Esterilización 1 4. Envase 3 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Esterilización 1 4. Envase 3 2"

Transcripción

1 9.- Una empresa de productos lácteos fabrica dos tipos de leche: entera y desnatada. El proceso de fabricación se lleva a cabo mediante una máquina de esterilización y otra de envase, donde el tiempo (expresado en horas por día) empleado por cada máquina y para cada unidad de leche, viene dado por la siguiente tabla: Entera Desnatada Esterilización 4 Envase 3 El número máximo de horas diarias disponibles de cada una de las máquinas es de 0. Según la demanda del mercado, la empresa debe fabricar al menos 5 unidades diarias de leche entera. El beneficio unitario de la leche entera es de 6 u.m. y el de la desnatada de 9. Suponiendo que las unidades de leche pueden ser fabricadas total o parcialmente, responda a las siguientes cuestiones: a) Halle el número de unidades diarias a fabricar de cada tipo de leche para maximizar el beneficio. b) Cuánto aumentaría o disminuiría el beneficio si la máquina de envase pasase a disponer de una hora más diaria? Y si aumentamos en una hora el tiempo de la máquina de esterilización? c) Mediante la representación gráfica, compruebe la solución del apartado a) y explique gráficamente la repercusión de aumentar una hora en una de las máquinas. d) Si aumentamos la disponibilidad de las dos máquinas en una hora, el aumento o decremento del beneficio será la suma de las cantidades del apartado b)? En caso de no serlo, obtenga el verdadero aumento o decremento. Solución: a) Halle el número de unidades diarias a fabricar de cada tipo de leche para maximizar el beneficio. Denotamos por x el número de unidades de leche entera y por x el de leche desnatada. Dado que las unidades de leche se pueden producir total o parcialmente, las variables no tienen que tomar necesariamente valores enteros. La formulación matemática del problema de esta empresa es, por tanto:

2 Max s. a. 6x x 3x + 9x + 4 x + x x, x x Resolviendo este problema con el programa LINDO obtenemos el siguiente resultado 0 Por tanto: La empresa debe producir diariamente cinco unidades de leche entera y 5 5/ unidades de leche desnatada: x * = 5, x* =. Con ello le sobran cinco horas en la máquina de esterilización y ninguna en la máquina de envasado. El beneficio diario que obtiene es de 5,5 u.m. b) Cuánto aumentaría o disminuiría el beneficio si la máquina de envase pasase a disponer de una hora más diaria? Y si aumentamos en una hora el tiempo de la máquina de esterilización? Realizamos el análisis acerca del incremento en el número de horas en una de las máquinas a partir de la interpretación de los multiplicadores de Lagange (variables duales). Los valores de estas variables, a partir de los resultados obtenidos mediante el programa LINDO (véase la columna DUAL PRICES) son:

3 lo que implica que: λ * = 0 y λ * = 4,5, Un aumento en una hora en la máquina de esterilización ( b = ) no modifica el valor de la función objetivo en el óptimo: z* = λ b = 0 =0. Un aumento en una hora en la máquina de envase ( b = ) modifica el valor de la función objetivo en el óptimo en 4,5 unidades monetarias: z* = λ b = 4,5 = 4,5. No obstante, hay que señalar que esta interpretación de la variable dual es válida sólo si la variación en el recurso no da lugar a un cambio en la base óptima. Así, si consideramos una reducción en el primer recurso de 6 unidades, la interpretación anterior deja de ser válida, porque la base óptima cambia. Comprobamos esto resolviendo el problema para b = 4. Si la base óptima se mantuviese la variación en la función objetivo sería: z* = λ b = 0 (-6) =0 Sin embargo, si resolvemos el problema con este valor del recurso, la solución óptima es: Obsérvese que la función objetivo cambia (de 5,5 pasa a valer 5) y esto se debe a que la base ha cambiado. Ahora la variable de holgura correspondiente a la tercera restricción es no nula y la de la primera ha pasado a valer 0. c) Mediante la representación gráfica, compruebe la solución del apartado a) y explique gráficamente la repercusión de aumentar una hora en una de las máquinas.

4 La gráfica del problema es: La restricción es redundante. Además una aumento en una hora en la máquina de envasado desplazará la restricción hacia arriba y la restricción seguirá siendo redundante. En cambio, la restricción es activa en el óptimo. Si aumentamos una hora el proceso de la máquina de esterilización, esta restricción se desplaza hacia arriba. Con ello va a cambiar la solución óptima (no así la base óptima) y el óptimo se obtiene en una curva de nivel mayor, lo que indica que aumentará el valor de la función objetivo en el óptimo, tal y como se ha visto en el apartado b). La siguiente gráfica muestra todo esto:

5 d) Si aumentamos la disponibilidad de las dos máquinas en una hora, el aumento o decremento del beneficio será la suma de las cantidades del apartado b)? En caso de no serlo, obtenga el verdadero aumento o decremento. La cuestión que abordamos ahora es qué ocurre si consideramos una variación en ambos recursos de forma simultánea. Gráficamente, vemos que una variación de estos dos recursos a la vez hace que cambie el óptimo. Analíticamente, para ver cómo cambia la función objetivo cuando los dos recursos varían al mismo tiempo, tendríamos que calcular la derivada direccional de la función objetivo evaluada en el óptimo, respecto de los recursos, con el vector dirección v = (, ) t : D z( x *( b, )) (,) b Sin embargo, dado que nuestro problema es lineal, se verifica que: z * = = λ b + λ b = 0 + 4,5 4,5. No obstante, hay que recordar que la interpretación de las variables duales es válida sólo si la variación en los recursos no da lugar a un cambio en la base óptima.

PROBLEMA 1. Considere el siguiente problema de programación lineal:

PROBLEMA 1. Considere el siguiente problema de programación lineal: PROBLEMA 1 Considere el siguiente problema de programación lineal: Sean h1 y h2 las variables de holgura correspondientes a la primera y segunda restricción, respectivamente, de manera que al aplicar el

Más detalles

Introducción a Programación Lineal

Introducción a Programación Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 18 Programación Lineal ICS 1102 Optimización Profesor : Claudio Seebach 4 de octubre de 2005

Más detalles

Práctica 2: Análisis de sensibilidad e Interpretación Gráfica

Práctica 2: Análisis de sensibilidad e Interpretación Gráfica Práctica 2: Análisis de sensibilidad e Interpretación Gráfica a) Ejercicios Resueltos Modelización y resolución del Ejercicio 5: (Del Conjunto de Problemas 4.5B del libro Investigación de Operaciones,

Más detalles

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú Teoría de la dualidad El desarrollo de esta teoría de la dualidad es debido al interés que existe en la interpretación económica

Más detalles

Método Gráfico. Dr. Mauricio Cabrera

Método Gráfico. Dr. Mauricio Cabrera Método Gráfico Dr. Mauricio Cabrera Problema Introductorio La Wyndor Glass Co. Produce artículos de vidrio de alta calidad, incluidas ventanas y puertas de vidrio que incluyen trabajo manual y la mejor

Más detalles

La concentración de ozono contaminante, en microgramos por metro cúbico, en una

La concentración de ozono contaminante, en microgramos por metro cúbico, en una ANÁLISIS MATEMÁTICO. PAU CASTILLA Y LEÓN A) EJERCICIOS DE APLICACIÓN A LAS CCSS La concentración de ozono contaminante, en microgramos por metro cúbico, en una ciudad viene dada por la función C ( ) 90

Más detalles

3.1 Por inspección del tablero óptimo genere las respuestas a los numerales dados. X 1 = Cantidad de tarjetas de invitación a producir semanalmente en Kimberly Colpapel y X 2 = Cantidad de tarjetas de

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de

Más detalles

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no El Plano y la Recta en el Espacio Matemática 4º Año Cód. 145-15 P r o f. M a r í a d e l L u j á n M a r t í n e z P r o f. J u a n C a r l o s B u e P r o f. M i r t a R o s i t o P r o f. V e r ó n i

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

5.- Problemas de programación no lineal.

5.- Problemas de programación no lineal. Programación Matemática para Economistas 7 5.- Problemas de programación no lineal..- Resolver el problema Min ( ) + ( y ) s.a 9 5 y 5 Solución: En general en la resolución de un problema de programación

Más detalles

Tema 5: Análisis de Sensibilidad y Paramétrico

Tema 5: Análisis de Sensibilidad y Paramétrico Tema 5: Análisis de Sensibilidad y Paramétrico 5.1 Introducción 5.2 Cambios en los coeficientes de la función objetivo 5.3 Cambios en el rhs 5.4 Análisis de Sensibilidad y Dualidad 5.4.1 Cambios en el

Más detalles

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1 Espacios Vectoriales 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Espacios Vectoriales... 4 1.1 Definición de espacio vectorial... 4 1.2 Definición de subespacio vectorial...

Más detalles

2 = 1 0,5 + = 0,5 c) 3 + = = 2

2 = 1 0,5 + = 0,5 c) 3 + = = 2 Trabajo Práctico N : SISTEMAS DE ECUACIONES LINEALES Ejercicio : Resuelva los siguientes sistemas de ecuaciones lineales empleando cuando sea posible: i) Método matricial. ii) Regla de Cramer. Interprete

Más detalles

CONTINUIDAD Y DERIVABILIDAD

CONTINUIDAD Y DERIVABILIDAD . Sea la función f ( ) = 6 CONTINUIDAD Y DERIVABILIDAD a. Determine sus puntos de corte con los ejes. b. Calcule sus etremos relativos y su punto de infleión. c. Represente gráficamente la función.. Sea

Más detalles

Introducción a la Programación Lineal

Introducción a la Programación Lineal UNIDAD 0 Introducción a la Programación Lineal. Modelo de Programación Lineal con dos variables Ejemplo: (La compañía Reddy Mikks) Reddy Mikks produce pinturas para interiores y eteriores, M y M. La tabla

Más detalles

PRINCIPALES CONCEPTOS RELACIONADOS CON LOS COSTES

PRINCIPALES CONCEPTOS RELACIONADOS CON LOS COSTES PRINCIPALES CONCEPTOS RELACIONADOS CON LOS COSTES s: Valor monetario de los recursos y factores utilizados o consumidos para el desarrollo de un proceso productivo, que da lugar a la obtención de un bien

Más detalles

MATRICES: CÁLCULO DE LA INVERSA MEDIANTE EL DETERMINANTE Y LA ADJUNTA:

MATRICES: CÁLCULO DE LA INVERSA MEDIANTE EL DETERMINANTE Y LA ADJUNTA: MTRICES: TEORÍ COMPLEMEMENTRI Existe otro método para calcular la inversa y que sólo usaremos para matrices cuadradas de orden o de orden 3. Para ello es necesario conocer estos dos conceptos: CÁLCULO

Más detalles

PLATEJAMENT: 20 pollos 1 metro cuadrado 1 pollo 1/20 m 2 = conejo 1/10 m 2 = lechón ½ m 2 = 0.5. Restricciones:

PLATEJAMENT: 20 pollos 1 metro cuadrado 1 pollo 1/20 m 2 = conejo 1/10 m 2 = lechón ½ m 2 = 0.5. Restricciones: EJERCICIO Un ganadero esta estudiando la posibilidad de utilizar una nave que posee para criar pollos, conejos y lechones. Para criarlos dispone de una nave de 2000 metros cuadrados y de 240 kilos de un

Más detalles

Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como:

Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como: UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono 2532-2668/Telefax 2532-2684 INVESTIGACIÓN DE OPERACIONES LABORATORIO #7 ANALISIS DE SENSIBILIDAD Y DUALIDAD DE UN PPL I.

Más detalles

Ejercicios de ecuaciones, sistemas, inecuaciones.

Ejercicios de ecuaciones, sistemas, inecuaciones. Matemáticas 1º Bach CCSS. Ejercicios Tema 2. Ecuaciones, sistemas. Pág 1/11 Ejercicios de ecuaciones, sistemas, inecuaciones. 1. x 4 10x 2 + 9 = 0 2. 3. x 4 61x 2 + 900 = 0 4. x 4 25x 2 + 144 = 0 6. 7.

Más detalles

POST-OPTIMIZACIÓN Y SENSIBILIDAD EN PROBLEMAS LINEALES.

POST-OPTIMIZACIÓN Y SENSIBILIDAD EN PROBLEMAS LINEALES. POST-OPTIMIZACIÓN Y SENSIBILIDAD EN PROBLEMAS LINEALES. Una de las hipótesis básicas de los problemas lineales es la constancia de los coeficientes que aparecen en el problema. Esta hipótesis solamente

Más detalles

PRÁCTICA 5. Para ver donde se maximiza esta función hay que ver donde se anula la primera derivada respecto al precio. R

PRÁCTICA 5. Para ver donde se maximiza esta función hay que ver donde se anula la primera derivada respecto al precio. R .- La función de demanda de un bien viene dada por. Se pide: a) Demuestre matemáticamente para que cantidad se obtiene el máximo de los ingresos totales. El ingreso total es la cantidad de producto por

Más detalles

ECONOMÍA DE LA EMPRESA

ECONOMÍA DE LA EMPRESA ECONOMÍA DE LA EMPRESA PROBLEMAS DE PRODUCTIVIDAD 1 Una empresa de fabricación de cajas fuertes blindadas produce dos tipos de cajas de seguridad: Mod. Tempranillo y Mod. Ecija siete. a) Calcular la productividad

Más detalles

UNIVERSIDAD DE MANAGUA

UNIVERSIDAD DE MANAGUA UNIVERSIDAD DE MANAGUA Sistemático de Programación Lineal Problemas de Programación Lineal: Solución Gráfica, Analítica, Sensibilidad y Método Simplex Prof. MSc. Ing. Julio Rito Vargas Avilés IIIC- 2016

Más detalles

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia

Más detalles

JUNIO Bloque A

JUNIO Bloque A Selectividad Junio 009 JUNIO 009 Bloque A 1.- Estudia el siguiente sistema en función del parámetro a. Resuélvelo siempre que sea posible, dejando las soluciones en función de parámetros si fuera necesario.

Más detalles

1. y = 3x 5-4x y = x+ln x 3. y = 2x 2 -e 2 4. y = xe x 5. y = x x 6. y = x+2 x-2

1. y = 3x 5-4x y = x+ln x 3. y = 2x 2 -e 2 4. y = xe x 5. y = x x 6. y = x+2 x-2 Colección A.. Calcula la derivada de las siguientes funciones:. y = 5-4 -4. y = +ln. y = -e 4. y = e 5. y =. y = + 7. y = ln 8. y = e + 9. y = (+) 0. y =. y = e -. y = (-)e - e. y = - 4. y = ln 5. y =

Más detalles

Conteste a cuatro de las siguientes cinco cuestiones. Explique el concepto y ponga un ejemplo. Cada una de las cuestiones vale un punto.

Conteste a cuatro de las siguientes cinco cuestiones. Explique el concepto y ponga un ejemplo. Cada una de las cuestiones vale un punto. EJERCICIO A Conteste a cuatro de las siguientes cinco cuestiones. Explique el concepto y ponga un ejemplo. Cada una de las cuestiones vale un punto. A.1. Explique el concepto de rendimientos decrecientes.

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Una carpintería vende paneles de contrachapado de dos tipos A y B.

Más detalles

T7. PROGRAMACIÓN LINEAL

T7. PROGRAMACIÓN LINEAL T7. PROGRAMACIÓN LINEAL MATEMÁTICAS PARA 4º ESO MATH GRADE 10 (=1º BACHILLERATO EN ATLANTIC CANADA) CURRÍCULUM MATEMÁTICAS NOVA SCOTIA ATLANTIC CANADA TRADUCCIÓN: MAURICIO CONTRERAS PROGRAMACIÓN LINEAL

Más detalles

EJERCICIOS PROGRAMACIÓN LINEAL

EJERCICIOS PROGRAMACIÓN LINEAL EJERCICIOS PROGRAMACIÓN LINEAL 1.- Una compañía fabrica y venden dos modelos de lámpara L 1 y L 2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L 1 y de 30 minutos para

Más detalles

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II COLEGIO UNIVERSITARIO CARDENAL CISNEROS Libro de Ejercicios de Matemáticas Empresariales II Manuel León Navarro 2 Capítulo 1 Ejercicios lección 1 1. Sea el conjunto de las matrices cuadradas de orden 2

Más detalles

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Prof.: MSc. Julio Rito Vargas Avilés Planteamiento del problema: PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Una compañía de manufactura se dedica a la fabricación de tres productos: A,

Más detalles

PLE: Ramificación y Acotamiento

PLE: Ramificación y Acotamiento PLE: Ramificación y Acotamiento CCIR / Depto Matemáticas TC3001 CCIR / Depto Matemáticas PLE: Ramificación y Acotamiento TC3001 1 / 45 La compañía TELFA fabrica mesa y sillas. Una mesa requiere 1 hora

Más detalles

Tema 1 El objeto de análisis de la economía

Tema 1 El objeto de análisis de la economía Ejercicios resueltos de Introducción a la Teoría Económica Carmen Dolores Álvarez Albelo Miguel Becerra Domínguez Rosa María Cáceres Alvarado María del Pilar Osorno del Rosal Olga María Rodríguez Rodríguez

Más detalles

Problemas de programación lineal.

Problemas de programación lineal. Matemáticas 2º Bach CCSS. Problemas Tema 2. Programación Lineal. Pág 1/12 Problemas de programación lineal. 1. Unos grandes almacenes encargan a un fabricante pantalones y chaquetas deportivas. El fabricante

Más detalles

Base y Dimensión de un Espacio Vectorial

Base y Dimensión de un Espacio Vectorial Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

EJERCICIOS PAU DE PUNTO MUERTO O UMBRAL DE RENTABILIDAD Y DE CÁLCULO DEL BENEFICIO EMPRESARIAL

EJERCICIOS PAU DE PUNTO MUERTO O UMBRAL DE RENTABILIDAD Y DE CÁLCULO DEL BENEFICIO EMPRESARIAL EJERCICIOS PAU DE PUNTO MUERTO O UMBRAL DE RENTABILIDAD Y DE CÁLCULO DEL BENEFICIO EMPRESARIAL 1.- Para un volumen de producción de 200.000 unidades de cantidad, la Sociedad Anónima X soporta unos costes

Más detalles

INTERPRETACION ECONOMICA DEL ANALISIS DE SENSIBILIDAD

INTERPRETACION ECONOMICA DEL ANALISIS DE SENSIBILIDAD ESCOLA UNIVERSITÀRIA D ESTUDIS EMPRESARIALS DEPARTAMENT D ECONOMIA I ORGANITZACIÓ D EMPRESES INTERPRETACION ECONOMICA DEL ANALISIS DE SENSIBILIDAD Dunia Durán Juvé Profesora Titular 1ª Edición de 1995:

Más detalles

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com PROGRAMACIÓN LINEAL 1- Un deportista solamente puede tomar para desayunar barritas de chocolate y barritas de cereales. Cada barrita de chocolate proporciona 40 gramos de hidratos de carbono, 30 gramos

Más detalles

5 Sistemas de ecuaciones

5 Sistemas de ecuaciones Sistemas de ecuaciones INTRODUCCIÓN La resolución de problemas es uno de los fundamentos de las Matemáticas. A la hora de resolver muchos problemas reales se hace patente la necesidad de los sistemas de

Más detalles

PARTE III LA TEORÍA DE LA EMPRESA. Tema 4 Los Costes de Producción

PARTE III LA TEORÍA DE LA EMPRESA. Tema 4 Los Costes de Producción PARTE III LA TEORÍA DE LA EMPRESA Tema 4 1 1-. Introducción Tema 4 ESQUEMA 2-. Los Costes en el Corto Plazo Los Costes Totales, Fijos y Variables El Coste Medio y el Coste Marginal Curvas de Coste en Forma

Más detalles

MÉTODO DEL DUAL (TEORIA DE DUALIDAD)

MÉTODO DEL DUAL (TEORIA DE DUALIDAD) MÉTODO DEL DUAL (TEORIA DE DUALIDAD) Todo problema de programación lineal tiene asociado con él otro problema de programación lineal llamado DUAL. El problema inicial es llamado PRIMO y el problema asociado

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

EJERCICIOS DE CONTINUIDAD Y APLICACIONES DE LA DERIVADA

EJERCICIOS DE CONTINUIDAD Y APLICACIONES DE LA DERIVADA EJERCICIOS DE CONTINUIDAD Y APLICACIONES DE LA DERIVADA 1º) Estudia la continuidad de la siguiente función: x+3 si x < 2 fx = x +1 si x 2 La función está definida para todos los reales: D(f)=R Tanto a

Más detalles

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades: CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse

Más detalles

EJERCICIO 1 La tabla siguiente muestra las posibilidades de producción en una economía:

EJERCICIO 1 La tabla siguiente muestra las posibilidades de producción en una economía: CURSO 07-08. 1º ING INDUSTRIAL. PARCIAL. NUMERO: Nombre y apellidos:... (contestar utilizando el espacio en blanco en las hojas correspondientes a este ejercicio y el dorso de las mismas; NO SE CORREGIRÁ

Más detalles

DERIVADAS PARCIALES Y APLICACIONES

DERIVADAS PARCIALES Y APLICACIONES CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras

Más detalles

4ª Colección Tema 4 La política económica: impuestos y subvenciones por unidad vendida y controles de precios

4ª Colección Tema 4 La política económica: impuestos y subvenciones por unidad vendida y controles de precios Cuestiones y problemas de Introducción a la Teoría Económica Carmen olores Álvarez Albelo Miguel Becerra omínguez Rosa María Cáceres Alvarado María del Pilar Osorno del Rosal Olga María Rodríguez Rodríguez

Más detalles

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS Página 8. Aunque el método para resolver las siguientes preguntas se sistematiza en la página siguiente, puedes resolverlas ahora: a) Cuántos radianes corresponden

Más detalles

2.- Sistemas lineales.

2.- Sistemas lineales. 2.- Sistemas lineales. 2.1.-Definiciones previa. 2.1.1.-Ecuación lineal con n incógnitas: Cualquier expresión del tipo:, donde a i, b, ú. Los valores a i se denominan coeficientes, b término independiente

Más detalles

EJERCICIO 15. Tipo de cambio flexible

EJERCICIO 15. Tipo de cambio flexible PRÁCTICAS DE MACROECONOMÍA I Ejercicio 5 EJERCICIO 5. Tipo de cambio flexible De una economía abierta, con régimen de tipo de cambio flexible, conocemos las siguientes relaciones macroeconómicas: C = 0,8Y

Más detalles

Tema 3: El Método Simplex. Algoritmo de las Dos Fases.

Tema 3: El Método Simplex. Algoritmo de las Dos Fases. Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo

Más detalles

12 Funciones de proporcionalidad

12 Funciones de proporcionalidad 8 _ 09-088.qxd //0 : Página 9 Funciones de proporcionalidad INTRODUCCIÓN La representación gráfica de funciones de proporcionalidad es una de las formas más directas de entender y verificar la relación

Más detalles

Para qué sirve el modelo de oferta y demanda agregada?

Para qué sirve el modelo de oferta y demanda agregada? Para qué sirve el modelo de oferta y demanda agregada? o Aplica al conjunto de la economía la lógica del análisis de los mercados individuales que facilita la explicación de la realidad económica. o Permite

Más detalles

Razón de Cambio Promedio:

Razón de Cambio Promedio: NOTA: En este PDF encontrará los siguientes temas que debe estudiar para la clase: Aplicaciones de la Derivada a Funciones Económicas, Razón de Cambio Promedio, Razón de Cambio Instantánea, Razones Relacionadas,

Más detalles

Regla de la Potencia para la Integración

Regla de la Potencia para la Integración Regla de la Potencia para la Integración Ejercicios. Calcule cada integral y compruebe los resultados derivando 1. Si comparamos con la definición entonces y Si derivamos obtenemos 2. Para que tenga la

Más detalles

+ = 0, siendo z=f(x,y).

+ = 0, siendo z=f(x,y). Ecuaciones diferenciales de primer orden ECUACIONES DIFERENCIALES Definición. Se llama ecuación diferencial a toda ecuación que inclua una función, que es la incógnita, alguna de sus derivadas o diferenciales.

Más detalles

Programación lineal. Estimar M. Ejemplos.

Programación lineal. Estimar M. Ejemplos. Departamento de Matemáticas. ITAM. 2010. Los problemas P y P minimizar x c T x sujeta a Ax = b, x 0, b 0 minimizar c T x + M(y 1 + y 2 + + y m ) x sujeta a Ax + y = b, x 0, y 0. Cómo estimar M? Resultado

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A INSTRUCCIONES GENERALES Y VALORACIÓN Instrucciones: El examen presenta dos opciones A y B; el alumno deberá elegir una y sólo una de ellas, y resolver los cuatro ejercicios de que consta. No se permite

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Ejercicios con solución de todo hasta probabilidad

Colegio Portocarrero. Curso Departamento de matemáticas. Ejercicios con solución de todo hasta probabilidad Ejercicios con solución de todo hasta probabilidad Problema 1: Se considera la función siendo a y b parámetros reales. a) Determina los valores de los parámetros a y b para que f(2) = 4 y la recta tangente

Más detalles

UNIDAD 6.- PROGRAMACIÓN LINEAL

UNIDAD 6.- PROGRAMACIÓN LINEAL UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:

Más detalles

EJERCICIOS SOBRE PROGRMACIÓN LINEAL RESUELTOS POR EL MÉTODO SIMPLEX.

EJERCICIOS SOBRE PROGRMACIÓN LINEAL RESUELTOS POR EL MÉTODO SIMPLEX. EJERCICIOS SOBRE PROGRMACIÓN LINEAL RESUELTOS POR EL MÉTODO SIMPLEX. 1. Un empresario tiene a su disposición dos actividades de producción lineales, mediante la contribución de tres insumos, fundición,

Más detalles

Extremos condicionados. APUNTE: Extremos condicionados Multiplicadores de Lagrange

Extremos condicionados. APUNTE: Extremos condicionados Multiplicadores de Lagrange APUNTE: Etremos condicionados Multiplicadores de Larane UNIVERSIDAD NACIONAL DE RIO NEGRO Asinatura: Matemática Carreras: Lic en Administración, Lic en Turismo, Lic en Hotelería Profesor: Prof Mabel Chrestia

Más detalles

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos.

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos. EJEMPLO. En una granja agrícola se desea criar conejos y pollos como complemento en su economía de forma que no se superen en conjunto las 8 horas mensuales destinadas a esta actividad. Su almacén sólo

Más detalles

Programación lineal. 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4. Solución:

Programación lineal. 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4. Solución: 1 LRJS05 1. Dibuja la región del plano definida por las siguientes inecuaciones: 0, 0 y 2, y + 2 4 Representando las rectas asociadas a cada una de las inecuaciones dadas se obtiene la región sombreada

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, y programación lineal resueltos.

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, y programación lineal resueltos. Análisis, y programación lineal resueltos. Problema 1: Se considera la función f(x) = ax 3 + b ln x siendo a y b parámetros reales. Determina los valores de a y bsabiendo que f(1) = 2 y que la derivada

Más detalles

2 4. c d. Se verifica: a + 2b = 1

2 4. c d. Se verifica: a + 2b = 1 Pruebas de Acceso a la Universidad. SEPTIEMBRE 0. Bachillerato de Ciencias Sociales. El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima.

Más detalles

5 Continuidad y derivabilidad de funciones reales de varias variables reales.

5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5.1 Funciones reales de varias variables reales. Curvas de nivel. Continuidad. 5.1.1 Introducción al Análisis Matemático. El

Más detalles

CANTIDAD A `PRODUCIR = FUNCION DE LA COMBINACION OPTIMA DE FACTORES DE LA PRODUCCION

CANTIDAD A `PRODUCIR = FUNCION DE LA COMBINACION OPTIMA DE FACTORES DE LA PRODUCCION PRODUCCION Y COSTOS DEFINICION DE EMPRESA Las empresas son agentes económicos dedicados a producir una serie de bienes y servicios en base a una serie de insumos o inputs intermedios y la utilización de

Más detalles

WinQSB. Módulo de Programación Lineal y Entera. Al ejecutar el módulo Linear and Integer Programming, la ventana de inicio es la siguiente

WinQSB. Módulo de Programación Lineal y Entera. Al ejecutar el módulo Linear and Integer Programming, la ventana de inicio es la siguiente WinQSB Módulo de Programación Lineal y Entera Al ejecutar el módulo Linear and Integer Programming, la ventana de inicio es la siguiente desde la cual, a partir del menú File New Problem puedes introducir

Más detalles

DP. - AS Matemáticas ISSN: X

DP. - AS Matemáticas ISSN: X DP. - AS - 5119 007 Matemáticas ISSN: 1988-379X 003 APLIICACIIÓN DE DERIIVADAS:: PROBLEMAS DE OPTIIMIIZACIIÓN CON 1 VARIIABLE.. Un vendedor de enciclopedias recibe, como sueldo mensual, una cantidad fija

Más detalles

Planificación contra stock

Planificación contra stock Planificación contra stock 129 Problema FS1 Planificación contra stock Determinar el ciclo de producción para la siguiente familia suponiendo 250 días de trabajo por año. Producto D I (u/año) p i ( /u)

Más detalles

2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO. Una señal puede ser definida como una portadora física de información. Por ejemplo,

2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO. Una señal puede ser definida como una portadora física de información. Por ejemplo, 2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO Una señal puede ser definida como una portadora física de información. Por ejemplo, las señales de audio son variaciones en la presión del aire llevando consigo

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

Unidad 2. Interés simple

Unidad 2. Interés simple Unidad 2. Interés simple 0. ÍNDICE. 1. CONCEPTO DE CAPITALIZACIÓN SIMPLE. 2. EL MONTANTE. 3. TANTOS EQUIVALENTES. 10. MÉTODOS ABREVIADOS PARA EL CÁLCULO DE LOS INTERESES. 11. INTERESES ANTICIPADOS. ACTIVIDADES

Más detalles

z(x) = x 1. Solucion optima. x 2

z(x) = x 1. Solucion optima. x 2 CAPÍTULO FORMULACIÓN DE PROBLEMAS LINEALES Programación Lineal (PL) es un modelo de optimización de un problema de la vida real, en el cual una función objetivo es optimizada sujeta a un conjunto de restricciones.

Más detalles

APUNTE: Introducción a la Programación Lineal

APUNTE: Introducción a la Programación Lineal APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La

Más detalles

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos:

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: CONOCIMIENTOS PREVIOS. Inecuaciones.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Operaciones básicas con polinomios. Resolución de ecuaciones

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal La regla del 100 % 17 de febrero de 2011 La regla del 100 % () Optimización y Programación Lineal 17 de febrero de 2011 1 / 21 Introducción Introducción Veamos ahora

Más detalles

En el mercado de un bien la demanda viene expresada por la función Q = 20 P y la oferta por P = 1/3 Q 4/3.

En el mercado de un bien la demanda viene expresada por la función Q = 20 P y la oferta por P = 1/3 Q 4/3. CURSO 08-09. 1º ING INDUSTRIAL. FINAL. NUMERO: Nombre y apellidos:... (contestar utilizando el espacio en blanco en las hojas correspondientes a este ejercicio y el dorso de las mismas; NO SE CORREGIRÁ

Más detalles

DOCENTE: JESÚS E. BARRIOS P.

DOCENTE: JESÚS E. BARRIOS P. DOCENTE: JESÚS E. BARRIOS P. DEFINICIONES Es larga la historia del uso de las matrices para resolver ecuaciones lineales. Un texto matemático chino que proviene del año 300 A. C. a 200 A. C., Nueve capítulos

Más detalles

Prof. Pérez Rivas Lisbeth Carolina

Prof. Pérez Rivas Lisbeth Carolina Ingeniería de Sistemas Investigación de Operaciones Prof. Pérez Rivas Lisbeth Carolina Investigación de Operaciones Es una rama de las Matemáticas consistente en el uso de modelos matemáticos, estadística

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x

Más detalles

Universidad del Rosario Economía Matemática II Taller 8 - Kuhn Tucker

Universidad del Rosario Economía Matemática II Taller 8 - Kuhn Tucker . En los siguientes problemas de optimización: Universidad del Rosario Economía Matemática - 202-II Taller 8 - Kuhn Tucker a. Dibuje el conjunto K de puntos factibles y las curvas de nivel de la función

Más detalles

TEORÍA DE LA CONDUCTA DEL CONSUMIDOR Y DE LA DEMANDA

TEORÍA DE LA CONDUCTA DEL CONSUMIDOR Y DE LA DEMANDA S_A._LECV TEORÍA DE LA CONDUCTA DEL CONSUMIDOR DE LA DEMANDA LA FUNCIÓN DE PREFERENCIA Todos los individuos tratan de alcanzar la satisfacción con un ingreso limitado. Este esfuerzo más o menos consciente,

Más detalles

Método de Sustitución

Método de Sustitución Método de Sustitución El nombre de este método nos indica qué es lo que vamos a hacer: para resolver el S.E.L. de dos ecuaciones con dos incógnitas vamos a «despejar» una de las incógnitas de una de las

Más detalles

Laboratorio N 8, Extremos condicionados, Multiplicadores de Lagrange.

Laboratorio N 8, Extremos condicionados, Multiplicadores de Lagrange. Universidad Diego Portales Facultad de Ingeniería. Instituto de Ciencias Básicas Asignatura: Cálculo III Laboratorio N 8, Extremos condicionados, Multiplicadores de Lagrange. Introducción. En este laboratorio

Más detalles

MARZO INFORME núm. 7/10 INFORME ANUAL

MARZO INFORME núm. 7/10 INFORME ANUAL MARZO 2010 INFORME núm. 7/10 INFORME ANUAL Consumo de leche y productos lácteos, 2004 a 2009. Marzo, 2010 Consumo de leche y productos lácteos 2004 a 2009 Informe anual En el presente informe se analizan

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Guía de ejercicios resuelta. 1. Comente las siguientes afirmaciones señalando si son verdaderas, falsas o inciertas.

Guía de ejercicios resuelta. 1. Comente las siguientes afirmaciones señalando si son verdaderas, falsas o inciertas. Universidad Santo Tomás Introducción a la Economía Profesores: Rosario González J. Carlos García B. Ayudante: Carolina Muñoz Guía de ejercicios resuelta 1. Comente las siguientes afirmaciones señalando

Más detalles

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Matemáticas para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Unidad I (Capítulo 16 del texto) Cálculo de Varias Variables 1.1 Funciones de varias variables. 1.2 Derivadas parciales.

Más detalles

Ejercicios para el Examen departamental

Ejercicios para el Examen departamental Departamento de Física Y Matemáticas Ejercicios para el Examen departamental 1ª Parte M. en I.C. J. Cristóbal Cárdenas O. 15/08/2011 Ejercicios para el examen departamental de Cálculo 1 primera parte A

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

El término productividad, con frecuencia, se confunde con el término producción. Muchas

El término productividad, con frecuencia, se confunde con el término producción. Muchas RESUMEN El término productividad, con frecuencia, se confunde con el término producción. Muchas personas piensan que a mayor producción más productividad, pero esto no es necesariamente cierto. Producción

Más detalles

INTERPRETACIÓN GEOMÉTRICA DE LAS DERIVADAS DIRECCIONALES DE FUNCIONES REALES DE DOS VARIABLES MEDIANTE EL USO DEL PROGRAMA DPGRAPH

INTERPRETACIÓN GEOMÉTRICA DE LAS DERIVADAS DIRECCIONALES DE FUNCIONES REALES DE DOS VARIABLES MEDIANTE EL USO DEL PROGRAMA DPGRAPH INTERPRETACIÓN GEOMÉTRICA DE LAS DERIVADAS DIRECCIONALES DE FUNCIONES REALES DE DOS VARIABLES MEDIANTE EL USO DEL PROGRAMA DPGRAPH J. Alberto Conejero Casares, Esther Sanabria Codesal Facultad de Informática

Más detalles

Colegio Universitario Boston

Colegio Universitario Boston Función Lineal. Si f función polinomial de la forma o, donde y son constantes reales se considera una función lineal, en esta nos la pendiente o sea la inclinación que tendrá la gráfica de la función,

Más detalles