Ruta más Corta con una sóla Fuente de Inicio (Single-Source Shortest Paths) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ruta más Corta con una sóla Fuente de Inicio (Single-Source Shortest Paths) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE"

Transcripción

1 Ruta más Corta con una sóla Fuente de Inicio (Single-Source Shortest Paths) 1 DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE

2 Problema de Encontrar la Ruta más Corta 2 Se requiere llegar de la ciudad A a la ciudad B Tenemos un mapa con distancias entre cada par de intersecciones Cómo encontramos la ruta más corta? Enumerar todas las rutas de A a B, calcular la distancia y elegir la más corta Aún si quitamos ciclos, hay muchas posibilidades Resolver el problema eficientemente

3 Problema de Encontrar la Ruta más Corta Tenemos un grafo dirigido y con pesos G = (V, E) 3 Con una función de pesos w: E R que mapea arcos e pesos con valores reales El peso de la ruta p = <v 0, v 1,, v k > es la suma de los pesos de los arcos que la forman: w( p) = k i= 1 w( v i v i 1, )

4 Problema de Encontrar la Ruta más Corta Definimos el peso de la ruta más corta de u a v como 4 δ ( u, v) = min{ w( p) : u p v} Si hay una ruta de u a v, de cualquier otra forma Una Ruta-más-corta de un vértice v a un vértice u se define como cualquier ruta p con peso w(p) = δ(u,v)

5 Modelado del Problema Podemos modelarlo con un grafo Los vértices representan intersecciones Los arcos representan segmentos de carretera entre intersecciones 5 Los pesos de los arcos representan las distancias en carretera La meta es encontrar la ruta más corta de una ciudad A a otra ciudad B Los pesos también pueden representar otras métricas Tiempo, costo, pérdidas, castigos, u otra cantidad que se acumula linealmente a lo largo de la ruta y que queremos minimizar

6 Variantes del Problema Problema de las rutas más cortas desde una sola fuente 6 Dado un grafo G = (V, E), queremos encontrar la ruta más corta de un vértice fuente dado s V a cada vértice v V. Problema de las rutas más cortas con un solo destino Encontrar una ruta más corta a un vértice destino dado t de cada vértice v. Si invertimos la dirección de cada arco en el grafo, podemos reducir este problema al de una sola fuente.

7 Variantes del Problema Problema de la ruta más corta para un solo par 7 Encontrar la ruta más corta de u a v para los vértices u y v dados. Si resolvemos el problema de una sola fuente con el vértice u como fuente también resolvemos éste. No se conoce un algoritmo para este problema que corra asintóticamente más rápido que el mejor algoritmo de una sola fuente en el peor caso

8 Variantes del Problema Problema de las rutas más cortas de todos los pares 8 Encontrar una ruta más corta de u a v para cada par de vértices u y v. Aunque este problema se puede resolver ejecutando un algoritmo de una sola fuente, una vez para cada vértice, se puede resolver más rápido

9 Subestructura Óptima de una Ruta más Corta 9 Los algoritmos de rutas más cortas se basan en la propiedad de que una ruta más corta entre dos vértices contiene otra ruta más corta en ella Esta propiedad permite aplicar Programación dinámica (Floyd-Warshall) Algoritmos voraces (Dijkstra s)

10 Subestructura Óptima de una Ruta más Corta Lema 24.1 (Subrutas de rutas más cortas son rutas más cortas) Dado un grafo pesado y dirigido G = (V, E) con una función de peso w: E R 10 Sea p = <v 1, v 2,, v k > una ruta más corta del vértice v 1 al vértice v k y Para cualquier i y j tal que 1 i j k, sea p ij = <v i, v i+1,, v j > la subruta de p del vértice v i al vértice v j Entonces p ij es una ruta más corta de v i a v j

11 Subestructura Óptima de una Ruta más Corta 11 Prueba al lema 24.1 Descomponemos la ruta p en: Tenemos entonces que: Asumimos que hay una ruta p ij de v i a v j con peso: Entonces la ruta de v 1 a v k que pasa por p ij : Con peso: Tiene un peso menor a w(p) Contradice lo que asumimos, que p es una ruta más corta de v 1 a v k. v w + p i pij pjk 1 1 vi v j ( p) = w( p1 i ) + w( pij ) w( p jk w ( p' ij ) < w( pij ) v p1i 1 v i p' ij v j pjk w ( p 1i ) + w( p' ij ) + w( p jk ) v ) v k k

12 Representación de las Rutas más Cortas Utilizamos un grafo de predecesores G π = (V π, E π ) 12 π[v] denota al padre del vértice v Al final el grafo de predecesores es un árbol de rutas más cortas Un árbol con raíz que contiene una ruta más corta de la fuente s a cada vértice que es alcanzable desde s. Un árbol de rutas más cortas con raíz s es un subgrafo dirigido G = (V, E ), donde V V y E E tal que: V es el conjunto de vértices alcanzable desde s en G G forma un árbol con raíz s y Para cada v V, la única ruta simple de s a v en G es una ruta más corta de s a v en G

13 Representación de las Rutas más Cortas Las rutas más cortas no son necesariamente únicas 13 Tampoco los árboles de rutas más cortas

14 Técnica de Relajación (Relaxation) Estos algoritmos utilizan la técnica de relajación Para cada vértice v V, mantenemos un atributo d[v], una frontera superior del peso de la ruta más corta desde la fuente s a v A d[v] se le llama un estimado de ruta más corta 14

15 Técnica de Relajación (Relaxation) Inicialización 15

16 Técnica de Relajación (Relaxation) Relajación de un arco (u, v) consiste en 16 Probar si podemos mejorar la ruta más corta a v encontrada a través de u y si es posible, actualizar d[v] y π[v] El proceso puede decrementar el valor de la estimación de la ruta más corta d[v] y actualizar el predecesor π[v]

17 Técnica de Relajación (Relaxation) 17

18 Técnica de Relajación (Relaxation) 18 Los lemas 24.10, 24.11, 24.14, y y el corolario muestran como relajando después de INITIALIZE-SINGLE-SOURCE, se alcanzará el peso de la ruta más corta y el grafo de predecesores será un árbol de rutas más cortas Asumimos que no hay ciclos con peso negativo

19 Algoritmo Bellman-Ford Resuelve el problema de rutas más cortas desde una sola fuente En el caso general puede haber arcos con pesos negativos 19 Dado un grafo dirigido, con pesos, con fuente s y función de pesos w : E R, regresa un valor booleano indicando si hay o no un ciclo con peso negativo que es alcanzable desde la fuente Si existe un ciclo de este tipo, el algoritmo indica que no hay solución Si no hay un ciclo de este tipo, el algoritmo produce las rutas más cortas y sus pesos

20 Algoritmo Bellman-Ford El algoritmo utiliza el proceso de relajación 20 Progresivamente decrementa un estimado d[v] sobre el peso de una ruta más corta de la fuente s a cada vértice v V hasta que llega al peso real de la ruta más corta δ(s,v)

21 Algoritmo Bellman-Ford 21

22 Algoritmo Bellman-Ford Primero inicializa, línea 1 Hace V -1 pasadas sobre los arcos, loop líneas 2-4 Relaja cada arco del grafo una vez Checa si hay un ciclo con peso negativo, líneas 5-8 Si hay regresa FALSE Si no hay regresa TRUE Tiempo de ejecución O(VE) Inicialización Θ(V) Cada pasada (V-1 en total) por las líneas 2-4 Θ(E) Ciclo líneas 5-7 O(E) 22

23 Algoritmo Bellman-Ford 23

24 Algoritmo Bellman-Ford 24

25 Algoritmo Bellman-Ford Teorema 24.4 (el algoritmo de Bellman-Ford es correcto) 25 Si ejecutamos Bellman-Ford en un grafo dirigido, pesado G = (V,E) con fuente s y función de pesos w: E R. Si G no contiene ciclos con peso negativo que sean alcanzables desde s Entonces el algoritmo regresa TRUE Tenemos d[v] = δ(s,v) para todos los vértices v V El subgrafo de predecesores G π es un árbol de rutas más cortas con s como raíz. Si G contiene un ciclo con peso negativo, alcanzable desde s Entonces el algoritmo regresa FALSE

26 Rutas más Cortas desde una sola Fuente en Grafos Dirigidos Acíclicos (DAG) Relajamos los arcos de un dag pesado, G = (V,E) de acuerdo a un ordenamiento topológico de sus vértices Calculamos las rutas más cortas desde una sola fuente en tiempo Θ(V + E) 26 Las rutas más cortas siempre están bien definidas en un dag Aún si hay arcos con pesos negativos, no puede existir un ciclo con peso negativo

27 Rutas más Cortas desde una sola Fuente en Grafos Dirigidos Acíclicos (DAG) Tiempo de ejecución total: Θ(V + E) Ordenamiento topológico: Θ(V + E) Llamada a Initialize-Single-Source: Θ(V) Loop líneas 3-5: Θ(E) 27

28 Rutas más Cortas desde una sola Fuente en Grafos Dirigidos Acíclicos (DAG) 28 El algoritmo primero ordena topológicamente el dag para poner un orden en los vértices Si hay una ruta de u a v, entonces u precede a v en el orden topológico Se hace una pasada sobre los vértices ordenados topológicamente Cada que se procesa un vértice, se relaja cada arco que sale del vértice

29 Rutas más Cortas desde una sola Fuente en Grafos Dirigidos Acíclicos (DAG) 29

30 Rutas más Cortas desde una sola Fuente en Grafos Dirigidos Acíclicos (DAG) 30

31 Rutas más Cortas desde una sola Fuente en Grafos Dirigidos Acíclicos (DAG) Aplicación 31 Diagramas de Pert (program evaluation and review technique)

32 Algoritmo de Dijkstra 32 Resuelve el problema de rutas más cortas desde una sola fuente con un grafo dirigido y pesado G = (V, E) para el caso en que los pesos no son negativos Asumimos que w(u,v) > 0 para cada arco (u,v) E

33 Algoritmo de Dijkstra 33

34 Algoritmo de Dijkstra 34 Mantiene un conjunto S de vértices para los cuales se ha determinado la ruta más corta desde la fuente s Después selecciona un vértice u V S con el estimado mínimo de ruta más corta Añade u a S y relaja todos los arcos de salen de u La implementación usa un Priority-Queue de vértices utilizando como llave los valores d También mantiene el padre que llevó a la ruta más corta hasta ese momento, π[v]

35 Algoritmo de Dijkstra 35

36 Algoritmo de Dijkstra 36

37 Algoritmo de Dijkstra 37

38 Es un algoritmo voraz Algoritmo de Dijkstra 38 Porque siempre elige el vértice más ligero o más cercano en V S para añadir al conjunto S Dijkstra s calcula rutas más cortas Cada vez que se añade un vértice u al conjunto S, tenemos que d[u] = δ(s,u).

39 Algoritmo de Dijkstra Teorema 24.6 (El algoritmo de Dijkstra es correcto) 39 El algoritmo de Dijkstra, ejecutado sobre un grafo pesado y dirigido G = (V, E) con una función de pesos no-negativos w y una fuente s, termina con d[u] = δ(s,u) para todos los vértices u V. Corolario 24.7 Si ejecutamos el algoritmo de Dijkstra sobre un grafo pesado y dirigido G = (V, E) con una función de pesos no-negativos w y una fuente s, entonces a la terminación, el subgrafo de predecesores G π es un árbol de rutas más cortas con s como raíz.

40 TAREA Hacer una prueba de ciclo invariante para el algoritmo de Dijkstra 40

Todos los Pares de Rutas más Cortas (All-Pairs Shortest Paths) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE

Todos los Pares de Rutas más Cortas (All-Pairs Shortest Paths) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Todos los Pares de Rutas más Cortas (All-Pairs Shortest Paths) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Problema de Encontrar todos los Pares de Rutas más Cortas 2 Encontrar las rutas

Más detalles

Caminos más cortos en gráficas. comp-420

Caminos más cortos en gráficas. comp-420 Caminos más cortos en gráficas comp-40 Caminos más cortos en gráficas Dado un grafo con peso y dirigido G = (V, E) con una función de peso w : E R que transforma aristas a valores reales de peso. El peso

Más detalles

Análisis y Diseño de Algoritmos Árboles de Mínima Expansión (Minimum Spanning Trees) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE

Análisis y Diseño de Algoritmos Árboles de Mínima Expansión (Minimum Spanning Trees) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Análisis y Diseño de Algoritmos Árboles de Mínima Expansión (Minimum Spanning Trees) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Problema de Cableado de Circuitos Electrónicos 2 Diseño

Más detalles

Máximo Flujo (Maximum Flow) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE

Máximo Flujo (Maximum Flow) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Máximo Flujo (Maximum Flow) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Flujo Máximo También podemos utilizar un grafo dirigido para modelar una red de flujo Se produce un material que

Más detalles

Algoritmos para determinar Caminos Mínimos en Grafos

Algoritmos para determinar Caminos Mínimos en Grafos Problemas de camino mínimo Algoritmos para determinar Caminos Mínimos en Grafos Algoritmos y Estructuras de Datos III DC, FCEN, UBA, C 202 Problemas de camino mínimo Dado un grafo orientado G = (V, E)

Más detalles

Algoritmos Elementales de Grafos DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE

Algoritmos Elementales de Grafos DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Análisis álii y Diseño de Algoritmos Algoritmos Elementales de Grafos DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Introducción Buscar en un grafo significa sistemáticamente seguir las aristas

Más detalles

Francisco J. Hernández López

Francisco J. Hernández López Francisco J. Hernández López fcoj23@cimat.mx Estructura de datos no lineales donde cada componente o nodo puede tener uno o más predecesores (a diferencia de los árboles) y sucesores Un grafo esta formado

Más detalles

Análisis y Diseño de Algoritmos

Análisis y Diseño de Algoritmos Análisis y Diseño de Algoritmos Algoritmos Voraces DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Introducción Siempre toman la mejor opción en cada momento (punto de decisión del algoritmo)

Más detalles

Algoritmos para caminos más cortos (2) comp-420

Algoritmos para caminos más cortos (2) comp-420 lgoritmos para caminos más cortos (2) comp-420 lgoritmo * escrito totalmente en 1968 por Peter art, Nils Nilsson y ertram Raphael. n 1964 Nils Nilsson inventó un método que utiliza una heurística para

Más detalles

Estructuras de Datos y Algoritmos. Grafos

Estructuras de Datos y Algoritmos. Grafos Estructuras de Datos y Algoritmos Grafos Definiciones Grafo modelo para representar relaciones entre elementos de un conjunto. Grafo: (V,E), V es un conjunto de vértices o nodos, con una relación entre

Más detalles

Tema 5 Árboles y Grafos.

Tema 5 Árboles y Grafos. Tema 5 Árboles y Grafos. Definiciones básicas de teoría de grafos. Un grafo consta de un conjunto de nodos, un conjunto de aristas y una correspondencia f del conjunto de aristas al conjunto de nodos.

Más detalles

5.4 Caminos mínimos: Algoritmo de Dijkstra

5.4 Caminos mínimos: Algoritmo de Dijkstra 81 5.4 Caminos mínimos: Algoritmo de Dijkstra Al observar nuestro mapa de carreteras se pueden considerar las distancias en km que hay entre las ciudades, a cada arista se le asigna el valor correspondiente

Más detalles

Parte de Algoritmos de la asignatura de Programación Master de Bioinformática. Grafos

Parte de Algoritmos de la asignatura de Programación Master de Bioinformática. Grafos Parte de Algoritmos de la asignatura de Programación Master de Bioinformática Grafos Web asignatura: http://dis.um.es/~domingo/algbio.html E-mail profesor: domingo@um.es Transparencias preparadas a partir

Más detalles

Tema 6.2: Camino de Menor Valor. CMV: Objetivo. CMV: ejemplo. Ejemplo. Camino de menor valor

Tema 6.2: Camino de Menor Valor. CMV: Objetivo. CMV: ejemplo. Ejemplo. Camino de menor valor Tema.: Camino de Menor Valor Modelización Matemática Máster en Ingeniería de Caminos, Canales y Puertos Camino de menor valor Algoritmos Algoritmo de Dijkstra Algoritmo de Bellman-Ford Ignacio Montes Departamento

Más detalles

Tema: Recorrido de Grafos. Ruta más corta

Tema: Recorrido de Grafos. Ruta más corta PED104. Guía N 12 Página 1 Facultad: Ingeniería Escuela: Computación Asignatura: Programación con Estructuras de Datos Tema: Recorrido de Grafos. Ruta más corta Competencia Desarrolla sistemas de información

Más detalles

OBJETIVOS ÍNDICE BIBLIOGRAFÍA

OBJETIVOS ÍNDICE BIBLIOGRAFÍA OBJETIVOS Tema 9: GRAFOS Primera Parte Estructuras de Datos y Algoritmos Curso 2002/03 Definiciones formales de grafo y conceptos relacionados Estructuras de datos para representar grafos Algoritmos para

Más detalles

Tema 2, 3 y 4 GRUPO 82 - INGENIERÍA INFORMÁTICA. Bernardo D Auria. 3 Diciembre Departamento de Estadística. Universidad Carlos III de Madrid

Tema 2, 3 y 4 GRUPO 82 - INGENIERÍA INFORMÁTICA. Bernardo D Auria. 3 Diciembre Departamento de Estadística. Universidad Carlos III de Madrid Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 82 - INGENIERÍA INFORMÁTICA Diciembre 2008 Ejercicio T2-JN12 Comprueba que el problema lineal min x x 1 + x 2 2x x +

Más detalles

Tema 4y 5. Algoritmos voraces. Algoritmos sobre grafos

Tema 4y 5. Algoritmos voraces. Algoritmos sobre grafos Tema 4y 5. Algoritmos voraces. Algoritmos sobre grafos Objetivos: Estudio de la técnica de diseño de algoritmos voraces Estudio de algunos problemas clásicos: Indice: Mochila con fraccionamiento Algoritmos

Más detalles

Algoritmos y Estructuras de Datos III Apunte Teórico Primer cuatrimestre

Algoritmos y Estructuras de Datos III Apunte Teórico Primer cuatrimestre Algoritmos y Estructuras de Datos III Apunte Teórico 2018 Primer cuatrimestre Índice 1. Grafos 2 1.1. Conceptos básicos.......................... 2 1.2. Árboles................................ 6 1.3. Camino

Más detalles

Algoritmos de fuerza bruta

Algoritmos de fuerza bruta Dr. Eduardo A. RODRÍGUEZ TELLO CINVESTAV-Tamaulipas 29 de enero de 2018 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos de fuerza bruta 29 de enero de 2018 1 / 26 1 Algoritmos de fuerza bruta Introducción

Más detalles

ARBOLES GENERADORES. Orlando Arboleda Molina. 16 de septiembre de Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle

ARBOLES GENERADORES. Orlando Arboleda Molina. 16 de septiembre de Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle ARBOLES GENERADORES Orlando Arboleda Molina Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle 16 de septiembre de 2008 Contenido Árboles generadores Algoritmo búsqueda por profundidad

Más detalles

Matemáticas Discretas L. Enrique Sucar INAOE. Teoría de Grafos. Problema de los puentes de Königsberg [Euler]

Matemáticas Discretas L. Enrique Sucar INAOE. Teoría de Grafos. Problema de los puentes de Königsberg [Euler] Matemáticas Discretas L. Enrique Sucar INAOE Teoría de Grafos Problema de los puentes de Königsberg [Euler] Teoría de Grafos Definición y terminología Tipos de grafos Trayectorias y circuitos Isomorfismo

Más detalles

Teoría de grafos y optimización en redes

Teoría de grafos y optimización en redes Teoría de grafos y optimización en redes José María Ferrer Caja Universidad Pontificia Comillas Definiciones básicas Grafo: Conjunto de nodos (o vértices) unidos por aristas G = (V,E) Ejemplo V = {,,,,

Más detalles

Árboles de Expansión Mínima. Matemática Discreta. Agustín G. Bonifacio UNSL

Árboles de Expansión Mínima. Matemática Discreta. Agustín G. Bonifacio UNSL UNSL Árboles Definiciones y Ejemplos Caracterización Un árbol T es un grafo simple que satisface lo siguiente: si v y w son vértices en T, entonces existe una trayectoria simple única de v a w. Un árbol

Más detalles

Tema: Algoritmos para la ruta más corta en un Grafo.

Tema: Algoritmos para la ruta más corta en un Grafo. Programación IV. Guía No. 10 1 Facultad: Ingeniería Escuela: Computación Asignatura: Programación IV Tema: Algoritmos para la ruta más corta en un Grafo. Objetivos Específicos Definir el concepto de camino

Más detalles

Grafos: algunas definiciones

Grafos: algunas definiciones Grafos: algunas definiciones Un grafo dirigido G es un par (V, E), donde V es un conjunto finito de nodos (o vértices) y E es una relación binaria sobre V. Un grafo no dirigido G es un par (V, E), donde

Más detalles

Algoritmos voraces (greedy)

Algoritmos voraces (greedy) Dr. Eduardo A. RODRÍGUEZ TELLO CINVESTAV-Tamaulipas 21 de marzo de 2018 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos voraces 21 de marzo de 2018 1 / 45 1 Algoritmos voraces (greedy) Aplicaciones de

Más detalles

Caminos más cortos: Jose Aguilar

Caminos más cortos: Jose Aguilar Caminos más cortos: algoritmo de Dijkstra, algoritmo de Bellman-Ford, Caminos más cortos en grafos dirigidos, algoritmo de Floyd-Warshall y algoritmo de Johnson. Jose Aguilar Caminos más cortos Coste de

Más detalles

Grafos. Algoritmos y Estructuras de Datos III

Grafos. Algoritmos y Estructuras de Datos III Grafos Algoritmos y Estructuras de Datos III Grafos Un grafo G = (V, X ) es un par de conjuntos, donde V es un conjunto de puntos o nodos o vértices y X es un subconjunto del conjunto de pares no ordenados

Más detalles

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta Centro Asociado Palma de Mallorca Lógica y Estructuras Discretas Tutor: Antonio Rivero Cuesta Tema 5 Teoría de Grafos Conceptos Básicos Un grafo consta de: Grafo Un conjunto de nodos, Un conjunto de aristas

Más detalles

Coloreo de vértices Definiciones: Coloreo de Grafos. Cotas para χ Proposición: Si H es un subgrafo de G entonces χ(h) χ(g).

Coloreo de vértices Definiciones: Coloreo de Grafos. Cotas para χ Proposición: Si H es un subgrafo de G entonces χ(h) χ(g). Coloreo de vértices Definiciones: Coloreo de Grafos Algoritmos y Estructuras de Datos III Un coloreo (válido) de los vértices de un grafo G = (V, X ) es una asignación f : V C, tal que f (v) f (u) (u,

Más detalles

LA GERENCIA DE PROYECTOS

LA GERENCIA DE PROYECTOS LA GERENCIA DE PROYECTOS Definición de Proyecto Un proyecto es una serie de actividades ordenadas encaminadas a lograr un objetivo con ciertas especificaciones, en un tiempo dado y con unos recursos determinados.

Más detalles

Matemáticas Discretas

Matemáticas Discretas Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas Cursos Propedéuticos 2016 Ciencias Computacionales INAOE Dr. Enrique Muñoz de Cote jemc@inaoep.mx http://ccc.inaoep.mx/~jemc Oficina

Más detalles

Algoritmo de Kruskal

Algoritmo de Kruskal Algoritmo de Kruskal Curso de Teoría Algebraica de Grafos Facultad de Ingeniería Universidad de la República 4 de mayo de 202 Árboles Un árbol es un grafo conexo y acíclico (sin ciclos). Un bosque es un

Más detalles

Gráficas. Las relaciones que resultan de estas conexiones nos llevan a preguntas como:

Gráficas. Las relaciones que resultan de estas conexiones nos llevan a preguntas como: GRÁFICAS Gráficas Muchas aplicaciones computacionales involucran no solo un conjunto de elementos sino también conexiones entre pares de elementos. Las relaciones que resultan de estas conexiones nos llevan

Más detalles

Capítulo 5 Introducción a la teoría de grafos

Capítulo 5 Introducción a la teoría de grafos Capítulo 5 Introducción a la teoría de grafos 5.1. Terminología básica y tipos de grafos Una primera aproximación a la teoría de grafos la tenemos cuando observamos un mapa de carreteras: ciudades (vértices)

Más detalles

Teoría de Grafos y Árboles.

Teoría de Grafos y Árboles. Estructuras Discretas Teoría de Grafos y Árboles. Prof. Miguel Fagúndez www.geocities.com/mfagundez4 1 www.geocities.com/mfagundez4 www.geocities.com/mfagundez4 3 Grafos: Definición Un grafo no es mas

Más detalles

1. Diseñe algoritmos que permitan resolver eficientemente el problema de la mochila 0/1 para los siguientes casos:

1. Diseñe algoritmos que permitan resolver eficientemente el problema de la mochila 0/1 para los siguientes casos: PROGRAMACIÓN DINÁMICA RELACIÓN DE EJERCICIOS Y PROBLEMAS 1. Diseñe algoritmos que permitan resolver eficientemente el problema de la mochila /1 para los siguientes casos: a. Mochila de capacidad W=15:

Más detalles

Optimización de viaje en transporte público por medio de grafos

Optimización de viaje en transporte público por medio de grafos Optimización de viaje en transporte público por medio de grafos Descripción del problema Áreas como ciudades frecuentemente disponen de múltiples medios de transporte públicos como lo son los camiones

Más detalles

Un grafo G = (V, E) se dice finito si V es un conjunto finito.

Un grafo G = (V, E) se dice finito si V es un conjunto finito. 1 Grafos: Primeras definiciones Definición 1.1 Un grafo G se define como un par (V, E), donde V es un conjunto cuyos elementos son denominados vértices o nodos y E es un subconjunto de pares no ordenados

Más detalles

El problema de localización del árbol de concentradores

El problema de localización del árbol de concentradores El problema de localización del árbol de concentradores I. Contreras 1 E. Fernández 1 A. Marín 2 1 Departmento de Estadística e I.O. Universidad Politécnica de Cataluña 2 Departmento de Estadística e I.O.

Más detalles

5.6 Árbol generador de un grafo

5.6 Árbol generador de un grafo 88 5.6 Árbol generador de un grafo Definición 5.59. Sea G un grafo simple. Un árbol generador de G es un subgrafo de G que es un árbol y contiene todos los vértices de G. Ejemplo 5.60. Un grafo y algunos

Más detalles

Grafos. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Grafos 1 / 30

Grafos. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Grafos 1 / 30 Grafos AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Grafos / 0 Objetivos Al finalizar este tema tendréis que: Conocer la terminología básica de la teoría de grafos. Pasar

Más detalles

Búsqueda en espacio de estados

Búsqueda en espacio de estados Búsqueda en espacio de estados Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Inteligencia Artificial CCIA, US Búsqueda en espacio de estados IA 1 / 35 Metodología

Más detalles

Análisis y Diseño de Algoritmos

Análisis y Diseño de Algoritmos Análisis y Diseño de Algoritmos Introducción: El Rol de los Algoritmos en Computación DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Temario 2 1. Introducción 2. Notación Asintótica 3. Recurrencias

Más detalles

Representación y manipulación de grafos: caminos, expansión, cortes y flujos

Representación y manipulación de grafos: caminos, expansión, cortes y flujos Un grafo G es un par de conjuntos G =(V,E) Representación y manipulación de grafos: caminos, expansión, cortes y flujos V = un conjunto de n vértices u, v, w V E = un conjunto de m aristas V = n, E = m

Más detalles

Unidad 2: Problemas de camino mínimo

Unidad 2: Problemas de camino mínimo Representación Recorrido de grafos Camino mínimo Unidad 2: Problemas de camino mínimo Representación Matriz de adyacencia Matriz de incidencia Listas de vecinos Recorrido de grafos Estructuras de datos

Más detalles

Indice. 1. Tipos de grafos. 2. Conceptos Básicos 3. Representación de grafos 4. Subgrafos. Grafos complementarios

Indice. 1. Tipos de grafos. 2. Conceptos Básicos 3. Representación de grafos 4. Subgrafos. Grafos complementarios Teoría de Grafos 1 1. Tipos de grafos Indice 2. Conceptos Básicos 3. Representación de grafos 4. Subgrafos. Grafos complementarios 5. Caminos y conectividad 6. Grafos Bipartitos 2 Tipos de Grafos Un grafo

Más detalles

ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES

ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES ÁRBOL Un árbol es un grafo no dirigido, conexo, sin ciclos (acíclico), y que no contiene aristas

Más detalles

Sesión 4: Teoría de Grafos

Sesión 4: Teoría de Grafos Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 4: Teoría de Grafos Problema de los puentes de Königsberg [Euler] Teoría de Grafos Definición y terminología Tipos de grafos Trayectorias y

Más detalles

Apuntes de Teórico de Programación 3. Apuntes de Teórico PROGRAMACIÓN 3. Greedy. Versión 1.1

Apuntes de Teórico de Programación 3. Apuntes de Teórico PROGRAMACIÓN 3. Greedy. Versión 1.1 Apuntes de Teórico PROGRAMACIÓN 3 Greedy Versión 1.1 1 Índice Índice... Introducción... 3 Ejemplo 1 (problema de las monedas)... 3 Ejemplo (problema de la mochila)... 4 Aplicaciones del método Greedy a

Más detalles

Algoritmos Voraces. Diseño y Análisis de Algoritmos

Algoritmos Voraces. Diseño y Análisis de Algoritmos Algoritmos Voraces Diseño y Análisis de Algoritmos Contenidos Contenidos 1 Introducción 2 Ejemplos básicos 3 Cambio de monedas 4 Problema de la mochila 5 Problemas de planificación de tareas 6 Patrones

Más detalles

GRAFOS. Tomado de: Joyanes Aguilar Luis, Estructuras de datos en Java. CASOS

GRAFOS. Tomado de: Joyanes Aguilar Luis, Estructuras de datos en Java. CASOS GRAFOS Tomado de: Joyanes Aguilar Luis, Estructuras de datos en Java. CASOS 1.4 El recorrido del cartero Imaginemos un grafo que representa el mapa de las calles de un barrio. Una calle va de una esquina

Más detalles

Árboles. Un grafo no dirigido es un árbol si y sólo si existe una ruta unica simple entre cualquiera dos de sus vértices.

Árboles. Un grafo no dirigido es un árbol si y sólo si existe una ruta unica simple entre cualquiera dos de sus vértices. ÁRBOLES Árboles Un grafo conectado que no contiene circuitos simples. Utilizados desde 1857, por el matemático Ingles Arthur Cayley para contar ciertos tipos de componentes químicos. Un árbol es un grafo

Más detalles

Ciclos Hamiltonianos Algoritmo de la Ruta Más Corta. Matemática Discreta. Agustín G. Bonifacio UNSL. Teoría de Grafos II

Ciclos Hamiltonianos Algoritmo de la Ruta Más Corta. Matemática Discreta. Agustín G. Bonifacio UNSL. Teoría de Grafos II UNSL Teoría de Grafos II y Ejemplos Un ciclo en un grafo que contiene cada vértice justo una vez, excepto por el vértice inicial y el final que aparece dos veces, recibe el nombre de ciclo de Hamilton.

Más detalles

NIVEL 17: ESTRUCTURAS NO LINEALES

NIVEL 17: ESTRUCTURAS NO LINEALES 1 NIVEL 17: ESTRUCTURAS NO LINEALES Grafos, definiciones y tipos de problemas 2 Agenda Qué son? Formalismo abstracto de los grafos dirigido Conceptos Ejemplo: Red de distribución de agua Caminos y Ciclos

Más detalles

Estructuras de Datos y Algoritmos

Estructuras de Datos y Algoritmos Estructuras de Datos y Algoritmos Práctico 3: Grafos (Finalización: 06/09) Ing. en Computación - Ing. en Informática - Prof. en Computación Año 2018 Ejercicio 1: Dado el siguiente p-digrafo: 5 b 6 d 11

Más detalles

Teoría de Grafos Introducción Grafos isomorfos

Teoría de Grafos Introducción Grafos isomorfos Capítulo 1 Teoría de Grafos 1.1. Introducción Definición. Denominaremos pseudomultigrafo a una terna (V,E, γ), donde V y E son conjuntos y γ : E {{u,v}: u,v V }. El conjunto V se denomina conjunto de vértices

Más detalles

Fundamentos de Investigación de Operaciones Modelos de Grafos

Fundamentos de Investigación de Operaciones Modelos de Grafos Fundamentos de Investigación de Operaciones de junio de 00 Muchos problemas de optimización puedes ser analizados y resueltos a través de representaciones gráficas. Tal es el caso de los problemas de planificación

Más detalles

Guía práctica de estudio 7

Guía práctica de estudio 7 Guía práctica de estudio 7 Algoritmos de Grafos. Parte 2. Elaborado por: Revisión: Ing. Laura Sandoval Montaño Facultad de Ingeniería U.N.A.M. Guía Práctica 7 Estructura de datos y Algoritmos II Algoritmos

Más detalles

Definiciones: conjuntos, grafos, y árboles. Agustín J. González ELO 320: Estructura de Datos y Algoritmos. 2002

Definiciones: conjuntos, grafos, y árboles. Agustín J. González ELO 320: Estructura de Datos y Algoritmos. 2002 Definiciones: conjuntos, grafos, y árboles Agustín J. González ELO 320: Estructura de Datos y Algoritmos. 2002 1 Conjuntos (sets) y Grafos (graphs) Un Conjunto es una colección de objetos distintos. No

Más detalles

Matemáticas Discretas

Matemáticas Discretas Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas Cursos Propedéuticos 2011 Ciencias Computacionales INAOE Dr. Enrique Muñoz de Cote jemc@inaoep.mx http://ccc.inaoep.mx/~jemc Oficina

Más detalles

Búsqueda Heurística (1ª parte)

Búsqueda Heurística (1ª parte) Búsqueda Heurística (1ª parte) Ingeniería Informática, 4º Curso académico: 2011/2012 Profesores: Ramón Hermoso y Matteo Vasirani 1 Tema 2: Agentes basados en Búsqueda Resumen: 2. Agentes basados en búsqueda

Más detalles

Estructuras de Datos y Algoritmos: Boletín de Problemas del segundo parcial

Estructuras de Datos y Algoritmos: Boletín de Problemas del segundo parcial Estructuras de Datos y Algoritmos: Boletín de Problemas del segundo parcial (Facultad de Informática) Curso 00 0 Estructuras de Datos y Algoritmos (FI-UPV) Curso 00 0 Árboles. Si la acción P fuera escribir

Más detalles

Introducción Aplicaciones Primer Algoritmo Segundo Algoritmo - Algoritmo de Fortune. Diagrama de Voronoi. Jose Luis Bravo Trinidad 1 / 29

Introducción Aplicaciones Primer Algoritmo Segundo Algoritmo - Algoritmo de Fortune. Diagrama de Voronoi. Jose Luis Bravo Trinidad 1 / 29 1 / 29 Definición Propiedades geométricas Índice 1 Introducción Definición Propiedades geométricas 2 Análisis de recursos Triangulaciones Robótica Diseño 3 Implementación 4 Segundo - de Fortune 2 / 29

Más detalles

Algoritmos y Estructuras de Datos II

Algoritmos y Estructuras de Datos II 27 de mayo de 2013 Clase de hoy 1 Repaso Divide y vencerás Algoritmos voraces 2 3 Divide y vencerás Algoritmos voraces Repaso cómo vs. qué 3 partes 1 análisis de algoritmos 2 tipos de datos 3 técnicas

Más detalles

AnAnálisis de redes de transporte Tr. Muchas veces se utiliza en aplicaciones que nada tienen que ver con el transporte

AnAnálisis de redes de transporte Tr. Muchas veces se utiliza en aplicaciones que nada tienen que ver con el transporte AnAnálisis de redes de transporte Tr Muchas veces se utiliza en aplicaciones que nada tienen que ver con el transporte Resumen Antecedentes y definiciones El camino más corto Árbol de expansión mínima

Más detalles

Digrafos fuertemente conexos minimales (MSD) vs árboles

Digrafos fuertemente conexos minimales (MSD) vs árboles Digrafos fuertemente conexos minimales (MSD) vs árboles 21 de marzo de 2017 Digrafos fuertemente conexos minimales (MSD) 21vsde árboles marzo de 2017 1 / 26 Preliminares Deniciones(I): Grafo, digrafo,

Más detalles

Un GRAFO O GRAFO NO ORIENTADO es una terna G = {V, A,ϕ } conv

Un GRAFO O GRAFO NO ORIENTADO es una terna G = {V, A,ϕ } conv DEFINICIÓN 1: Un GRAFO O GRAFO NO ORIENTADO es una terna G = {V, A,ϕ } conv φ donde: V = {v 1, v 2,, v n }: conjunto finito de vértices o nodos. A = {a 1, a 2,, a n }: conjunto finito de aristas o lados

Más detalles

Ciclos. Recordando Estructuras de Control Básicas: SELECCIÓN (condición) SECUENCIAL

Ciclos. Recordando Estructuras de Control Básicas: SELECCIÓN (condición) SECUENCIAL Ciclos Fundamentos de Programación Recordando Estructuras de Control Básicas: Una secuencia es una serie de estatutos que se ejecutan uno después de otro. Selección (condición) ejecuta diferentes estatutos

Más detalles

Coloreo de Grafos. Algoritmos y Estructuras de Datos III

Coloreo de Grafos. Algoritmos y Estructuras de Datos III Coloreo de Grafos Algoritmos y Estructuras de Datos III Coloreo de nodos Definiciones: Un coloreo (válido) de los nodos de un grafo G = (V, X ) es una asignación f : V C, tal que f (v) f (u) (u, v) E.

Más detalles

Tema: Algoritmos para la ruta más corta en un Grafo.

Tema: Algoritmos para la ruta más corta en un Grafo. Programación IV. Guía 10 1 Facultad: Ingeniería Escuela: Computación Asignatura: Programación IV Tema: Algoritmos para la ruta más corta en un Grafo. Objetivos Específicos Definir el concepto de camino

Más detalles

El TAD Grafo. El TAD Grafo

El TAD Grafo. El TAD Grafo ! Esta representación resulta útil cuando el número de vértices se conoce previamente y permanecerá fijo durante la resolución del problema, pero resulta ineficiente si necesitamos añadir o eliminar vértices

Más detalles

Análisis de Algoritmos

Análisis de Algoritmos Análisis de Algoritmos Profesor: M.C. Cuauhtemoc Gomez Suarez Tarea 06: Para calificación de examen. Sección: 503 Manuel Alejandro Salazar Mejía. Matrícula: 0300704C 11 de enero de 2011 1 Tarea: a) Programar

Más detalles

Análisis y Diseño de Algoritmos. Teoría de Gráficas

Análisis y Diseño de Algoritmos. Teoría de Gráficas Teoría de Gráficas Arturo Díaz Pérez Sección de Computación Departamento de Ingeniería Eléctrica CINVESTAV-IPN Av. Instituto Politécnico Nacional No. 2508 Col. San Pedro Zacatenco México, D. F. CP 07300

Más detalles

Minimum Spanning Tree (Árbol de Expansión Mínima) Agustín J. González ELO320: Estructura de datos y Algoritmos

Minimum Spanning Tree (Árbol de Expansión Mínima) Agustín J. González ELO320: Estructura de datos y Algoritmos Minimum Spanning Tree (Árbol de Expansión Mínima) Agustín J. González ELO320: Estructura de datos y Algoritmos 1 Introducción Lo que realmente se minimiza es el peso del árbol obtenido. No se minimiza

Más detalles

Tema 10- Grafos. Objetivos:

Tema 10- Grafos. Objetivos: Tema - Grafos Duración: 2 semanas aprox. Índice general:. Relaciones entre los Datos de una Colección 2. Conceptos básicos sobre Grafos. Representación de un Grafo: Matriz y Listas de Adyacencia. Implementación

Más detalles

Algebra Matricial y Teoría de Grafos

Algebra Matricial y Teoría de Grafos Algebra Matricial y Teoría de Grafos Unidad 3: Nociones de teoría de grafos Luis M. Torres Escuela Politécnica del Litoral Quito, Enero 2008 Maestría en Control de Operaciones y Gestión Logística p.1 Contenido

Más detalles

Introducción a la Teoría de Grafos

Introducción a la Teoría de Grafos Introducción a la Teoría de Grafos Flavia Bonomo fbonomo@dc.uba.ar do. Cuatrimestre 009 Programa Introducción a la teoría de grafos Problemas de camino mínimo Problemas de flujo máximo Programación lineal

Más detalles

Capítulo 7. Grafos. Continuar

Capítulo 7. Grafos. Continuar Capítulo 7. Grafos Continuar Introducción Uno de los primeros resultados de la teoría de grafos fue el que obtuvo Leonhard Euler en el siglo XVIII al resolver el problema de los puentes de Königsberg.

Más detalles

Conceptos básicos en la Teoría de Grafos

Conceptos básicos en la Teoría de Grafos Conceptos básicos en la Teoría de Grafos Cristina Jordán Lluch Instituto de Matemáticas Multidisciplinar Grupo de Modelización Físico-Matemática Conceptos básicos Subgrafos Caminos, cadenas y ciclos Represetación

Más detalles

Tema 7: Problemas clásicos de Programación Lineal

Tema 7: Problemas clásicos de Programación Lineal Tema 7: Problemas clásicos de Programación Lineal 1.- Características generales de un problema de transporte y asignación Surgen con frecuencia en diferentes contextos de la vida real. Requieren un número

Más detalles

Algoritmos Elementales de Grafos. Agustín J. González ELO-320: Estructura de Datos Y Algoritmos 1er.Sem. 2002

Algoritmos Elementales de Grafos. Agustín J. González ELO-320: Estructura de Datos Y Algoritmos 1er.Sem. 2002 Algoritmos Elementales de Grafos Agustín J. González ELO-0: Estructura de Datos Y Algoritmos er.sem. 00 Introducción Estudiaremos métodos para representar y explorar o recorrer grafos. Explorar un grafo

Más detalles

Modelos de Redes: Problemas de la Ruta más m s corta. M. En C. Eduardo Bustos Farías

Modelos de Redes: Problemas de la Ruta más m s corta. M. En C. Eduardo Bustos Farías Modelos de Redes: Problemas de la Ruta más m s corta M. En C. Eduardo Bustos Farías as Problemas de la Ruta más m s corta 2 Problemas de la Ruta más m s corta Se trata de encontrar la ruta de menor distancia,

Más detalles

LAS CIENCIAS DE LA PLANIFICACIÓN

LAS CIENCIAS DE LA PLANIFICACIÓN LAS CIENCIAS DE LA PLANIFICACIÓN 5. EL PROBLEMA DEL VIAJANTE (PV) (The Traveling Salesman Problem TSP) Un problema como el de las vacaciones, pero vital para las empresas, es el problema del viajante (PV):

Más detalles

Teoría de Grafos. Herramientas de programación para procesamiento de señales

Teoría de Grafos. Herramientas de programación para procesamiento de señales Teoría de Grafos Herramientas de programación para procesamiento de señales Indice Nociones básicas: Definiciones Ejemplos Propiedades Nociones avanzadas: Grafos planares Árboles Representación en computadora

Más detalles

Grafos. Amalia Duch Brown Octubre de 2007

Grafos. Amalia Duch Brown Octubre de 2007 Grafos Amalia Duch Brown Octubre de 2007 Índice 1. Definiciones Básicas Intuitivamente un grafo es un conjunto de vértices unidos por un conjunto de líneas o flechas dependiendo de si el grafo es dirigido

Más detalles

Árboles: Árbol Abarcador Minimal CSI / ITESM

Árboles: Árbol Abarcador Minimal CSI / ITESM Árboles: Árbol Abarcador Minimal CSI / ITESM Árboles:Árbol Abarcador Minimal p.1/5 Árboles Abarcador (Spanning Tree): Definición Un árbol abarcador para un grafo G es un subgrafo de G que contien todos

Más detalles

1. GRAFOS : CONCEPTOS BASICOS

1. GRAFOS : CONCEPTOS BASICOS 1. GRAFOS : CONCEPTOS BASICOS Sea V un conjunto finito no vacio y sea E V x V. El par (V, E) es un grafo no dirigido, donde V es un conjunto de vértices o nodos y E es un conjunto de aristas. Denotaremos

Más detalles

Análisis de Algoritmos Problemas de grafos

Análisis de Algoritmos Problemas de grafos Análisis de Algoritmos Problemas de grafos Dra. Elisa Schaeffer elisa.schaeffer@gmail.com PISIS / FIME / UANL Problemas de grafos p. 1 INDEPENDENT SET es NP-completo Necesitamos un gadget : el triángulo.

Más detalles

Logística y Operaciones Administración de Proyectos Introducción Pág. 1 Ing. Tasca, Mara G.

Logística y Operaciones Administración de Proyectos Introducción Pág. 1 Ing. Tasca, Mara G. ADMINISTRACION DE PROYECTOS CPM Y PERT: Introducción: Por lo general los proyectos consisten en un cierto número de tareas interrelacionadas, que pueden o no efectuarse en forma simultánea. Es importante

Más detalles

Análisis de algoritmos

Análisis de algoritmos Tema 10: Algoritmos ávidos M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com edfrancom@ipn.mx @edfrancom edgardoadrianfrancom 1 Contenido Introducción Algoritmos ávidos Forma general de un

Más detalles

Análisis y Diseño de Algoritmos

Análisis y Diseño de Algoritmos Análisis y Diseño de Algoritmos Ordenamiento en Tiempo Lineal DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Ordenamiento por Comparación (Comparison Sorts) Tiempo de ejecución HeapSort y

Más detalles

Algorítmica y Complejidad. Tema 4 Algoritmos sobre grafos.

Algorítmica y Complejidad. Tema 4 Algoritmos sobre grafos. Algorítmica y Complejidad Tema. Algorítmos sobre grafos. Conceptos, Definiciones y Representación.. Conectividad y recorrido.. Árboles de expansión.. Caminos mínimos. Algorítmos sobre grafos. Conceptos,

Más detalles

Algoritmos de búsqueda en grafos I

Algoritmos de búsqueda en grafos I I Dr. Eduardo A. RODRÍGUEZ TELLO CINVESTAV-Tamaulipas 7 de febrero de 2018 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Búsqueda en grafos I 7 de febrero de 2018 1 / 36 1 Representación computacional de grafos

Más detalles

Método de mínimos cuadrados (Continuación)

Método de mínimos cuadrados (Continuación) Clase No. 11: MAT 251 Método de mínimos cuadrados (Continuación) Dr. Alonso Ramírez Manzanares CIMAT A.C. e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/ Dr. Joaquín Peña Acevedo CIMAT

Más detalles

Tema 5: Grafos. CIS - UABJB - Estructura de Datos II Ing. Freddy Melgar Algarañaz 1

Tema 5: Grafos. CIS - UABJB - Estructura de Datos II Ing. Freddy Melgar Algarañaz 1 Tema 5: Grafos 1 Indice 1. Tipos de grafos 2. Conceptos Básicos 3. Representación de grafos 4. Caminos y conectividad 5. Grafos Bipartitos 6. Recorridos, eulerianos 2 Tipos de Grafos Un grafo G es un par

Más detalles

Taller de grafs: rutes, mapes i xarxes socials

Taller de grafs: rutes, mapes i xarxes socials Taller de grafs: rutes, mapes i xarxes socials Cristina Chiralt y Fernando Hernando Universidad Jaume I e Instituto Universitario de Matemáticas y sus Aplicaciones de Castellón Grado de Matemática Computacional

Más detalles

SOLUCIONES COMENTADAS

SOLUCIONES COMENTADAS Departamento de Matemática Aplicada Curso 14-15 Facultad de Informática, UPM Matemática Discreta I (MI) Control 1 21-10-14 SOLUCIONES COMENTADAS Ejercicio 1. (1 punto) Se trazan 18 segmentos en el plano

Más detalles