 E Adalucía la iteció de voto del partido B se ecuetra etre el 7,9% y 3,%, co u ivel de cofiaza del 90%. b) La amplitud o logitud vedrá dado por la fórmula: proporció error p ˆ ˆ ˆ ˆ.q p.q ˆ p z( ) z muestral muestral de dode, (z ) (p ˆ.q ˆ ) El caso más desfavorable será cuado pˆ ˆ q 0,5. (,645) (0,5.0,5) Siedo ( 0,0) 0, ,0004 c) Nos ecotramos ate u itervalo de cofiaza para la diferecia de parámetros poblacioales (p p ) de dos distribucioes biomiales, co el tamaño de las muestras suficietemete grades, = = 00, para utilizar la aproimació ormal. p ˆ(p ˆ) p ˆ (p ˆ) ˆ ˆ (p p ) (p p ) z( ) pˆ ,5 qˆ ˆ p 0,75 00 pˆ ˆ ˆ ,3 q p 0, ,90 0,0 0,05 z z 0,05,645 0,5. 0,75 0,3.0,70 0,90(p p ) (0,5 0,3) (,645) 0,53 ; 0, El itervalo de cofiaza cubre el cero, lo que idica que o eiste diferecia sigificativa etre la iteció de voto del partido B e ambas comuidades, co lo cual los dirigetes del partido A tiee razó co ua fiabilidad del 90%. 0

12 CÁLCULO DE UN NTERVALO DE CONFANZA PARA LA DFERENCA DE MEDAS POBLACONALES CON DESVACONES TÍPCAS POBLACONALES CONOCDAS O DESCONOCDAS. 7.- U fabricate de televisores está desarrollado u uevo modelo de televisor e color, y para este fi se puede utilizar dos tipos de esquemas trasistorizados. El fabricate seleccioa ua muestra de esquemas trasistorizados del primer tipo de tamaño 6, y otra del segudo tipo de tamaño 3. Los datos muestrales respecto a la vida media de cada esquema so los siguietes: 400 horas s 30 horas horas s 7 horas 3 Costruir u itervalo de cofiaza del 90% para la diferecia de vida media de cada tipo de esquema. Solució: Sea la variable aleatoria X = 'vida media del primer esquema', que sigue ua distribució ormal N(, ). Aálogamete, la variable aleatoria X = 'vida media del segudo esquema', sigue ua distribució ormal N(, ). Hay que costruir u itervalo de cofiaza para la diferecia de medias poblacioales ( ) co variazas poblacioales descoocidas, y o sabemos si distitas o o, siedo las muestras pequeñas Para dilucidar si las variazas poblacioales descoocidas so o o distitas, costruimos primero u itervalo de cofiaza para el cociete de variazas ( ), de modo que si el itervalo cubre al puto podremos partir de que las variazas so descoocidas pero iguales. Para costruir u itervalo de cofiaza para el cociete de variazas se emplea la fórmula: ( ) s s ; s s siedo F ;(),( ) F ;(),( ) F ;(),( ) F ;(),() s s s s ,4 0,90 0,0 0,05 F,669 F F,4753 0,404 0,05; 5, ; 5, 0,05;,5 de dode, 3,4 3,4 0,90( ) ;,9;7,7,669 0,404 0,90( ),9 ;7,7 P,9 7,7 0,90 El itervalo o cubre el puto uo, y cocluimos que las variazas poblacioales so descoocidas y distitas, co ua fiabilidad del 90%.

13 Nos situamos ate u itervalo de cofiaza para la diferecia de medias poblacioales ( ) co variazas poblacioales descoocidas y distitas o o, co muestras pequeñas t,f dode f es la aproimació de Welch s s (s s ) ( ) ( y) t,f f (s ) (s ) siedo, s s s ,5 s 89 3,3 (s ) 364,06 (s ) 494,7 (s ) 7 86, (s ) 4 3,94 (s s ) 659, (s s ) 659, f 8,89 9 (s ) (s ) 86, 3,94 0,90 0,0 0,05 t t, horas 500 horas,f 0,05 ; ,90 ( ) ( ) (,699) 5,05 ; 84, El itervalo o cubre el cero, cocluyedo que eiste diferecia sigificativa etre la vida media de cada esquema, siedo mayor la vida media del segudo esquema co ua fiabilidad del 90%.

14 CÁLCULO DE UN NTERVALO DE CONFANZA PARA LA DFERENCA DE MEDAS POBLACONALES CON DESVACONES TÍPCAS POBLACONALES CONOCDAS O DESCONOCDAS. 8.- U istituto de ivestigacioes agroómicas siembra, e cico parcelas diferetes, dos tipos de maíz híbrido. Las produccioes e quitales métricos por hectárea so: Híbrido Híbrido a) Costruir u itervalo de cofiaza para el cociete de variazas co u error de sigificació de 0,0. b) Costruir u itervalo de cofiaza del 90% para la diferecia etre las produccioes medias. Solució: a) Sea la variable aleatoria X = 'producció de maíz del híbrido ', que sigue ua distribució ormal N(, ). Aálogamete, la variable aleatoria X = 'producció de maíz del híbrido ', sigue ua distribució ormal N(, ). Al costruir u itervalo de cofiaza para el cociete de variazas podremos cocluir si las variazas poblacioales descoocidas so o o distitas. De modo que, si el itervalo de cofiaza para el cociete de variazas ( ) cubre al puto podremos partir de que las variazas so descoocidas pero iguales. ( ) s s ; s s dode F ( ) ; (),() F ;(),() F( ); (),( ) F ; (),() E el caso, 85,0 s 57,7 5 88,6 s 9,8 5 s s 57,7 9,8 5,89 0,90 0,0 0,05 F 6,3883 F F 6,3883 0,565 0,05 ; 4,4 ; 4,4 0,05 ; 4,4 5,89 5,89 0,90( ) ; 0,9 ; 37,64 6,3883 0,565 0,90( ) 0,9 ; 37,64 P 0,9 37,64 0,90 El itervalo cubre el uo, y cocluimos que las variazas poblacioales so descoocidas e iguales, co ua fiabilidad del 90%. b) Nos situamos ate u itervalo de cofiaza para la diferecia de medias poblacioales ( ) co variazas poblacioales descoocidas pero iguales, co muestras pequeñas

15 ( ) ( y) t,( ) sp dode, sp media poderada de las cuasivariazas muestrales: ( )s ( )s 4(57,7) 4(9,8) s s 33,75 s 5,8 p p p 55 85, 0 88, 6 5 0,90 0,0 0,05 t t,860,( ) 0,05;8 0,90 ( ) (85, 0 88, 6) (,860) (5,8) 0, 3 ; 3, ( ) 0,3 ; 3,43 P 0,3 3,43 0,90 0,90 El itervalo de cofiaza cubre el cero, por lo que o eiste diferecia sigificativa etre las produccioes medias, co ua fiabilidad del 90%. CÁLCULO DE UN NTERVALO DE CONFANZA PARA LA DFERENCA DE DATOS APAREADOS. 9.- U equipo de ivestigació biológica está iteresado e ver si ua ueva droga reduce el colesterol e la sagre. Co tal fi toma ua muestra de diez pacietes y determia el coteido de colesterol e la sagre ates y después del tratamieto. Los datos muestrales epresados e miligramos por 00 mililitros so los siguietes: Paciete Ates Después Costruir u itervalo de cofiaza del 95 por 00 para la diferecia del coteido medio de colesterol e la sagre ates y después del tratamieto. Solució: Se trata de datos apareados, e los que o eiste idepedecia etre las muestras. E este caso, como la muestra es pequeña ( 0 30) el itervalo de cofiaza es: d i s d i i,() di i y i d d ( ) d t s (d d) i dode d es la media de las diferecias y s d la desviació estádar de estas diferecias. X = 'Ates' Y = 'Después' d i i y i

16 d 7,40 s,48 s 0,59 0 d d 0,05 0,05 t t,6 ;() 0,05;9 0,59 ( ) 7,40 (,6) 0,7 ; 4,97 0 El itervalo abarca el cero, por lo que o eiste diferecia sigificativa e la diferecia del coteido medio del colesterol ates y después del tratamieto, co ua fiabilidad del 95%. 5

17

18

19

20

21 Gestió Aeroáutica: Estadística Teórica Facultad Ciecias Ecoómicas y Empresariales Departameto de Ecoomía Aplicada Profesor: Satiago de la Fuete Ferádez

Estadística Teórica II

Estadística Teórica II tervalos de cofiaza Estadística Teórica NTERVALOS DE CONFANZA Satiago de la Fuete Ferádez 77 tervalos de cofiaza CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

MUESTREO Y ESTIMACIÓN ESTADÍSTICA

MUESTREO Y ESTIMACIÓN ESTADÍSTICA 1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3 Estadística y sus aplicacioes e Ciecias Sociales Práctico 4 - Solució Curso 016 Ejercicio 1 5! 1) Como se trata de muestreo si reposició, se tiee C 5 3 3!! muestras de tamaño =3. ) Distribució muestral

Más detalles

IntroducciónalaInferencia Estadística

IntroducciónalaInferencia Estadística Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla

Más detalles

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN INFERENCIA ESTADÍSTICA Y ESTIMACIÓN La estadística iferecial se ocupa de exteder o extrapolar a toda ua població, iformacioes obteidas a partir de ua muestra, así como de tomar de decisioes. El muestreo

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción Curso de Estadística Aplicada a las Ciecias Sociales Tema 11. Estimació de ua (Cap. 1 del libro) Tema 11. Estimació de ua Itroducció 1. Distribució de la e el. La muestral es cetrada 3. El error típico

Más detalles

Determinación del tamaño de una muestra (para dos o más muestras)

Determinación del tamaño de una muestra (para dos o más muestras) STATGRAPHICS Rev. 457 Determiació del tamaño de ua muestra (para dos o más muestras) Este procedimieto determia el tamaño de muestra apropiado para estimar o realiar pruebas de hipótesis respecto a alguo

Más detalles

EJERCICIOS TEMA 8. INFERENCIA ESTADISTICA

EJERCICIOS TEMA 8. INFERENCIA ESTADISTICA º BACHILLERATO. CIENCIAS SOCIALES 1. Ua variable aleatoria tiee ua distribució ormal de media m y desviació típica s. Si se extrae muestras aleatorias de tamaño : a) Qué distribució tiee la variable aleatoria

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

EJERCICIOS RESUELTOS TEMA 8

EJERCICIOS RESUELTOS TEMA 8 EJERCICIOS RESUELTOS TEMA 8 8.. U ivestigador desea coocer la opiió de los madrileños sobre la saidad pública. Para ello, acude a las 8 de la mañaa al hospital público de la capital más cercao a su domicilio

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

Métodos estadísticos y numéricos Estimación por Intervalos de confianza 1 PROBLEMAS RESUELTOS DE ESTIMACIÓN POR INTERVALOS DE CONFIANZA

Métodos estadísticos y numéricos Estimación por Intervalos de confianza 1 PROBLEMAS RESUELTOS DE ESTIMACIÓN POR INTERVALOS DE CONFIANZA Métodos estadísticos y uméricos Estimació por Itervalos de cofiaa PROBLEMA REUELTO DE ETIMACIÓN POR INTERVALO DE CONFIANZA U adador obtiee los siguietes tiempos, e miutos, e 0 pruebas croometradas por

Más detalles

Bloque 3 Tema 12 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS

Bloque 3 Tema 12 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS Bloque 3 Tema 1 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS Hay ocasioes e las que teemos que tomar decisioes relativas a ua població sobre la base de los coocimietos que

Más detalles

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales.

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales. Resume Tema 2: Muestreo aleatorio simple. Muestreo co probabilidades desiguales. M.A.S.: Muestreo aleatorio simple co probabilidades iguales si reemplazo. Hipótesis: Marco perfecto, si omisioes i duplicados

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 8-9 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe respoder

Más detalles

Formulas. Población infinita. Población finita

Formulas. Población infinita. Población finita Formulas X~N(μ, σ 2 ) x = x i x ~N si X~N o si > 30 Població ifiita Població fiita x ~N(μ, σ2 ) N x ~N(μ, N 1 σ2 ) Ejercicio Se sabe que la media poblacioal e u exame de Estadística es de 70 y que la variaza

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

PROBLEMAS DE LOS TEMAS 5, 6 Y 7 PROPUESTOS EN EXÁMENES DE ESTADÍSTICA EMPRESARIAL (ANTIGUA LICENCIATURA ADE)

PROBLEMAS DE LOS TEMAS 5, 6 Y 7 PROPUESTOS EN EXÁMENES DE ESTADÍSTICA EMPRESARIAL (ANTIGUA LICENCIATURA ADE) TUTORÍA DE ETADÍTICA EMPREARIAL (º A.D.E.) e-mail: imozas@elx.ued.es https://www.iova.ued.es/webpages/ilde/web/idex.htm PROBLEMA DE LO TEMA 5, 6 Y 7 PROPUETO EN EXÁMENE DE ETADÍTICA EMPREARIAL (ANTIGUA

Más detalles

Práctica 7 CONTRASTES DE HIPÓTESIS

Práctica 7 CONTRASTES DE HIPÓTESIS Práctica 7. Cotrastes de hipótesis Práctica 7 CONTRATE DE IPÓTEI Objetivos Utilizar los cotrastes de hipótesis para decidir si u parámetro de la distribució de uos datos objeto de estudio cumple o o ua

Más detalles

Tema 2. Medidas descriptivas de los datos

Tema 2. Medidas descriptivas de los datos Tema 2. Medidas descriptivas de los datos Resume del tema 2.1. Medidas de posició So valores que os sirve para idicar la posició alrededor de la cual se distribuye las observacioes. 2.1.1. Mediaa La mediaa

Más detalles

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS)

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 1 Supogamos que ua variable aleatoria X sigue ua ley N(µ; =,9). A partir de ua muestra de tamaño = 1, se obtiee ua media muestral

Más detalles

ESTIMACIÓN. TEMA 5: Estimación puntual I. Propiedades de los estimadores. TEMA 6: Estimación puntual II. Métodos de estimación puntual

ESTIMACIÓN. TEMA 5: Estimación puntual I. Propiedades de los estimadores. TEMA 6: Estimación puntual II. Métodos de estimación puntual ETIMACIÓN TEMA 5: Estimació putual I. Propiedades de los estimadores TEMA 6: Estimació putual II. Métodos de estimació putual TEMA 7: Estimació por itervalos CONTRATE DE HIPÓTEI TEMA 8: Cotrastes paramétricos

Más detalles

Test de Hipótesis. Material Preparado por Hugo Delfino

Test de Hipótesis. Material Preparado por Hugo Delfino Test de Hipótesis Material Preparado por Hugo Delfio 8-3 Qué es ua Hipótesis? Hipótesis: Es u suposició acerca del valor de u parámetro de ua població co el propósito de discutir su validez. Ejemplo de

Más detalles

SESION 15 DISTRIBUCIONES DE MUESTREO

SESION 15 DISTRIBUCIONES DE MUESTREO SESION 15 DISTRIBUCIONES DE MUESTREO I. CONTENIDOS: 1. Distribució de muestreo. 2. Distribucioes de muestreo de la media 3. Media, mediaa y moda, así como su relació co la desviació estádar de las distribucioes

Más detalles

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20 Modelo 04. Problema 5A.- (Calificació máxima: putos) El coteido e alquitrá de ua determiada marca de cigarrillos se puede aproximar por ua variable aleatoria co distribució ormal de media µ descoocida

Más detalles

ESTIMACIONES DE MEDIAS

ESTIMACIONES DE MEDIAS COLEGIO SAN BARTOLOMÉ LA MERCED ESTADÍSTICA GRADO ESTIMACIÓN 0-0 Símbolos que se debe teer e cueta: POBLACIÓN MUESTRA MEDIA VARIANZA DESVIACIÓN ESTÁNDAR TAMAÑO N La estimació cosiste e determiar el valor

Más detalles

CONTRASTE DE HIPÓTESIS

CONTRASTE DE HIPÓTESIS Estadística: Cotraste de hipótesis 1 CONTRASTE DE HIPÓTESIS 1. Cotraste de hipótesis sobre la media poblacioal Se parte de ua població supuestamete ormal de media y desviació típica N(, ); se tipifica

Más detalles

1. Intervalos de Conanza

1. Intervalos de Conanza M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.: Itervalos de coaza Objetivos Costruir itervalos de coaza para los parámetros más importates. Aplicar coveietemete los IC atediedo a cada situació

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky 106 1. INTERVALO DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL upogamos que X1,...,X es ua muestra aleatoria de ua

Más detalles

Población Joven Adulta Total A favor En contra Total

Población Joven Adulta Total A favor En contra Total Nombre: Libre Reglametado C.I.: EXAMEN El exame costa de dos partes. La Primera Parte debe ser realizada por todos los alumos y el tiempo previsto es de 2 horas. La Seguda Parte debe ser realizada sólo

Más detalles

TEMA 3: INFERENCIA ESTADISTICA

TEMA 3: INFERENCIA ESTADISTICA ESTADÍSTICA, CURSO 008 009 TEMA 3: INFERENCIA ESTADISTICA INTRODUCCION oblació. Muestra, muestreo. Objetivos de la iferecia estadística. Métodos paramétricos y o paramétricos. TEORIA ELEMENTAL DEL MUESTREO.

Más detalles

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA. Esquema del procedimiento de Prueba de Hipótesis

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA. Esquema del procedimiento de Prueba de Hipótesis PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA Pruebas de hipótesis es ua parte de la ESTADISTICA INFERENCIAL y tiee su aalogía co los pasos que se realiza e u JUICIO. Objetivo: Aquí o se busca Estimar

Más detalles

PRUEBAS DE HIPOTESIS

PRUEBAS DE HIPOTESIS PRUEBAS DE HIPOTESIS Es posible estimar u parámetro a partir de datos muestrales, bie sea ua estimació putual o u itervalo de cofiaza. Pero: Si mi objetivo o es estimar u parámetro, sio determiar el cumplimieto

Más detalles

Ejercicios resueltos de Muestreo

Ejercicios resueltos de Muestreo Tema Ejercicios resueltos de Muestreo Ejercicio Sea ua població ita de 4 elemetos: P = f; 4; ; g : Se cosidera muestras de elemetos que se supoe extraidos y o devueltos a la població y que el muestreo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Reserva 1, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció

Más detalles

6. DISTRIBUCIONES MUESTRALES

6. DISTRIBUCIONES MUESTRALES 6. DISTRIBUCIONES MUESTRALES Dr. Edgar Acua http://math.uprm.edu/~edgar UNIVERSIDAD DE UERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber

Más detalles

6. DISTRIBUCIONES MUESTRALES

6. DISTRIBUCIONES MUESTRALES 6. DISTRIBUCIONES MUESTRALES DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber acerca del comportamieto de parámetros poblacioales tales como: la media ( ), la variaza ( ) o la proporció

Más detalles

13.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

13.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Dra. Diaa M. Kelmasky 109 13. INTERVALOS DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL Supogamos que X1,...,X es ua muestra aleatoria de ua població ormal co media μ y variaza. Sabemos que la media

Más detalles

Juan Carlos Colonia INTERVALOS DE CONFIANZA

Juan Carlos Colonia INTERVALOS DE CONFIANZA Jua Carlos Coloia INTERVALOS DE CONFIANZA INTERVALOS DE CONFIANZA PARA LOS PARÁMETROS DE UNA POBLACIÓN POBLACIONAL ES CONOCIDA Sea X ua muestra aleatoria de tamaño 1, X,..., X extraída de ua població N,

Más detalles

Introducción a las medidas de dispersión.

Introducción a las medidas de dispersión. UNIDAD 8: INTERPRETEMOS LA VARIABILIDAD DE LA INFORMACION. Itroducció a las medidas de dispersió. Como su ombre lo idica, las medidas de dispersió so parámetros que os idica qué ta dispersos está los datos.

Más detalles

PRUEBAS DE HIPÓTESIS.

PRUEBAS DE HIPÓTESIS. PRUEBAS DE HIPÓTESIS. HIPÓTESIS ESTADÍSTICA Paramétrica : No Paramétrica Es ua afirmació sobre los valores de los parámetros poblacioales descoocidos. Es ua afirmació sobre algua característica Simple

Más detalles

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA . Metodología e Salud Pública INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA Autor: Clara Lagua 5.1 INTRODUCCIÓN La estadística iferecial aporta las técicas ecesarias para extraer

Más detalles

Muestreo e Intervalos de Confianza

Muestreo e Intervalos de Confianza Muestreo e Itervalos de Cofiaza PROBLEMAS DE SELECTIVIDAD RESUELTOS MUESTREO E INTERVALOS DE CONFIANZA 1) E ua població ormal co variaza coocida se ha tomado ua muestra de tamaño 49 y se ha calculado su

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

Tema 9. Inferencia Estadística. Intervalos de confianza.

Tema 9. Inferencia Estadística. Intervalos de confianza. Tema 9. Iferecia Estadística. Itervalos de cofiaza. Idice 1. Itroducció.... 2 2. Itervalo de cofiaza para media poblacioal. Tamaño de la muestra.... 2 2.1. Itervalo de cofiaza... 2 2.2. Tamaño de la muestra...

Más detalles

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo: TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo,

Más detalles

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple)

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple) 1 Muestreo Tema 1 1. Muestreo. Muestreo aleatorio 3. Tipos de muestreo aleatorio 3.1. Muestreo aleatorio si reposició 3.. Muestreo aleatorio co reposició (muestreo aleatorio simple) 3.3. Muestreo aleatorio

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A EXAMEN COMPLETO Istruccioes: a) Duració: 1 hora y 30 miutos. b) Elija ua de las dos opcioes propuestas y coteste los ejercicios de la opció elegida. c) E cada ejercicio, parte o apartado se idica la putuació

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

MATEMÁTICAS. TEMA Inferencia Estadística.

MATEMÁTICAS. TEMA Inferencia Estadística. MATEMÁTICAS TEMA 11-12 Iferecia Estadística. . ÍNDICE 1. Itroducció. 2. Tabla Normal (0,1). 3. Itervalos de cofiaza. 3.1. Itervalo de cofiaza para la media 3.2. Itervalo de cofiaza para la proporció 4.

Más detalles

República Bolivariana de Venezuela Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática

República Bolivariana de Venezuela Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática República Bolivariaa de Veezuela Uiversidad Nacioal Abierta Vicerrectorado Académico Área de Matemática Fórmulas y Tablas Cursos: 738, 745, 746 y 748 Prof. Gilberto Noguera Lista de Formulas N 1) µ = x

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

14 Intervalos de confianza

14 Intervalos de confianza Solucioario 14 Itervalos de cofiaza ACTIVIDADES INICIALES 14.I. Calcula tal que P z < Z z α α = 0,87. P zα < Z zα = P Z zα P Z < zα = P Z zα 1= 0,87 P Z P Z P Z = 1,87 = 0,935. Buscado e el iterior de

Más detalles

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

Intervalo de confianza para µ

Intervalo de confianza para µ Itervalo de cofiaza para p y ˆp1 ˆp ˆp1 ˆp ˆp z 1 α/ ; ˆp + z 1 α/, 7.6 ˆp + z 1 α/ ± z 1 α/ 1 + z 1 α/ ˆp1 ˆp + z 1 α/ 4 7.7 siedo ˆp = x/ y z 1 α/ el cuatil 1 α/ de la distribució ormal estádar. El itervalo

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO Objetivos geerales del tema E este tema se itroducirá el cocepto de estadístico como medio para extraer iformació acerca de la ley de

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

PRUEBAS DE HIPOTESIS

PRUEBAS DE HIPOTESIS PRUEBAS DE HIPOTESIS Es posible estimar u parámetro a partir de datos muestrales, bie sea ua estimació putual o u itervalo de cofiaza. Pero: Si mi objetivo o es estimar u parámetro, sio determiar el cumplimieto

Más detalles

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos Probabilidad y Estadística 3 Itervalos de Cofiaza y Test de Hipótesis paramétricos Itervalos de Cofiaza Defiició Dada ua muestra aleatoria simple es decir, u vector de variables aleatorias X co compoetes

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD PAUTA DE CORRECCIÓN PRUEBA RECUPERATIVA N 2 Profesor: Hugo S. Salias. Segudo Semestre 2009 DESARROLLO

Más detalles

Tema 10. Muestreo. Intervalos de confianza Problemas Resueltos

Tema 10. Muestreo. Intervalos de confianza Problemas Resueltos Matemáticas Aplicadas a las Ciecias Sociales II Solucioes de los problemas propuestos Tema 10 195 Muestreo Tema 10 Muestreo Itervalos de cofiaza Problemas Resueltos 1 E ua ciudad se quiere hacer ua ecuesta

Más detalles

IES Fco Ayala de Granada Soluciones Germán-Jesús Rubio Luna INTERVALOS DE CONFIANZA PARA PROPORCIONES (2007)

IES Fco Ayala de Granada Soluciones Germán-Jesús Rubio Luna INTERVALOS DE CONFIANZA PARA PROPORCIONES (2007) IS Fco Ayala de Graada Solucioes Germá-Jesús Rubio Lua INTRVALOS D CONFIANZA PARA PROPORCIONS (007) jercicio 1- Tomada, al azar, ua muestra de 10 estudiates de ua Uiversidad, se ecotró que 54 de ellos

Más detalles

Como se ha podido apreciar en los módulos anteriores, La estadística trata con recolección de datos, su análisis e interpretación.

Como se ha podido apreciar en los módulos anteriores, La estadística trata con recolección de datos, su análisis e interpretación. Uiversidad Técica Federico Sata María Departameto de Matemática Reato Allede Olivares 7. QUINTO MÓDULO 7. Iferecia Estadística Como se ha podido apreciar e los módulos ateriores, La estadística trata co

Más detalles

R-SQUARED RESID. MEAN SQUARE (MSE) σˆ 2 ADJUSTED R-SQUARED STANDARD DEVIATION σ ˆ

R-SQUARED RESID. MEAN SQUARE (MSE) σˆ 2 ADJUSTED R-SQUARED STANDARD DEVIATION σ ˆ 06 5.8 Leyedo la salida de u programa estadístico Cada programa estadístico preseta los resultados de la regresió e forma diferete, pero la mayoría provee la misma iformació básica. La tabla muestra la

Más detalles

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos: T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

Inferencia estadística

Inferencia estadística UNIDAD 0 Iferecia estadística Objetivos Al fializar la uidad, el alumo: determiará si u estimador es sesgado o isesgado resolverá problemas de itervalos de cofiaza para la media, diferecia de medias, variaza

Más detalles

Tema 8. Sesiones 15 y 16 Guía de clase 8. CONTRASTE DE HIPOTESIS

Tema 8. Sesiones 15 y 16 Guía de clase 8. CONTRASTE DE HIPOTESIS UNIVERSIDAD DE LOS ANDES NUCLEO UNIVERSITARIO RAFAEL RANGEL DEPTO DE CIENCIAS ECONOMOMICAS Y ADMIMISTRATIVAS AREA DE ESTADÍSTICA ESTADÍSTICA BASICA CONTADURÍA PÚBLICA Tema 8. Sesioes 5 y 6 Guía de clase

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

INFERENCIA ESTADÍSTICA. TEST DE HIPÓTESIS. TIPOS DE ERRORES

INFERENCIA ESTADÍSTICA. TEST DE HIPÓTESIS. TIPOS DE ERRORES 1 INFERENCIA ESTADÍSTICA. TEST DE HIPÓTESIS. TIPOS DE ERRORES 001. PAU SELECTIVIDAD Uiversidad de Oviedo Juio 1996 La empresa de trasportes urgetes El Rápido asegura que etrega el 80% de sus evíos ates

Más detalles

MATEMÁTICAS 2º BACH. CC. SS. 4 de abril de 2006 Probabilidades

MATEMÁTICAS 2º BACH. CC. SS. 4 de abril de 2006 Probabilidades MATEMÁTIAS º BAH.. SS. 4 de abril de 006 Probabilidades 1) Sea A y B dos sucesos idepedietes tales que B) = 0.05 y A/ B) = 0.35. a) uál es la probabilidad de que suceda al meos uo de ellos? ( putos) b)

Más detalles

CONTRASTE DE HIPÓTESIS

CONTRASTE DE HIPÓTESIS CONTRASTE DE HIPÓTESIS El cotraste de hipótesis es el procedimieto mediate el cual tratamos de cuatificar las diferecias o discrepacias etre ua hipótesis estadística y ua realidad de la que poseemos ua

Más detalles

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna. Modelo nº 2 Sept. Sobrantes de Soluciones

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna. Modelo nº 2 Sept. Sobrantes de Soluciones IES Fco Ayala de Graada Sobrates de 008 (Modelo Septiembre) Germá-Jesús Rubio Lua Istruccioes: Modelo º Sept. Sobrates de 007-008 Solucioes Duració: 1 hora y 30 miutos. Elija ua de las dos opcioes propuestas

Más detalles

UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferencia de proporciones

UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferencia de proporciones UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferecia proporcioes E alguos diseños ivestigació, el pla muestral requiere seleccioar dos muestras ipedietes, calcular las proporcioes muestrales y usar

Más detalles

Estimación puntual y por Intervalos de Confianza

Estimación puntual y por Intervalos de Confianza Capítulo 7 Estimació putual y por Itervalos de Cofiaza 7.1. Itroducció Cosideremos ua v.a X co distribució F θ co θ descoocido. E este tema vemos cómo dar ua estimació putual para el parámetro θ y cómo

Más detalles

8.1 Al finalizar el tema el alumno debe conocer Características de la estimación utilizando los contrastes o test de hipótesis.

8.1 Al finalizar el tema el alumno debe conocer Características de la estimación utilizando los contrastes o test de hipótesis. TEMA 8. Cotrastes de hipótesis. E este capítulo se epodrá el cotraste o test de hipótesis estadísticas, que está muy relacioado co la «estimació por itervalos» del capítulo aterior. Va a defiirse importates

Más detalles

Contrastes de hipótesis

Contrastes de hipótesis Cotrastes de hipótesis Ejercicio º 1.- E u determiado istituto asegura que las otas obteidas por sus alumos e las pruebas de acceso a la Uiversidad tiee ua media igual o superior a 7 putos. Pero la media

Más detalles

INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL. 1. Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos

INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL. 1. Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos 1 INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL La mayoría de estos problemas ha sido propuestos e exámees de selectividad de los distitos distritos uiversitarios españoles. 1. Ua muestra aleatoria de 9 tarrias

Más detalles

Inferencia. (Teoría y problemas) I. Espejo Miranda. M. A. López Sánchez. A. Sánchez Navas C. Valero Franco

Inferencia. (Teoría y problemas) I. Espejo Miranda. M. A. López Sánchez. A. Sánchez Navas C. Valero Franco Iferecia Estadística (Teoría y problemas) I. Espejo Mirada F. Ferádez Palací M. A. López Sáchez M. Muñoz Márquez A. M. Rodríguez Chía A. Sáchez Navas C. Valero Fraco c Servicio de Publicacioes. Uiversidad

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

Intervalos de Confianza

Intervalos de Confianza Itervalos de Cofiaza 1.- Se quiere estudiar la vida útil de uas uevas pilas que se va a lazar al mercado. Para ello se examia la duració de 40 de ellas, resultado ua media de 63 horas. Supoiedo que el

Más detalles

Hacer estimaciones estadísticas (Making statistical estimations)

Hacer estimaciones estadísticas (Making statistical estimations) IOvaciOes de NegOciOs 5(): 99-316, 009 009 UANL, Impreso e Méico (ISSN 1665-967) Hacer estimacioes estadísticas (Makig statistical estimatios) UANL, Sa Nicolás, N.L., Méico, mhbadii@yahoo.com.m Keywords:

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 1) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Ua fábrica de muebles dispoe de 600 kg de madera para fabricar librerías de 1 y de 3 estates.

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

Muestreo sistemático

Muestreo sistemático Capítulo 1 Muestreo sistemático El muestreo sistemático es u tipo de muestreo que es aplicable cuado los elemetos de la població sobre la que se realiza el muestreo está ordeados Este procedimieto de muestreo

Más detalles

Pasos básicos para docimar una hipótesis:

Pasos básicos para docimar una hipótesis: Pasos básicos para docimar ua hipótesis:. Defiir cual es la població y el o los parámetro de iterés.. Establecer la hipótesis (ula y alterativa). 3. Establecer el ivel de sigificació α. 4. Recoger los

Más detalles

Diseño muestral de la Encuesta de Métodos de Producción Agrícola 2009

Diseño muestral de la Encuesta de Métodos de Producción Agrícola 2009 Diseño muestral de la Ecuesta de Métodos de Producció Agrícola 009 El diseño muestral de la Ecuesta de Métodos de Producció Agrícola 009 correspode a u tipo de muestreo aleatorio estratificado. E cada

Más detalles

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i I.T. INDUSTRIAL METODOS ESTADÍSTICOS FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a k modalidades x 1,x,..., x k ; datos i x i Media x = i x Variaza poblacioal σ i = x i (x i x) Variaza muestral S = 1 (x i

Más detalles

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n.

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n. 1. Teorema del Límite Cetral Teorema: ea Y 1, Y,..., Y variables aleatorias idepedietes idéticamete distribuidas co EY i = µ y V Y i =

Más detalles

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS 8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS Sea ua variable aleatoria de ley descoocida co 0,00. Si 0,, emplear la desigualdad de TCHEBYCHEFF para acotar iferiormete la probabilidad E( ) [

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles