TEMA 1. LOS NÚMEROS REALES.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 1. LOS NÚMEROS REALES."

Transcripción

1 TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones con potencis.. Números irrcionles y reles - Números irrcionles - L rect rel - Intervlos y vlor bsoluto.. Rdicles - Definiciones -Etrcción de fctores - Notción eponencil - Operciones con rdicles - Rcionlizción.. Logritmos - Definición - Propieddes - Cmbio de bse - Ecuciones eponenciles y rítmics - Interés compuesto Mtemátics B. º ESO Tem Los números reles

2 .. Repso de números enteros y rcionles. Reliz ls siguientes operciones con números enteros y comprueb el resultdo. [ ( - ] (+ + (- = - 0 b [ ( + (- + ] [- (- + (- + ]- (- + = c ( + (- 9 = - d (- + + (- + + = e [(- (- (- ] (- = 0 f [ (- + + ]- = - g (- ( + = - h + [- (- + ] = i [ ( ] + = - j (- + [- (+ - + ] = 0 k [- (- (- ] + = l (- + [ + (- ] (- = - m ( +( + - (- = n (- 0 (+0 (- (- = - ñ + (- - + ( - - (- 0 = - o [ ( 9 ] + = p [ ( ] = q [ ( + ] = r ( + = s [ + ( +] ( = t [ + ( ] [- + ] = 0 u + [ ( 0 ] = 0 v - [ (- - (- ] [- (- ] = - w - + [ ( + ] = - [ (- 0 0] + [ (- ] = y - (- + ( = -0 z - (- = 0. Escribe l epresión deciml de ls siguientes frcciones. Indic en cd cso el tipo de número deciml que obtienes. 99. Escribe en form de frcción los siguientes números decimles, g b, h c 0,0000 i d j e k f l, Mtemátics B. º ESO Tem Los números reles

3 Mtemátics B. º ESO Tem Los números reles. Reliz ls siguientes operciones con frcciones y comprueb el resultdo. l + b - m c n 0 d ñ e 9 o f p g q 9 h r 9 9 i - s j 0 t 9 k 0 u + 0. Reliz ls siguientes operciones b b c d Propieddes de ls potencis

4 Mtemátics B. º ESO Tem Los números reles. Hll el vlor de ls siguientes potencis (- = (- = (- = (- = 0 = 0 = 0 = 0 = (- 0 = (- 0 = = = (-0 = = = = - = - = (- = (- = (- = (- = (+ = (- = = = - = - = - = = - - = - = - = - - = - = - = = (- (- = = 9 9 = - = (- 9 (- = = = - = = (- (- = (- (- - = - = - = - = - = - = 0 - = 0 - = 0 - = 0 - = 0 - = 0 - = ( = ( = ( = ( = ( = [ (-] = (- = (- = = (- = = [ (-] = ( = (9 0 = ( = ( = 0 = 9 = = = ( = ( = ( 9 = ( = ( = (- - = [(- - ] = (- - = [(- ] - = (- - - = (0 00 = (0 = ( = ( 0 = ( 0 = (0 00 = (0 0 = ( = (0 = (0 = = 0

5 9. Escribe con un sol potenci 0 = = = ( = = ( = ( ( = ( = ( ( = ( = ( ( = 0 ( = ( ( 0 = ( = ( 9 = ( = = = = 0 0 = ( = (9 = 9 = = = 0 = Mtemátics B. º ESO Tem Los números reles

6 .. Números irrcionles y reles Recordemos que los números rcionles son todos quellos que pueden escribirse en form de frcción. Todos los nturles y los enteros lo son, tmbién los números decimles ectos y los periódicos puros y mitos como se vio en el prtdo nterior. Sin embrgo hy números como por ejemplo, que no se puede escribir como cociente de dos números enteros (demuéstrlo, y en su desrrollo deciml precen infinits cifrs decimles no periódics. A los números de est form se les llm números irrcionles. Si no es un cudrdo perfecto es un número irrcionl (por ejemplo o. En gener, si es entero pero no lo es, entonces es un número irrcionl. Tmbién son irrcionles los números El conjunto formdo por los números rcionles y los irrcionles se llm conjunto de los números reles y se design por. Enteros Nturles N os Reles Rcionles Irrcionles Frccionrios Enteros negtivos. Indic el menor conjunto numérico l que pertenecen los siguientes números,,,,,,,,,, +,, -`,,,,,. Y sbemos representr en l rect numéric los números enteros y ls frcciones, demás cd número de l rect le corresponde un número rcionl o uno irrcionl, por eso l rect numéric se le llm rect rel. El método pr representr gráficmente los números del tipo, siendo n entero, consiste en considerr un triángulo rectángulo y en el cul l hipotenus se obtiene por el teorem de Pitágors. Vemos dos ejemplos Mtemátics B. º ESO Tem Los números reles

7 . Represent en l rect rel los números. Rzon si son verdders o flss ls siguientes firmciones (en cso de ser flss indic un contrejemplo Todos los números son rcionles. Los números rcionles son números reles. Los números irrcionles son números reles. Todos los números decimles se pueden epresr en form de frcción.. Si, eplic si ls siguientes firmciones son verdders o flss ² es siempre positivo o nulo. ³ es siempre positivo o nulo. solo eiste si 0. es negtivo si lo es. es siempre negtivo. Intervlos. Ddos dos números reles, se define el intervlo cerrdo de etremos y b como el conjunto de todos los números reles que son myores o igules que y menores o igules que b. Con notción mtemátic Gráficmente Cmbindo < se obtienen los intervlos biertos (, b. Se diferencin en que el intervlo cerrdo contienen los etremos y el bierto no. Tmbién hy intervlos semibiertos (o semicerrdos e infinitos (que se corresponden con un semirrect.. Escribe l definición de los siguientes intervlos numéricos, donde (, b = { < < b} [, b] = [, b = (, b] = [, = (, = (, b = (, b] = Mtemátics B. º ESO Tem Los números reles

8 =. Describe y represent gráficmente los siguientes intervlos (,0 = (, ] = [, = (, = [, [-, ] =. Escribe el intervlo que corresponde ls desigulddes siguientes < < < < L unión de dos intervlos es el conjunto de números que pertenecen lguno de los dos o mbos. Ejemplo [, (, = [, L intersección de dos intervlos es el conjunto de números que pertenecen mbos. Ejemplo [, (, = (,. Escribe con un único intervlo,, e. [, (,,, f. [, (,,, g. (, (,9,, h. (, (, 9. Si < b < c < d, escribe como intervlos (,c (b,d (, c (b, d 0. Ddos los intervlos A=(,, B=(-,], C=[-,, Clcul Si, se define el vlor bsoluto de ( y se represent como si 0 si si Mtemátics B. º ESO Tem Los números reles

9 .Clcul. Clcul el vlor de en. Clcul los números que cumplen ls siguientes desigulddes y epres el resultdo en form de intervlo. b. c. 0 d. e. 9 f. g. h. i. Mtemátics B. º ESO Tem Los números reles

10 .. Rdicles Def. Se llm ríz n-ésim de, y se escribe, un número b que cumple l siguiente condición n se llm índice de l ríz, es el rdicndo, y se llm rdicl Es clro que y Operciones con ríces. Ej. b Ej. c Ej. d Ej. e Ej. Potencis según el signo. Si el rdicndo es positivo siempre eiste. b Si el rdicndo es negtivo y el índice impr siempre eiste. c Si el rdicndo es negtivo y el índice pr no eiste. Según lo nterior, cuáles de ls siguientes ríces no eisten?. Clcul ls siguientes ríces f k b g l c h m d i n e j ñ Epresión eponencil de los rdicles. Un rdicl culquier se puede escribir en form de potenci con eponente rcionl de l siguiente mner y que y que Mtemátics B. º ESO Tem Los números reles

11 . Epres en form de potenci con eponente rcionl ls siguientes ríces bepres en form de ríz. Clcul usndo ls propieddes de ls ríces b c d e f. Simplific usndo ls propieddes de ls potencis b c d e f g h j k l m. Etre fctores de ls siguientes ríces b c d e f g h i j k b c 9 l b 0 m n ñ o. Introduce el fctor dentro de l ríz b c d e f g h. Epres medinte un solo rdicl b c d e. Simplific f b b g c h 9 b d Mtemátics B. º ESO Tem Los números reles

12 Reducción índice común. Ejemplo Reducir índice común los siguiente rdicles. Lo primero que se hce el hllr el mínimo común múltiplo de los índices. En nuestro cso m.c.m.(,,=. A continución escribimos tods ls ríces con este índice dividiendo (que es el índice común entre cd índice y elevndo el rdicndo l número obtenido, con lo que el resultdo es. 9. Reduce índice común b c Producto y división de ríces. Solo se pueden multiplicr (y dividir ríces con el mismo índice. Pr multiplicrls (o dividirls se escribe un sol ríz y dentro el producto (o división de los rdicndos. 0. Clcul y simplific b c d e f g h i j k l Sum de ríces. Solo se pueden sumr ríces que sen igules. Por tnto si tenemos que sumr ríces diferentes previmente hy que simplificrls (descomponiendo en fctores los rdicndos y etryendo fctores, y cundo sen igules y podremos sumrls.. Sum b c d e f g h i j k l m n Rcionlizción. Mtemátics B. º ESO Tem Los números reles

13 Rcionlizr un frcción con ríces en el denomindor es hllr otr frcción equivlente ell pero que no teng ríces en su denomindor. Ej. er cso. Solo hy un ríz cudrd en el denomindor. Se multiplicn numerdor y denomindor por es ríz, se oper y se simplific. Ej. Ej. º cso. Hy un ríz de índice distinto de. Ej. er cso. Hy sums o rests de ríces en el denomindor. En este cso se multiplics numerdor y denomindor por el conjugdo del denomindor, se oper y se simplific. Ej.. Rcionliz b c d e f g h i j k l m. p. Clcul y simplific n q m n Mtemátics B. º ESO Tem Los números reles ñ 0 r ( - ( + = b ( = o s c ( - = d (- = e + (. = f + - =. g - ( - = h + = i j k l

14 . Oper y simplific b c 0 0 d e b b f b b g h j k m o r t 9 l n ñ p 9 9 q 0 s u v. Comprueb si son verdders ls siguientes igulddes t b 0 c 9 9 d Mtemátics B. º ESO Tem Los números reles

15 . Logritmos Se > 0 y. Se llm ritmo en bse de un número l eponente l que hy que elevr pr obtener, es decir,. Clcul los siguientes ritmos ( ( = ( = 0 (000 = ( 0,0000 (/= (0' ( ( (0,. Clcul los ritmos en bse de los números -,, /, 0, y 0,. A prtir de l definición es clro que el ritmo en culquier bse de es igul 0, es decir,. A los ritmos de bse 0 se les llm ritmos decimles y se escriben (. A los ritmos de bse e se les llm ritmos neperinos y se escriben ln(.. Clcul el vlor de Propieddes de los ritmos Mtemátics B. º ESO Tem Los números reles

16 . Hll el vlor de A. Desrroll ls siguientes epresiones b c d = y z ln y z = Cmbio de bse Hy ocsiones en ls que es difícil hllr el ritmo de un número, l no ser éste un potenci ect de l bse. En este cso se us el cmbio de bse pr relcionr ritmos de bses culesquier medinte l siguiente fórmul Lo más norml es considerr b = 0 o b = e, y que los ritmos decimles y los neperinos son los que precen en ls clculdors.. Usndo l clculdor hll los siguientes ritmos. Hll el vlor de ( (. Clcul el vlor de ( ( ( ( ( Mtemátics B. º ESO Tem Los números reles

17 Mtemátics B. º ESO Tem Los números reles ( (9 ( ( 0 0 ( ( 9. Resuelve ls siguientes ecuciones eponenciles 9 0. Resuelve ls siguientes ecuciones eponenciles 9 9 b 0 d c 9 f e. Resuelve ls siguientes ecuciones eponenciles b.9 d c f e. Alguns de ls siguientes ecuciones puede no tener solución. Encuéntrls 9 b 9. d c 0. f e. Resuelve de cbez ls siguientes ecuciones rítmics 00 ( 9 ( 0 (. Resuelve hor ls siguientes ecuciones rítmics. 0 (0 ( c b ( 0. ( f e d 0 (. 0 ( i h g

18 Interés compuesto. Un cpitl se deposit interés compuesto cundo se cumuln l mismo los intereses l finl de cd período de liquidción (ño, mes, trimestre, dí,. De est form los intereses cumuldos ps tmbién producir réditos l finl del siguiente período de liquidción. El cpitl finl en que se convierte un cpitl inicil C colocdo un interés compuesto del R nul durnte t ños viene ddo por l epresión Donde. Si se deposit un cpitl de 000 l % de interés compuesto nul, En cuánto se hbrá convertido l cbo de ños?. Un cpitl de 0000 l % de interés compuesto nul, en ños se trnsform en. Un bnco ofrece un interés l % pgdero nulmente pr los cpitles ingresdos l brir un cuent de horro. Cuántos ños hn de estr colocdos pr que se duplique el cpitl ingresdo?. Qué cpitl debe imponerse un interés compuesto del % pr convertirse l cbo de un ño en un cpitl de 0000?. A qué tnto por ciento debe imponerse un cpitl pr duplicrlo en ños?. Si deposito 0000 l 0 % nul, cuánto dinero tendré l cbo de ños?. A qué tnto por ciento nul hy que colocr 0000 pr que se conviertn en l cbo de ños?. Cuánto tiempo hy que depositr un cpitl l % de interés compuesto pr triplicrlo? Mtemátics B. º ESO Tem Los números reles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero. TEMA 2: actividades

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero. TEMA 2: actividades º E.S.O. TEMA : ctividdes. Sc del rdicndo l myor cntidd posible de fctores: 0 0 0 800.. Epres como rdicl:. Simplific los siguientes rdicles: 8. Ps estos números de notción científic form ordinri:, 0 =,

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

TEMA 1 EL NÚMERO REAL

TEMA 1 EL NÚMERO REAL Tem El número rel Ejercicios resueltos Mtemátics B º ESO TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN DE NÚMEROS REALES EJERCICIO : Clsific los siguientes números como 0 ; ;,...; 7; ; ; ; 7, = 0,8

Más detalles

Números racionales son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresar en forma de fracción.

Números racionales son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresar en forma de fracción. MATEMÁTICAS ºACT TEMA. EL NÚMERO REAL. NÚMEROS RACIONALES. Números rcionles son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresr en form de frcción. Los números

Más detalles

TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN:

TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: TEMA LOS NÚMEROS REALES. LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los números rcionles: Se crcterizn porque pueden epresrse: En form de frcción, es decir, como cociente de dos números enteros: Q,

Más detalles

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8 POTENCIAS. Hll sin clculdor +.. Simplific utilizndo ls propieddes de ls potencis: b c ) 0 b c. Epres los siguientes rdicles medinte potencis de eponente frccionrio y simplific: ). Resuelve sin utilizr

Más detalles

Números Naturales. Los números enteros

Números Naturales. Los números enteros Números Nturles Con los números nturles contmos los elementos de un conjunto (número crdinl). O bien expresmos l posición u orden que ocup un elemento en un conjunto (ordinl). El conjunto de los números

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

LA FUNCIÓN LOGARÍTMICA

LA FUNCIÓN LOGARÍTMICA LA FUNCIÓN LOGARÍTMICA.- Definición.- Se denomin ritmo en bse de un número, l eponente que es preciso elevr pr que resulte. debe ser un número positivo y distinto de l unidd. Pr epresr que y es el ritmo

Más detalles

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3. Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio NUMEROS IRRACIONALES Conocemos hst hor distintos conjuntos numéricos: - Los n nturles: (, 8,.978), representdos por l letr N - Los n enteros: ( -, -, 8, 68), representdos por l letr Z - Los n rcionles

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

Los números racionales:

Los números racionales: El número rel MATEMÁTICAS I 1 1. EL CONJUNTO DE LOS NÚMEROS REALES. LA RECTA REAL 1.1. El conjunto de los números reles. Como y sbes los números nturles surgen de l necesidd de contr, expresr medids, pr

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por.

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por. Se distinguen distints clses de números: Números Reles Los números nturles son {1; 2; 3; }, el conjunto de todos ellos se represent por. El primer elemento es el 1 y no tiene último elemento Todo número

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 4 a 21

SOLUCIONES DE LAS ACTIVIDADES Págs. 4 a 21 TEMA. NÚMEROS REALES SOLUCIONES DE LAS ACTIVIDADES Págs. Págin. Actividd personl, por ejemplo:,...,...,...,9...,8.... ) No, pues un deciml puede tener un número limitdo de cifrs o ser periódico. Por ejemplo,,

Más detalles

EXPONENTES Y RADICALES

EXPONENTES Y RADICALES . UNIDAD EXPONENTES Y RADICALES Objetivo generl. Al terinr est Unidd resolverás ejercicios probles en los que pliques ls lees de los eponentes de los rdicles. Objetivos específicos:. Recordrás l notción

Más detalles

COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti

COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti COLEGIO SAN FRANCISCO DE SALES - 0 - Prof. Cecili Glimerti MATEMÁTICA AÑO B GUÍA N - NÚMEROS IRRACIONALES NUMEROS IRRACIONALES Conocemos hst hor distintos Conjuntos Numéricos: - Los n nturles: (, 8,.8),

Más detalles

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n

Más detalles

REPASO DE ECUACIONES (4º ESO)

REPASO DE ECUACIONES (4º ESO) TIPOS DE ECUACIONES.- REPASO DE ECUACIONES ( ESO) Eisten diversos tipos de ecuciones, entre ells estudiremos: Polinómics: En ells, l incógnit prece solmente en epresiones polinómics. El grdo de un ecución

Más detalles

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES FUNDAMENTOS DEL ÁLGEBRA CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES NOMBRE ID SECCIÓN SALÓN Prof. Evelyn Dávil Tbl de contenido TEMA A. CONJUNTOS NUMÉRICOS... REGLA PARA LA SUMA DE NÚMEROS REALES...

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Septiembre de 2015 Conjuntos Numéricos ) Los Números

Más detalles

MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS LOGARITMOS

MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS LOGARITMOS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS LOGARITMOS Unidd 4 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS UNIDAD DIDÁCTICA 4: LOGARITMOS. ÍNDICE. Introducción. Potencis funciones eponenciles.

Más detalles

ECUACIONES (4º ESO Op B)

ECUACIONES (4º ESO Op B) ECUACIONES ( ESO Op B) IDENTIDADES, IGUALDADES FALSAS Y ECUACIONES.- Un iguldd lgebric está formd por dos epresiones lgebrics (un de ells puede ser un número), seprds por el signo. Ejemplos.- + + 1 ( +

Más detalles

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 4 n 4 n es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de un sucesión

Más detalles

Multiplicar y dividir radicales

Multiplicar y dividir radicales Multiplicr y dividir rdicles 1 Repso Simplificr: 000 4 0 18 1000 4 4 4 10 4 0 0 ( ( ) 0 8) 0 0 0 8 Multiplicción de rdicles Si y son números reles, n n n n n Podemos decir que cundo multiplicmos rdicles

Más detalles

Ejemplo: Para indicar el conjunto (que llamaremos M), formado por los números 4, 6 y 8, escribimos: M = { 4, 6, 8}

Ejemplo: Para indicar el conjunto (que llamaremos M), formado por los números 4, 6 y 8, escribimos: M = { 4, 6, 8} NÚMEROS REALES. BREVE REPASO DE LA TEORÍA DE CONJUNTOS En est unidd utilizremos ls notciones l terminologí de conjuntos. L ide de conjunto se emple mucho en mtemátic se trt de un concepto básico del que

Más detalles

Es una función exponencial con base 2. Veamos con la rapidez que crece:

Es una función exponencial con base 2. Veamos con la rapidez que crece: Funciones eponenciles y ritmics Doc. Luis Hernndo Crmon R Funciones Eponenciles Ejemplos: f ( ) Es un función eponencil con bse. Vemos con l rpidez que crece: f () 8 f (0) 0 04 f (0) 0,07,74,84 Funciones

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) -FUNCION LOGARITMO NATURAL Definición propieddes L funcion logritmo nturl de un numero positivo se not ln su dominio es el conjunto de los números reles positivos

Más detalles

MATEMATICAS 3º ESO EJERCICIOS DE RECUPERACION DE LA 1ª EVALUACION

MATEMATICAS 3º ESO EJERCICIOS DE RECUPERACION DE LA 1ª EVALUACION MATEMATICAS º ESO EJERCICIOS DE RECUPERACION DE LA 1ª EVALUACION FRACCIONES Ejercicio 1: resuelve l siguiente operción psndo cd número deciml frcción previmente: ' '1'6 '1 0'15 Ejercicio : simplific ls

Más detalles

TEMA 1. NÚMEROS REALES

TEMA 1. NÚMEROS REALES TEMA. NÚMEROS REALES. El número que indic los dís del ño es un número muy curioso. Es el único número que es sum de los cudrdos de tres números nturles consecutivos y que demás es sum de los cudrdos de

Más detalles

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 + + + + 4 4 n n + es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de

Más detalles

Ecuaciones de 1 er y 2º grado

Ecuaciones de 1 er y 2º grado Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones

Más detalles

Multiplicar por la potencia de 10 adecuada para convertirlo en entero. Despejar N 119. Simplificar la fracción, si es posible N = 50

Multiplicar por la potencia de 10 adecuada para convertirlo en entero. Despejar N 119. Simplificar la fracción, si es posible N = 50 .0 INTRODUCCIÓN º.0. ESQUEMA DE CLASIFICACIÓN DE LOS NÚMEROS º RACIONALES(Q)???????? NO RACIONALES NATURALES(N) 0 ; ; ; 8... ENTEROS (Z) - ENTEROS NEGATIVOS -; ; 8... Decimles exctos :0,; ;... FRACCIONARIOS.

Más detalles

Números reales. 1. Números y expresiones decimales. página El conjunto de los números reales página La recta real. Intervalos página 9

Números reales. 1. Números y expresiones decimales. página El conjunto de los números reales página La recta real. Intervalos página 9 Números reles E S Q U E M A D E L A U N I D A D.. Los números rcionles págin.. Los números irrcionles págin. Números y expresiones decimles págin. El conjunto de los números reles págin 8 4.. Orden y desiguldd

Más detalles

Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta.

Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta. Propieddes de l Potenci Distributiv con respecto l producto ( = b Distributiv con respecto l división b b Producto de potencis de igul bse n = n + División de potencis de igul bse n n Potenci de potenci

Más detalles

1. NÚMEROS RACIONALES

1. NÚMEROS RACIONALES IES Jun Grcí Vldemor Deprtmento de Mtemátics 4º ESO Mtemátics B. NÚMEROS RACIONALES Desde l prición de ls socieddes humns los números desempeñn un ppel fundmentl pr ordenr y contr los elementos de un conjunto.

Más detalles

Matemáticas II TEMA 7 Repaso del conjunto de los números reales y de funciones reales

Matemáticas II TEMA 7 Repaso del conjunto de los números reales y de funciones reales Mtemátics II TEMA 7 Repso del conjunto de los números reles y de funciones reles El conjunto de los números reles El conjunto de los números reles, R, es el más mplio de los números usules Puede considerrse

Más detalles

Potencias y radicales

Potencias y radicales CUADERNO Nº Potencis y rdicles Es necesrio que repsemos ls propieddes de ls potencis. En l escen puedes bordr este repso y ver múltiples ejemplos de cd propiedd. Complet l siguiente tbl: Propiedd (Complet

Más detalles

UNIDAD DIDÁCTICA 4: LOGARITMOS

UNIDAD DIDÁCTICA 4: LOGARITMOS Tem 4 UNIDAD DIDÁCTICA 4: LOGARITMOS 1. ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función rítmic ritmos 4. Ecuciones eponenciles rítmics 2. INTRODUCCIÓN GENERAL A LA UNIDAD Y ORIENTACIONES

Más detalles

NÚMEROS RACIONALES. Los números racionales son todos aquellos números de la forma b

NÚMEROS RACIONALES. Los números racionales son todos aquellos números de la forma b NÚMEROS RACIONALES Los números rcionles son todos quellos números de l form b con y b números enteros y b distinto de cero. El conjunto de los números rcionles se represent por l letr Q. IGUALDAD ENTRE

Más detalles

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el

Más detalles

OPERACIONES CON RADICALES

OPERACIONES CON RADICALES OPERACIONES CON RADICALES RAÍCES Y RADICALES L ríz n-ésim de un número, representd por n, es un operción sore que d como resultdo un número tl que n. Si n es pr, h dos resultdos posiles: positivo negtivo:,

Más detalles

Se llama logaritmo en base a de P, y se escribe log a P, al exponente al que hay que elevar la base a para obtener P.

Se llama logaritmo en base a de P, y se escribe log a P, al exponente al que hay que elevar la base a para obtener P. Log P X Se llm ritmo en bse de P, y se escribe P, l eponente l que hy que elevr l bse pr obtener P. Log P P Ejemplo: 8 8 L l it b d 8 Leemos, ritmo en bse de 8 es porque elevdo es 8. Anámente podemos decir:

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 10 - XI- 14 CURSO Resuelve las siguientes ecuaciones y comprueba las soluciones obtenidas:

Apellidos: Nombre: Curso: 1º Grupo: C Día: 10 - XI- 14 CURSO Resuelve las siguientes ecuaciones y comprueba las soluciones obtenidas: EXAMEN DE MATEMÁTICAS ALGEBRA Apellidos: Nombre: Curso: º Grupo: C Dí: - XI- 4 CURSO 4-5. Hll el vlor de log log ), 4 log log b) log4 6 -log -log log 7 4 6. Clcul x pr que se cumpl: ) log 6,45,5 b) 5 +,58.

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

TEMA8: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS

TEMA8: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS TEMA8: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS. LA FUNCIÓN EXPONENCIAL Ejercicio: º) Resuelve ls siguientes ecuciones plicndo ls propieddes de ls potencis:. = 8 + 6 9. 5. = = 0. + = 6 8

Más detalles

2 Números racionales positivos

2 Números racionales positivos Progrm Inmersión, Verno 0 Nots escrits por Dr. M Nots del cursos. Bsds en los pronturios de MATE 00 y MATE 0 Clse #: miércoles, de junio de 0. Números rcionles positivos. Consceptos básicos del conjunto

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES Se dice que un función y f() tiene límite "L" cundo l tiende "" y lo representmos por: f() L cundo pr tod sucesión de números reles que se proime "" tnto como quermos, los vlores correspondientes

Más detalles

LÍMITES CONCEPTO INTUITIVO DE LÍMITE

LÍMITES CONCEPTO INTUITIVO DE LÍMITE Mrí Teres Szostk Ingenierí Comercil Mtemátic II Clse Nº, LÍMITES El concepto de ite, es uno de los pilres en que se bs el Análisis Mtemático, se encontrb en 8 en estdo potencil, ern más principios intuitivos

Más detalles

Unidad 2. Fracciones y decimales

Unidad 2. Fracciones y decimales Mtemátics Múltiplo.º ESO / Resumen Unidd Unidd. Frcciones y decimles FRACCIONES NÚMEROS DECIMALES EXPRESIÓN, 8, 9 SIGNIFICADO FRACCIONES EQUIVALENTES 0 30 0 0 Prte de un unidd Prte de un cntidd ORDENACIÓN

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

LOGARITMOS. John Neper ( ) Henry Briggs ( )

LOGARITMOS. John Neper ( ) Henry Briggs ( ) LOGARITMOS John Neper (550-67) Henry Briggs (56-630) MATEMÁTICAS CCSS I º Bchillerto Alfonso González IES Fernndo de Men Dpto. de Mtemátics I) FUNCIÓN EXPONENCIAL de BASE f()= «Es quell función en l que

Más detalles

1.- Obtener, sin calculadora, el valor de x en las siguientes expresiones: (5 ) = = = 5, por tanto 2x=-3/2 y x=-3/4 = ;

1.- Obtener, sin calculadora, el valor de x en las siguientes expresiones: (5 ) = = = 5, por tanto 2x=-3/2 y x=-3/4 = ; RESOLUCIÓN DE LOS EJERCICIOS BÁSICOS DEFINICIÓN DE LOGARITMO.- Obtener, sin clculdor, el vlor de en ls siguientes epresiones: ) (/) = 7/; 7/= / =(/) =(/) -, por tnto =- b) = ; ( ) = = =, por tnto =-/ y

Más detalles

1 Agrupa aquellos monomios de los que siguen que sean semejantes, y halla su suma: , cuando:

1 Agrupa aquellos monomios de los que siguen que sean semejantes, y halla su suma: , cuando: Agrup quellos monomios de los que siguen que sen semejntes, y hll su sum: m, bn y, m, bm, b my, m, n by, mb Son semejntes el º, el º y el º, su sum es: Tmbién lo son el º y el º: bn y 0 Lo mismo ocurre

Más detalles

Ejercicios. Números enteros, fraccionarios e irracionales.

Ejercicios. Números enteros, fraccionarios e irracionales. CEPA Enrique Tierno Glván. Ámbito Científico-Tecnológico. Nivel Ejercicios. Números enteros frccionrios e irrcionles. Números enteros. Represent en l rect rel los siguientes números enteros - 0 - -. Qué

Más detalles

Los números enteros y racionales

Los números enteros y racionales Los números enteros y rcionles Objetivos En est quincen prenderás : Representr y ordenr números enteros Operr con números enteros Aplicr los conceptos reltivos los números enteros en problems reles Reconocer

Más detalles

( ) ( ) ( ) ( ) 4. Aplique las propiedades de la potenciación y la radicación para simplificar las siguientes expresiones.

( ) ( ) ( ) ( ) 4. Aplique las propiedades de la potenciación y la radicación para simplificar las siguientes expresiones. DEPARTAMENTO DE MATEMÁTICAS ÁREA DE MATEMÁTICAS TEMA: PERÍODO: ORIENTADOR: ESTUDIANTE: E-MAIL: FECHA: TEORÍA DE LOS EXPONENTES, LOS RADICALES Y LOS LOGARITMOS PRIMERO UNIDAD TEORÍA DE LOS EXPONENTES, LOS

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Myo de 2015 Operciones Básics con Frcciones Número

Más detalles

el blog de mate de aida: Matemáticas Aplicadas a las Ciencias Sociales I. Ecuaciones. pág. 1

el blog de mate de aida: Matemáticas Aplicadas a las Ciencias Sociales I. Ecuaciones. pág. 1 el de mte de id: Mtemátics Aplicds ls Ciencis Sociles I. Ecuciones. pág. ECUACIONES Un ecución es un propuest de iguldd en l que interviene un letr llmd incógnit. L solución de l ecución es el vlor o vlores

Más detalles

Ejercicios de números reales

Ejercicios de números reales Ejercicios de números reles Clsific los siguientes números como nturles, enteros, rcionles o reles:, Ejercicio nº.- Consider los siguientes números: 1,000000... 1,,1... Clsifíclos según sen nturles, enteros,

Más detalles

LITERATURA Y MATEMÁTICAS. El código Da Vinci

LITERATURA Y MATEMÁTICAS. El código Da Vinci Números reles SOLUCIONARIO Números reles LITERATURA Y MATEMÁTICAS El código D Vinci El profesor Lngdon se sintió un vez más en Hrvrd, de nuevo en su clse de «Simbolismo en el Arte», escribiendo su número

Más detalles

4º ESO ACADÉMICAS NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa NÚMEROS REALES

4º ESO ACADÉMICAS NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa NÚMEROS REALES º ESO ACADÉMICAS NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. NÚMEROS REALES.- Escrie un número que cumpl: ) Pertenece N y I. ) Pertenece R pero no Q. c) No pertenece R. d) Pertenece Q pero no N. ) IMPOSIBLE

Más detalles

IES Fernando de Herrera 13 de enero de 2014 Primer trimestre Examen de autoevaluación 1º Bach CCSS NOMBRE:

IES Fernando de Herrera 13 de enero de 2014 Primer trimestre Examen de autoevaluación 1º Bach CCSS NOMBRE: IES Fernndo de Herrer de enero de 04 Primer trimestre Exmen de utoevlución º Bch CCSS NOMBRE: 7 ) ) Representr en l rect rel: b) Qué número es el indicdo en el gráfico? 0 ) Clculr el resultdo simplificdo

Más detalles

NÚMEROS REALES. 1. Clasificar los números decimales en periódicos y no periódicos o irracionales.

NÚMEROS REALES. 1. Clasificar los números decimales en periódicos y no periódicos o irracionales. UNIDAD NÚMEROS REALES OBJETIVOS DIDÁCTICOS:. Clsificr los números decimles en periódicos y no periódicos o irrcionles.. (**) Operr con rdicles.. Simplificr epresiones rdicles.. (**) Rcionlizr epresiones

Más detalles

LOGARITMOS. John Neper ( ) Henry Briggs ( ) MATEMÁTICAS I 1º Bachillerato Alfonso González IES Fernando de Mena Dpto.

LOGARITMOS. John Neper ( ) Henry Briggs ( ) MATEMÁTICAS I 1º Bachillerato Alfonso González IES Fernando de Mena Dpto. LOGARITMOS John Neper (550-67) Henry Briggs (56-60) MATEMÁTICAS I º Bchillerto Alfonso González IES Fernndo de Men Dpto. de Mtemátics I) FUNCIÓN EXPONENCIAL de BASE f()= «Es quell función en l que l vrible

Más detalles

(lo podemos visualizar como el área de un cuadrado de lado 4) Pues bien, diremos que la base de dicha potencia, 4, es su raíz cuadrada exacta: 16 = 4.

(lo podemos visualizar como el área de un cuadrado de lado 4) Pues bien, diremos que la base de dicha potencia, 4, es su raíz cuadrada exacta: 16 = 4. Deprtmento de Mtemátics http://www.colegiovirgendegrci.org/eso/dmte.htm ARITMÉTICA: Rdicles. RADICALES... Ríz cudrd. Anlicemos los siguientes ejemplos: == es un potenci de se y exponente. El resultdo,,

Más detalles

Actividades propuestas

Actividades propuestas Cpítulo 1: Números reles TEORÍA. Mtemátics º de ESO En este primer cpítulo vmos repsr muchs coss que y conoces, como ls operciones con los números, representr los números en un rect, ls potencis Si todo

Más detalles

FUNCIONES REALES. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.

FUNCIONES REALES. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS. FUNCIONES REALES. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. CONCEPTO DE FUNCIÓN. Llmmos correspondenci entre dos conjuntos A B culquier form de signr lgunos o todos los elementos de A otros elementos de

Más detalles

CURSO DE NIVELACIÓN 2012 EJERCITARIO TEÓRICO DE MATEMÁTICA I

CURSO DE NIVELACIÓN 2012 EJERCITARIO TEÓRICO DE MATEMÁTICA I CURSO DE NIVELACIÓN 0 EJERCITARIO TEÓRICO DE MATEMÁTICA I 0 EJERCITARIO TEÓRICO DE MATEMÁTICA I. Con relción l potencición, se firm que es un operción: ) Conmuttiv. ) Distriutiv respecto l sum. 3) Distriutiv

Más detalles

1. Números reales. Resuelve BACHILLERATO. Página 25

1. Números reales. Resuelve BACHILLERATO. Página 25 . Números reles Unidd. Números reles Mtemátics plicds Mtemátics ls I Ciencis Sociles I Resuelve Págin A l F B d C. Demuestr que los triángulos ABF EBD son semejntes (es decir, demuestr que sus ángulos

Más detalles

Manual de teoría: Álgebra Matemática Bachillerato

Manual de teoría: Álgebra Matemática Bachillerato Mnul de teorí: Álgebr Mtemátic Bchillerto Relizdo por José Pblo Flores Zúñig Álgebr: José Pblo Flores Zúñig Págin Contenido: ) Álgebr. Fctorizción. Simplificción de epresiones lgebrics. Ecuciones Álgebr:

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO EJERCICIOS RECOLECTADOS EN LA RED. (MATEMÁTICA I ADMINISTRACIÓN) INECUACIONES Y VALOR ABSOLUTO INTERVALOS DESIGUALDADES INECUACIONES INTERVALOS EN LA RECTA REAL Ddos dos números culesquier y b, tles que

Más detalles

1. Números reales. Resuelve BACHILLERATO. Página 29

1. Números reales. Resuelve BACHILLERATO. Página 29 . Números reles Unidd. Números reles Mtemátics plicds Mtemátics ls I Ciencis Sociles I Resuelve Págin 9 A l F B d C. Demuestr que los triángulos ABF y EBD son semejntes (es decir, demuestr que sus ángulos

Más detalles

el blog de mate de aida: Matemáticas I. Ecuaciones. pág. 1

el blog de mate de aida: Matemáticas I. Ecuaciones. pág. 1 el log de mte de id: Mtemátics I. Ecuciones. pág. ECUACIONES Un ecución es un propuest de iguldd en l que interviene un letr llmd incógnit. L solución de l ecución es el vlor o vlores de l incógnit (o

Más detalles

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( )

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( ) Concepto clve L derivd de un función se define principlmente de dos mners: 1. Como el límite del cociente de Fermt f ( ) lím x f ( x) f ( ) x. Como el límite del cociente de incrementos f ( x) lím x 0

Más detalles

TEMA 7: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS

TEMA 7: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS TEMA 7: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS. POTENCIAS L epresión n se llm potenci de bse y eponente n: Si n es un número nturl: n =, n veces. 0 =, = n m n n m = y = n Ejercicios: º)

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

Nivelación de Cálculo

Nivelación de Cálculo Guí de Conceptos y Ejercicios Aplicdos l Cálculo Desrrolldos y Propuestos 1. Potencis. Nivelción de Cálculo Ejeplo plicdo l cálculo: Clcul el siguiente líite: n n lí 5 Pr desrrollr este ejercicio de cálculo,

Más detalles

accés a la universitat dels majors de 25 anys MATEMÀTIQUES UNIDAD DIDÁCTICA 4: LOGARITMOS

accés a la universitat dels majors de 25 anys MATEMÀTIQUES UNIDAD DIDÁCTICA 4: LOGARITMOS Unitt d ccés ccés l universitt dels mjors de 25 ns Unidd de cceso cceso l universidd de los mores de 25 ños UNIDAD DIDÁCTICA 4: LOGARITMOS ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función

Más detalles

EJERCICIOS DE RAÍCES

EJERCICIOS DE RAÍCES EJERCICIOS DE RAÍCES º ESO RECORDAR: Definición de ríz n-ésim: n x x Equivlenci con un potenci de exponente frccionrio: n m x Simplificción de rdicles/índice común: Propieddes de ls ríces: x m/n n n b

Más detalles

C U R S O : MATEMÁTICA

C U R S O : MATEMÁTICA C U R S O : MATEMÁTICA GUÍA TEÓRICO PRÁCTICA Nº 3 1. NÚMEROS RACIONALES UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS RACIONALES Los números rcionles son todos quellos números de l form b con y b números

Más detalles

3º ESO NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa NÚMEROS REALES

3º ESO NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa NÚMEROS REALES º ESO NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. NÚMEROS REALES.- NÚMEROS RACIONALES Los números rcionles son lo que hbitulmente conocemos como frcciones. Un número rcionl o frcción está compuesto por

Más detalles

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS Mtemátic Unidd - UNIDAD N : EXPRESIONES ALGEBRAICAS POLINOMIOS ÍNDICE GENERAL DE LA UNIDAD Epresiones Algebrics Enters...... Polinomios..... Actividdes... 4 Vlor Numérico del polinomio........ 4 Concepto

Más detalles

El conjunto de los números reales se forma mediante la unión del conjunto de los números racionales y el conjunto de los números irracionales.

El conjunto de los números reales se forma mediante la unión del conjunto de los números racionales y el conjunto de los números irracionales. El conjunto de los números reles (R) El conjunto de los números reles se form medinte l unión del conjunto de los números rcionles y el conjunto de los números irrcionles. Propieddes del conjunto R R =

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

LOGARITMO 4º AÑO DEF. Y PROPIEDADES

LOGARITMO 4º AÑO DEF. Y PROPIEDADES LOGARITMO º AÑO DEF. Y PROPIEDADES En l epresión n c, puede clculrse un de ests tres cntiddes si se conocen dos de ells resultndo de este odo, tres operciones diferentes: º Potenci º Rdicción º Logrito

Más detalles

pág CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si:

pág CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: .- CONTINUIDAD TEMA 6 Continuidd, Cálculo Diferencil. FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continu en si: Lim f( ) f( ) Pr que un función se continu en un punto se h de cumplir: º f ( ) D º Lim

Más detalles

Descomposición elemental (ajustes por constantes)

Descomposición elemental (ajustes por constantes) Descomposición elementl (justes por constntes) OBSERVACIONES. Ls primers integrles que precen se hn obtenido del libro de Mtemátics I (º de Bchillerto) McGrw-Hill, Mdrid 007.. Otros problems se hn obtenido

Más detalles

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015 Colegio Diocesno Sgrdo Corzón de Jesús EJERCICIOS MATEMÁTICAS º ESO VERANO º. Amplific ls siguientes frcciones pr que tods tengn denomindor b c d º. Cuál de ls siguientes frcciones es un frcción mplificd

Más detalles

Efectuando la división (2x 2 = 1x y 6 2=3) se tiene III. PROBLEMAS QUE SE RESUELVEN UTILIZANDO ECUACIONES DE PRIMER GRADO CON UNA INCOGNITA.

Efectuando la división (2x 2 = 1x y 6 2=3) se tiene III. PROBLEMAS QUE SE RESUELVEN UTILIZANDO ECUACIONES DE PRIMER GRADO CON UNA INCOGNITA. TEORIA GENERAL DE LAS ECAUCIONES I. IGUALDADES Y ECUACIONES Ls igulddes son epresiones en donde precen el símolo = Ejemplos:. 5 + = 15-7. + 6 = 5 Alguns propieddes de ls igulddes que utilizremos son: Si

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 147

INSTITUTO VALLADOLID PREPARATORIA página 147 INSTITUTO VALLADOLID PREPARATORIA págin 17 págin 18 EXPONENTES NEGATIVOS Y FRACCIONARIOS EXPONENTES L ide de los eponentes nce con l necesidd de revir cierts multiplicciones. Como es sido, cundo se multiplic

Más detalles

Respuesta: Con este resultado Anahí decide contratar a estos pintores.

Respuesta: Con este resultado Anahí decide contratar a estos pintores. Universidd de Concepción Fcultd de Ciencis Veterinris Nivelción de Mtemátics(0) Unidd-I: Conjunto de los Números Rcionles Introducción: Al plnter l necesidd de dividir números enteros, surge un problem:

Más detalles

UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD

UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD Introducción Ide de ite Propieddes de los ites Operciones con. Indeterminciones Regls práctics pr l obtención del ite Asíntots horizontles y verticles Continuidd

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES RAÍCES FUNCIÓN RAÍZ CUADRADA

UNIDAD: ÁLGEBRA Y FUNCIONES RAÍCES FUNCIÓN RAÍZ CUADRADA C u r s o : Mtemátic Mteril N 7 UNIDAD: ÁLGEBRA Y FUNCIONES RAÍCES FUNCIÓN RAÍZ CUADRADA GUÍA TEÓRICO PRÁCTICA Nº DEFINICIÓN : Si n es un entero pr positivo es un rel no negtivo, entonces n es el único

Más detalles