Ruta más Corta con una sóla Fuente de Inicio (Single-Source Shortest Paths) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ruta más Corta con una sóla Fuente de Inicio (Single-Source Shortest Paths) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE"

Transcripción

1 Ruta más Corta con una sóla Fuente de Inicio (Single-Source Shortest Paths) 1 DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE

2 Problema de Encontrar la Ruta más Corta 2 Se requiere llegar de la ciudad A a la ciudad B Tenemos un mapa con distancias entre cada par de intersecciones Cómo encontramos la ruta más corta? Enumerar todas las rutas de A a B, calcular la distancia y elegir la más corta Aún si quitamos ciclos, hay muchas posibilidades Resolver el problema eficientemente

3 Problema de Encontrar la Ruta más Corta Tenemos un grafo dirigido y con pesos G = (V, E) 3 Con una función de pesos w: E R que mapea arcos e pesos con valores reales El peso de la ruta p = <v 0, v 1,, v k > es la suma de los pesos de los arcos que la forman: w( p) = k i= 1 w( v i v i 1, )

4 Problema de Encontrar la Ruta más Corta Definimos el peso de la ruta más corta de u a v como 4 δ ( u, v) = min{ w( p) : u p v} Si hay una ruta de u a v, de cualquier otra forma Una Ruta-más-corta de un vértice v a un vértice u se define como cualquier ruta p con peso w(p) = δ(u,v)

5 Modelado del Problema Podemos modelarlo con un grafo Los vértices representan intersecciones Los arcos representan segmentos de carretera entre intersecciones 5 Los pesos de los arcos representan las distancias en carretera La meta es encontrar la ruta más corta de una ciudad A a otra ciudad B Los pesos también pueden representar otras métricas Tiempo, costo, pérdidas, castigos, u otra cantidad que se acumula linealmente a lo largo de la ruta y que queremos minimizar

6 Variantes del Problema Problema de las rutas más cortas desde una sola fuente 6 Dado un grafo G = (V, E), queremos encontrar la ruta más corta de un vértice fuente dado s V a cada vértice v V. Problema de las rutas más cortas con un solo destino Encontrar una ruta más corta a un vértice destino dado t de cada vértice v. Si invertimos la dirección de cada arco en el grafo, podemos reducir este problema al de una sola fuente.

7 Variantes del Problema Problema de la ruta más corta para un solo par 7 Encontrar la ruta más corta de u a v para los vértices u y v dados. Si resolvemos el problema de una sola fuente con el vértice u como fuente también resolvemos éste. No se conoce un algoritmo para este problema que corra asintóticamente más rápido que el mejor algoritmo de una sola fuente en el peor caso

8 Variantes del Problema Problema de las rutas más cortas de todos los pares 8 Encontrar una ruta más corta de u a v para cada par de vértices u y v. Aunque este problema se puede resolver ejecutando un algoritmo de una sola fuente, una vez para cada vértice, se puede resolver más rápido

9 Subestructura Óptima de una Ruta más Corta 9 Los algoritmos de rutas más cortas se basan en la propiedad de que una ruta más corta entre dos vértices contiene otra ruta más corta en ella Esta propiedad permite aplicar Programación dinámica (Floyd-Warshall) Algoritmos voraces (Dijkstra s)

10 Subestructura Óptima de una Ruta más Corta Lema 24.1 (Subrutas de rutas más cortas son rutas más cortas) Dado un grafo pesado y dirigido G = (V, E) con una función de peso w: E R 10 Sea p = <v 1, v 2,, v k > una ruta más corta del vértice v 1 al vértice v k y Para cualquier i y j tal que 1 i j k, sea p ij = <v i, v i+1,, v j > la subruta de p del vértice v i al vértice v j Entonces p ij es una ruta más corta de v i a v j

11 Subestructura Óptima de una Ruta más Corta 11 Prueba al lema 24.1 Descomponemos la ruta p en: Tenemos entonces que: Asumimos que hay una ruta p ij de v i a v j con peso: Entonces la ruta de v 1 a v k que pasa por p ij : Con peso: Tiene un peso menor a w(p) Contradice lo que asumimos, que p es una ruta más corta de v 1 a v k. v w + p i pij pjk 1 1 vi v j ( p) = w( p1 i ) + w( pij ) w( p jk w ( p' ij ) < w( pij ) v p1i 1 v i p' ij v j pjk w ( p 1i ) + w( p' ij ) + w( p jk ) v ) v k k

12 Representación de las Rutas más Cortas Utilizamos un grafo de predecesores G π = (V π, E π ) 12 π[v] denota al padre del vértice v Al final el grafo de predecesores es un árbol de rutas más cortas Un árbol con raíz que contiene una ruta más corta de la fuente s a cada vértice que es alcanzable desde s. Un árbol de rutas más cortas con raíz s es un subgrafo dirigido G = (V, E ), donde V V y E E tal que: V es el conjunto de vértices alcanzable desde s en G G forma un árbol con raíz s y Para cada v V, la única ruta simple de s a v en G es una ruta más corta de s a v en G

13 Representación de las Rutas más Cortas Las rutas más cortas no son necesariamente únicas 13 Tampoco los árboles de rutas más cortas

14 Técnica de Relajación (Relaxation) Estos algoritmos utilizan la técnica de relajación Para cada vértice v V, mantenemos un atributo d[v], una frontera superior del peso de la ruta más corta desde la fuente s a v A d[v] se le llama un estimado de ruta más corta 14

15 Técnica de Relajación (Relaxation) Inicialización 15

16 Técnica de Relajación (Relaxation) Relajación de un arco (u, v) consiste en 16 Probar si podemos mejorar la ruta más corta a v encontrada a través de u y si es posible, actualizar d[v] y π[v] El proceso puede decrementar el valor de la estimación de la ruta más corta d[v] y actualizar el predecesor π[v]

17 Técnica de Relajación (Relaxation) 17

18 Técnica de Relajación (Relaxation) 18 Los lemas 24.10, 24.11, 24.14, y y el corolario muestran como relajando después de INITIALIZE-SINGLE-SOURCE, se alcanzará el peso de la ruta más corta y el grafo de predecesores será un árbol de rutas más cortas Asumimos que no hay ciclos con peso negativo

19 Algoritmo Bellman-Ford Resuelve el problema de rutas más cortas desde una sola fuente En el caso general puede haber arcos con pesos negativos 19 Dado un grafo dirigido, con pesos, con fuente s y función de pesos w : E R, regresa un valor booleano indicando si hay o no un ciclo con peso negativo que es alcanzable desde la fuente Si existe un ciclo de este tipo, el algoritmo indica que no hay solución Si no hay un ciclo de este tipo, el algoritmo produce las rutas más cortas y sus pesos

20 Algoritmo Bellman-Ford El algoritmo utiliza el proceso de relajación 20 Progresivamente decrementa un estimado d[v] sobre el peso de una ruta más corta de la fuente s a cada vértice v V hasta que llega al peso real de la ruta más corta δ(s,v)

21 Algoritmo Bellman-Ford 21

22 Algoritmo Bellman-Ford Primero inicializa, línea 1 Hace V -1 pasadas sobre los arcos, loop líneas 2-4 Relaja cada arco del grafo una vez Checa si hay un ciclo con peso negativo, líneas 5-8 Si hay regresa FALSE Si no hay regresa TRUE Tiempo de ejecución O(VE) Inicialización Θ(V) Cada pasada (V-1 en total) por las líneas 2-4 Θ(E) Ciclo líneas 5-7 O(E) 22

23 Algoritmo Bellman-Ford 23

24 Algoritmo Bellman-Ford 24

25 Algoritmo Bellman-Ford Teorema 24.4 (el algoritmo de Bellman-Ford es correcto) 25 Si ejecutamos Bellman-Ford en un grafo dirigido, pesado G = (V,E) con fuente s y función de pesos w: E R. Si G no contiene ciclos con peso negativo que sean alcanzables desde s Entonces el algoritmo regresa TRUE Tenemos d[v] = δ(s,v) para todos los vértices v V El subgrafo de predecesores G π es un árbol de rutas más cortas con s como raíz. Si G contiene un ciclo con peso negativo, alcanzable desde s Entonces el algoritmo regresa FALSE

26 Rutas más Cortas desde una sola Fuente en Grafos Dirigidos Acíclicos (DAG) Relajamos los arcos de un dag pesado, G = (V,E) de acuerdo a un ordenamiento topológico de sus vértices Calculamos las rutas más cortas desde una sola fuente en tiempo Θ(V + E) 26 Las rutas más cortas siempre están bien definidas en un dag Aún si hay arcos con pesos negativos, no puede existir un ciclo con peso negativo

27 Rutas más Cortas desde una sola Fuente en Grafos Dirigidos Acíclicos (DAG) Tiempo de ejecución total: Θ(V + E) Ordenamiento topológico: Θ(V + E) Llamada a Initialize-Single-Source: Θ(V) Loop líneas 3-5: Θ(E) 27

28 Rutas más Cortas desde una sola Fuente en Grafos Dirigidos Acíclicos (DAG) 28 El algoritmo primero ordena topológicamente el dag para poner un orden en los vértices Si hay una ruta de u a v, entonces u precede a v en el orden topológico Se hace una pasada sobre los vértices ordenados topológicamente Cada que se procesa un vértice, se relaja cada arco que sale del vértice

29 Rutas más Cortas desde una sola Fuente en Grafos Dirigidos Acíclicos (DAG) 29

30 Rutas más Cortas desde una sola Fuente en Grafos Dirigidos Acíclicos (DAG) 30

31 Rutas más Cortas desde una sola Fuente en Grafos Dirigidos Acíclicos (DAG) Aplicación 31 Diagramas de Pert (program evaluation and review technique)

32 Algoritmo de Dijkstra 32 Resuelve el problema de rutas más cortas desde una sola fuente con un grafo dirigido y pesado G = (V, E) para el caso en que los pesos no son negativos Asumimos que w(u,v) > 0 para cada arco (u,v) E

33 Algoritmo de Dijkstra 33

34 Algoritmo de Dijkstra 34 Mantiene un conjunto S de vértices para los cuales se ha determinado la ruta más corta desde la fuente s Después selecciona un vértice u V S con el estimado mínimo de ruta más corta Añade u a S y relaja todos los arcos de salen de u La implementación usa un Priority-Queue de vértices utilizando como llave los valores d También mantiene el padre que llevó a la ruta más corta hasta ese momento, π[v]

35 Algoritmo de Dijkstra 35

36 Algoritmo de Dijkstra 36

37 Algoritmo de Dijkstra 37

38 Es un algoritmo voraz Algoritmo de Dijkstra 38 Porque siempre elige el vértice más ligero o más cercano en V S para añadir al conjunto S Dijkstra s calcula rutas más cortas Cada vez que se añade un vértice u al conjunto S, tenemos que d[u] = δ(s,u).

39 Algoritmo de Dijkstra Teorema 24.6 (El algoritmo de Dijkstra es correcto) 39 El algoritmo de Dijkstra, ejecutado sobre un grafo pesado y dirigido G = (V, E) con una función de pesos no-negativos w y una fuente s, termina con d[u] = δ(s,u) para todos los vértices u V. Corolario 24.7 Si ejecutamos el algoritmo de Dijkstra sobre un grafo pesado y dirigido G = (V, E) con una función de pesos no-negativos w y una fuente s, entonces a la terminación, el subgrafo de predecesores G π es un árbol de rutas más cortas con s como raíz.

40 TAREA Hacer una prueba de ciclo invariante para el algoritmo de Dijkstra 40

Algoritmos para determinar Caminos Mínimos en Grafos

Algoritmos para determinar Caminos Mínimos en Grafos Problemas de camino mínimo Algoritmos para determinar Caminos Mínimos en Grafos Algoritmos y Estructuras de Datos III DC, FCEN, UBA, C 202 Problemas de camino mínimo Dado un grafo orientado G = (V, E)

Más detalles

Teoría de grafos y optimización en redes

Teoría de grafos y optimización en redes Teoría de grafos y optimización en redes José María Ferrer Caja Universidad Pontificia Comillas Definiciones básicas Grafo: Conjunto de nodos (o vértices) unidos por aristas G = (V,E) Ejemplo V = {,,,,

Más detalles

El TAD Grafo. El TAD Grafo

El TAD Grafo. El TAD Grafo ! Esta representación resulta útil cuando el número de vértices se conoce previamente y permanecerá fijo durante la resolución del problema, pero resulta ineficiente si necesitamos añadir o eliminar vértices

Más detalles

Un grafo G = (V, E) se dice finito si V es un conjunto finito.

Un grafo G = (V, E) se dice finito si V es un conjunto finito. 1 Grafos: Primeras definiciones Definición 1.1 Un grafo G se define como un par (V, E), donde V es un conjunto cuyos elementos son denominados vértices o nodos y E es un subconjunto de pares no ordenados

Más detalles

Ciclos. Recordando Estructuras de Control Básicas: SELECCIÓN (condición) SECUENCIAL

Ciclos. Recordando Estructuras de Control Básicas: SELECCIÓN (condición) SECUENCIAL Ciclos Fundamentos de Programación Recordando Estructuras de Control Básicas: Una secuencia es una serie de estatutos que se ejecutan uno después de otro. Selección (condición) ejecuta diferentes estatutos

Más detalles

OPTIMIZACIÓN VECTORIAL

OPTIMIZACIÓN VECTORIAL OPTIMIZACIÓN VECTORIAL Métodos de Búsqueda Directa Utilizan sólo valores de la función Métodos del Gradiente Métodos de Segundo Orden Requieren valores aproimados de la primera derivada de f) Además de

Más detalles

Introducción a la Teoría de Grafos

Introducción a la Teoría de Grafos Introducción a la Teoría de Grafos Flavia Bonomo fbonomo@dc.uba.ar do. Cuatrimestre 009 Programa Introducción a la teoría de grafos Problemas de camino mínimo Problemas de flujo máximo Clases de complejidad

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 45

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 45 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 45 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 42 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

Tema 3: El Método Simplex. Algoritmo de las Dos Fases.

Tema 3: El Método Simplex. Algoritmo de las Dos Fases. Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo

Más detalles

Objetivos formativos de Matemática Discreta. Tema 1: Conjuntos, aplicaciones y relaciones

Objetivos formativos de Matemática Discreta. Tema 1: Conjuntos, aplicaciones y relaciones Objetivos formativos de Matemática Discreta Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera

Más detalles

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a)

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a) DERIVADAS. TEMA 2. BLOQUE 1 1.- DERIVADA DE UNA FUNCIÓN EN UN PUNTO Se llama derivada de la función y = f ( en el punto de abscisa x = a al límite f ( f ( a f ( a = lím x a x a Si existe f (a entonces

Más detalles

Tema: Los Grafos y su importancia para la optimización de redes.

Tema: Los Grafos y su importancia para la optimización de redes. Tema: Los Grafos y su importancia para la optimización de redes. Qué son los Grafos? Un grafo es una dupla G= {X,U}, donde X es un conjunto finito y no vacio de elementos llamados vértices y U es el conjunto

Más detalles

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc.

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc. PROGRAMACIÓN LINEAL La programación lineal da respuesta a situaciones en las que se exige maximizar o minimizar funciones que se encuentran sujetas a determinadas limitaciones, que llamaremos restricciones.

Más detalles

Geometría combinatoria de cuadrados mágicos, latinos, sudokus y otras tablas curiosas

Geometría combinatoria de cuadrados mágicos, latinos, sudokus y otras tablas curiosas Geometría combinatoria de cuadrados mágicos, latinos, sudokus y otras tablas curiosas Jesús A. De Loera University of California, Davis trabajo conjunto con Shmuel Onn (Technion Haifa Israel) Cuadrados

Más detalles

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,jsimmond@inf.utfsm.cl Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean

Más detalles

Proyecto 2: recorridos sobre grafos y componentes conexas

Proyecto 2: recorridos sobre grafos y componentes conexas Universidad Simón Bolívar Departamento de Computación y Tecnología de la Información CI-2693. Laboratorio de Algoritmos y Estructuras III Trimestre Abril-Julio 2015 1. Introducción Proyecto 2: recorridos

Más detalles

Mercedes Granda Departamento de Electrónica y Computadores. Las propiedades de las redes de Petri nos permiten

Mercedes Granda Departamento de Electrónica y Computadores. Las propiedades de las redes de Petri nos permiten 22//22 REDES DE PETRI: PROPIEDADES Y MÉTODOS DE ANÁLISIS PROGRAMACIÓN CONCURRENTE MASTER EN COMPUTACIÓN DEPARTAMENTO DE ELECTRÓNICA Y COMPUTADORES UNIVERSIDAD DE CANTABRIA CURSO 22/3 REDES DE PETRI: PROPIEDADES

Más detalles

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 IN3701 - Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 Acá va una pequeña guía con problemas resueltos de Geometría en Programación Lineal con problemas básicamente extraídos del

Más detalles

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL.

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL. PROGRAMACIÓN LINEAL. La programación lineal es una técnica de modelado (construcción de modelos). La programación lineal (PL) es una técnica matemática de optimización, es decir, un método que trata de

Más detalles

Algoritmos sobre Grafos

Algoritmos sobre Grafos Sexta Sesión 27 de febrero de 2010 Contenido Deniciones 1 Deniciones 2 3 4 Deniciones sobre Grafos Par de una lista de nodos y una lista de enlaces, denidos a su vez como pares del conjunto de nodos.

Más detalles

Curso SIG. Curso SIG Conceptos Básicos y Funciones. Conceptos Básicos y Funciones. Representaciones del mundo. Curso SIG - Pablo Rebufello 1

Curso SIG. Curso SIG Conceptos Básicos y Funciones. Conceptos Básicos y Funciones. Representaciones del mundo. Curso SIG - Pablo Rebufello 1 Conceptos Básicos y Funciones 1 Conceptos Básicos y Funciones Representaciones del mundo Modelos de representación de datos basados en: Datos vectoriales Datos raster 2 - Pablo Rebufello 1 Datos Vectoriales:

Más detalles

Modelos de Redes: Problemas de la Ruta más m s corta. M. En C. Eduardo Bustos Farías

Modelos de Redes: Problemas de la Ruta más m s corta. M. En C. Eduardo Bustos Farías Modelos de Redes: Problemas de la Ruta más m s corta M. En C. Eduardo Bustos Farías as Problemas de la Ruta más m s corta 2 Problemas de la Ruta más m s corta Se trata de encontrar la ruta de menor distancia,

Más detalles

TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS

TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS IES IGNACIO ALDECOA 19 TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS 4.1 Medida de ángulos. Equivalencias. Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas

Más detalles

Unidad 6. Gráficas Planares

Unidad 6. Gráficas Planares Unidad 6. Gráficas Planares Una gráfica Planar es aquella que puede llegar a representarse en un plano de tal modo que no existe intersección de líneas excepto en los vértices. Una gráfica Plana es aquella

Más detalles

Complejidad amortizada

Complejidad amortizada Análisis de algoritmos Complejidad amortizada Dra. Elisa Schaeffer elisa.schaeffer@gmail.com PISIS / FIME / UANL Complejidad amortizada p. 1 Complejidad amortizada La idea en el análisis de complejidad

Más detalles

Teoría de juegos Andrés Ramos Universidad Pontificia Comillas

Teoría de juegos Andrés Ramos Universidad Pontificia Comillas Teoría de juegos Andrés Ramos Universidad Pontificia Comillas http://www.iit.upcomillas.es/aramos/ Andres.Ramos@upcomillas.es TEORÍA DE JUEGOS 1 Teoría de juegos 1. Matriz de pagos 2. Clasificación 3.

Más detalles

ÁNGULO ENTRE DOS RECTAS Y DISTANCIA DE UN PUNTO A UNA RECTA

ÁNGULO ENTRE DOS RECTAS Y DISTANCIA DE UN PUNTO A UNA RECTA ÁNGULO ENTRE DOS RECTAS Y DISTANCIA DE UN PUNTO A UNA RECTA Sugerencias para quien imparte el curso Es importante que los alumnos tengan presentes los conceptos de congruencia de ángulos vistos en matemáticas

Más detalles

Continuidad. 5.1 Continuidad en un punto

Continuidad. 5.1 Continuidad en un punto Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos

Más detalles

UNIDAD 6.- PROGRAMACIÓN LINEAL

UNIDAD 6.- PROGRAMACIÓN LINEAL UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:

Más detalles

Tema 4 Algoritmos y protocolos de encaminamiento

Tema 4 Algoritmos y protocolos de encaminamiento Tema 4 Algoritmos y protocolos de encaminamiento 1 Contenidos Introducción Teoría de grafos Algoritmos de búsqueda de camino más corto Otros algoritmos en grafos Del algoritmo al protocolo 2 Contenidos

Más detalles

Ejemplo: El problema de la mochila. Algoritmos golosos. Algoritmos y Estructuras de Datos III. Segundo cuatrimestre 2013

Ejemplo: El problema de la mochila. Algoritmos golosos. Algoritmos y Estructuras de Datos III. Segundo cuatrimestre 2013 Técnicas de diseño de algoritmos Algoritmos y Estructuras de Datos III Segundo cuatrimestre 2013 Técnicas de diseño de algoritmos Algoritmos golosos Backtracking (búsqueda con retroceso) Divide and conquer

Más detalles

Diagrama de Voronoi. Ejemplo de problemas geométricos:

Diagrama de Voronoi. Ejemplo de problemas geométricos: Diagrama de Voronoi Definición: Sea P={p1,p2,..,pn} un conjunto de puntos en el plano. Estos puntos son llamados sitios. Asignar a cada punto del plano el sitio más cercano. Todos los puntos asignados

Más detalles

CAPÍTULO 4 TÉCNICA PERT

CAPÍTULO 4 TÉCNICA PERT 54 CAPÍTULO 4 TÉCNICA PERT Como ya se mencionó en capítulos anteriores, la técnica CPM considera las duraciones de las actividades como determinísticas, esto es, hay el supuesto de que se realizarán con

Más detalles

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut 8.1 Para cada uno de los siguientes conjuntos, encontrar una desigualdad válida que agregada a la formulación

Más detalles

Definición: un lugar geométrico plano es el conjunto de todos los puntos del plano que cumplen una determinada propiedad.

Definición: un lugar geométrico plano es el conjunto de todos los puntos del plano que cumplen una determinada propiedad. Capítulo II. Lugar geométrico. Definición: un lugar geométrico plano es el conjunto de todos los puntos del plano que cumplen una determinada propiedad. Ejemplo: la mediatriz de un segmento es el conjunto

Más detalles

Algoritmos y programas. Algoritmos y Estructuras de Datos I

Algoritmos y programas. Algoritmos y Estructuras de Datos I Algoritmos y programas Algoritmos y Estructuras de Datos I Primer cuatrimestre de 2012 Departamento de Computación - FCEyN - UBA Programación funcional - clase 1 Funciones Simples - Recursión - Tipos de

Más detalles

Apuntes de Grafos. 1. Definiciones

Apuntes de Grafos. 1. Definiciones Apuntes de Grafos Un grafo es una entidad matemática introducida por Euler en 736 para representar entidades (vértices) que pueden relacionarse libremente entre sí, mediante el concepto de arista Se puede

Más detalles

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21 Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)

Más detalles

Soluciones básicas factibles y vértices Introducción al método símplex. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Soluciones básicas factibles y vértices Introducción al método símplex. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Soluciones básicas factibles y vértices Introducción al método símplex Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema PLs en formato estándar Vértices y soluciones

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

Algoritmos glotones. mat-151

Algoritmos glotones. mat-151 Algoritmos glotones (greedy) mat-151 Alonso Ramirez Manzanares Computación y Algoritmos 04.06.2009 Algoritmos glotones Algoritmos utilizados en problemas de optimización. Estos algoritmos siguen típicamente

Más detalles

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A Eámenes de Matemáticas de Selectividad ndalucía resueltos http://qui-mi.com/ Eamen de Selectividad Matemáticas JUNIO 5 - ndalucía OPCIÓN.- [,5 puntos] Se quiere construir un depósito abierto de base cuadrada

Más detalles

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación).

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación). Espacios Topológicos 1 Punto de Acumulación Definición: Sea A un subconjunto arbitrario de R n, se dice que x R n es un punto de acumulación de A si toda bola abierta con centro x contiene un punto A distinto

Más detalles

Introducción a la Teoría de Grafos

Introducción a la Teoría de Grafos Introducción a la Teoría de Grafos Flavia Bonomo fbonomo@dc.uba.ar do. Cuatrimestre 009 Árboles Un árbol es un grafo conexo y acíclico (sin ciclos). Un bosque es un grafo acíclico, o sea, una unión disjunta

Más detalles

Capítulo 6. Relaciones. Continuar

Capítulo 6. Relaciones. Continuar Capítulo 6. Relaciones Continuar Introducción Una relación es una correspondencia entre dos elementos de dos conjuntos con ciertas propiedades. En computación las relaciones se utilizan en base de datos,

Más detalles

Programación. Tema 8: Tablas Hash. Apuntes elaborados por: Eduardo Quevedo, Aaron Asencio y Raquel López Revisado por: Javier Miranda el????

Programación. Tema 8: Tablas Hash. Apuntes elaborados por: Eduardo Quevedo, Aaron Asencio y Raquel López Revisado por: Javier Miranda el???? Programación. Tema : Tablas Hash /Mayo/ Apuntes elaborados por: Eduardo Quevedo, Aaron Asencio y Raquel López Revisado por: Javier Miranda el???? Tema : Tabla Hash Las tabla hash aparece para conseguir

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy). UNIDAD II: VECTORES EN DOS Y TRES DIMENSIONES Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios

Más detalles

RESOLUCIÓN DE TRIÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RESOLUCIÓN DE TRIÁNGULOS Resolver un triángulo consiste en determinar la longitud de sus tres lados y la amplitud de sus tres ángulos. Vamos a recordar primero la resolución para triángulos rectángulos

Más detalles

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2 Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,

Más detalles

UD Trigonometría Ejercicios Resueltos y Propuestos Col La Presentación

UD Trigonometría Ejercicios Resueltos y Propuestos Col La Presentación En este documento se da una relación de los tipos de ejercicios que nos podemos encontrar en el tema de Trigonometría de º de Bachillerato. En todo el documento se sigue el mismo esquema: Enunciado tipo

Más detalles

Espacios conexos. Capítulo Conexidad

Espacios conexos. Capítulo Conexidad Capítulo 5 Espacios conexos 1. Conexidad En este capítulo exploraremos el concepto de conexidad en un espacio métrico, y estudiaremos algunas de sus aplicaciones. Definición 5.1. Decimos que el espacio

Más detalles

TECNICO SUPERIOR EN INFORMÁTICA EMPRESARIAL MÓDULO INTRUCCIONAL

TECNICO SUPERIOR EN INFORMÁTICA EMPRESARIAL MÓDULO INTRUCCIONAL 1 TECNICO SUPERIOR EN INFORMÁTICA EMPRESARIAL MÓDULO INTRUCCIONAL TECNOLOGÍA DE LA COMPUTADORA FACILITADOR: PARTICIPANTE: DAVID, CHIRIQUÍ 2015 2 Qué es un programa? Un programa informático es un conjunto

Más detalles

Caminos y Flujos optimales. Introducción a la Investigación de Operaciones 2007

Caminos y Flujos optimales. Introducción a la Investigación de Operaciones 2007 Caminos y Flujos optimales Introducción a la Investigación de Operaciones 2007 Contenido Definiciones básicas. Conexidad. Clausura transitiva. Esqueletos y caminos optimales. Redes. Flujos. Algoritmo de

Más detalles

Cristian Blanco

Cristian Blanco UNIDAD DIDÁCTICA 8. ANÁLISIS Y DISEÑO ORIENTADO A OBJETOS. DIAGRAMAS DE COMPORTAMIENTO En el siguiente enlace tienes una descripción y algunos ejemplos de todos los diagramas UML.: http://jms32.eresmas.net/tacticos/uml/umlindex.html

Más detalles

LAS CIENCIAS DE LA PLANIFICACIÓN

LAS CIENCIAS DE LA PLANIFICACIÓN LAS CIENCIAS DE LA PLANIFICACIÓN 5. EL PROBLEMA DEL VIAJANTE (PV) (The Traveling Salesman Problem TSP) Un problema como el de las vacaciones, pero vital para las empresas, es el problema del viajante (PV):

Más detalles

Tema 13 La integral definida. Aplicaciones

Tema 13 La integral definida. Aplicaciones Tema La integral definida. Aplicaciones. Integral definida. Calcula la integral. ( ) d 4 Calculamos una primitiva de la función f ( ) : G( ) ( ) d Según la regla de Barrow: 4 4 ( ) d G(4) G() 4 8 4 Ahora

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 }

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 } LOS NÚMEROS REALES TEMA 1 IDEAS SOBRE CONJUNTOS Partiremos de la idea natural de conjunto y del conocimiento de si un elemento pertenece (* ) o no pertenece (* ) a un conjunto. Los conjuntos se pueden

Más detalles

Apuntes de Matemática Discreta 8. Relaciones de Equivalencia

Apuntes de Matemática Discreta 8. Relaciones de Equivalencia Apuntes de Matemática Discreta 8. Relaciones de Equivalencia Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 8 Relaciones de Equivalencia

Más detalles

Complejidad computacional (Análisis de Algoritmos)

Complejidad computacional (Análisis de Algoritmos) Definición. Complejidad computacional (Análisis de Algoritmos) Es la rama de las ciencias de la computación que estudia, de manera teórica, la optimización de los recursos requeridos durante la ejecución

Más detalles

Coordenadas de un punto

Coordenadas de un punto Coordenadas de un punto En esta sección iniciamos con las definiciones de algunos conceptos básicos sobre los cuales descansan todos los demás conceptos que utilizaremos a lo largo del curso. Ejes Coordenados

Más detalles

Estatutos de Control C# Estatutos de Decisión (Selección)

Estatutos de Control C# Estatutos de Decisión (Selección) SELECCIÓN Estatutos de Control C# Estatutos de Decisión (Selección) IF Condición THEN Estatuto1 ELSE Estatuto2 Estatuto1 Statement Condición... Antes de ver esta presentación: Lee el Capítulo correspondiente

Más detalles

Control de Flujo. Estructuras de Control! Experiencia Educativa de Algorítmica CONTROL DE FLUJO

Control de Flujo. Estructuras de Control! Experiencia Educativa de Algorítmica CONTROL DE FLUJO Control de Flujo Estructuras de Control Experiencia Educativa de Algorítmica 1 Introducción El estilo de como escribimos y analizamos un algoritmo se convierte en una de las principales características

Más detalles

Función cuadrática. Ecuación de segundo grado completa

Función cuadrática. Ecuación de segundo grado completa Función cuadrática Una función cuadrática es aquella que puede escribirse como una ecuación de la forma: f(x) = ax 2 + bx + c donde a, b y c (llamados términos) son números reales cualesquiera y a es distinto

Más detalles

4. DIAGRAMAS DE INTERACCIÓN INTRODUCCIÓN DIAGRAMAS DE SECUENCIA Objetos Mensajes

4. DIAGRAMAS DE INTERACCIÓN INTRODUCCIÓN DIAGRAMAS DE SECUENCIA Objetos Mensajes 4. DIAGRAMAS DE INTERACCIÓN...37 4.1. INTRODUCCIÓN... 37 4.2. DIAGRAMAS DE SECUENCIA... 37 4.2.1. Objetos...37 4.2.2. Mensajes...38 4.2.3. Creación y destrucción de un objeto...39 4.3. DIAGRAMAS DE COLABORACIÓN...

Más detalles

GUÍAS DE ESTUDIO. Programa de alfabetización, educación básica y media para jóvenes y adultos

GUÍAS DE ESTUDIO. Programa de alfabetización, educación básica y media para jóvenes y adultos GUÍAS DE ESTUDIO Código PGA-02-R02 1 INSTITUCIÓN EDUCATIVA CASD Programa de alfabetización, educación básica y media para jóvenes y adultos UNIDAD DE TRABAJO Nº 1 PERIODO 1 1. ÁREA INTEGRADA: MATEMÁTICAS

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

Árboles abarcadores mínimos: algoritmo de Prim y algoritmo de Kruskal.

Árboles abarcadores mínimos: algoritmo de Prim y algoritmo de Kruskal. Árboles abarcadores mínimos: algoritmo de Prim y algoritmo de Kruskal. Jose Aguilar 1 Grafo de carreteras entre ciudades Mcbo Coro Pto. Cabello Valera Bqto Valencia Maracay Caracas Acarigua Barinas San

Más detalles

Algoritmos. Medios de expresión de un algoritmo. Diagrama de flujo

Algoritmos. Medios de expresión de un algoritmo. Diagrama de flujo Algoritmos En general, no hay una definición formal de algoritmo. Muchos autores los señalan como listas de instrucciones para resolver un problema abstracto, es decir, que un número finito de pasos convierten

Más detalles

Árboles Filogenéticos. BT7412, CC5702 Bioinformática Diego Arroyuelo. 2 de noviembre de 2010

Árboles Filogenéticos. BT7412, CC5702 Bioinformática Diego Arroyuelo. 2 de noviembre de 2010 Unidad 6: Árboles Filogenéticos BT7412, CC5702 Bioinformática Diego Arroyuelo 2 de noviembre de 2010 Temario (Introduction to Computational Molecular Biology Setubal y Meidanis Capítulo 6) 1. Introducción

Más detalles

PROGRAMA PRE-PAES 2015 Asignatura: Matemática Contenido Virtual

PROGRAMA PRE-PAES 2015 Asignatura: Matemática Contenido Virtual Programa PREPAES, Universidad Francisco Gavidia015 PROGRAMA PRE-PAES 015 Asignatura: Matemática Contenido Virtual TEMA: APLIQUEMOS ELEMENTOS DE GEOMETRIA ANALITICA Profesor: Luis Roberto Padilla R. e-mail:

Más detalles

MATHEMATICA. Geometría - Triángulos. Ricardo Villafaña Figueroa. Ricardo Villafaña Figueroa. Material realizado con Mathematica y Geometry Expressions

MATHEMATICA. Geometría - Triángulos. Ricardo Villafaña Figueroa. Ricardo Villafaña Figueroa. Material realizado con Mathematica y Geometry Expressions MATHEMATICA Geometría - Triángulos Material realizado con Mathematica y Geometry Expressions Contenido TRIÁNGULOS... 3 Cálculo de los ángulos interiores de un triángulo... 3 Baricentro... 6 Ortocentro...

Más detalles

Cálculo de las raíces reales de. Ecuaciones Algebraicas y Trascendentes. con la TI Voyage 200

Cálculo de las raíces reales de. Ecuaciones Algebraicas y Trascendentes. con la TI Voyage 200 Fermí Vilà TI Voyage 200 1 Cálculo de las raíces reales de Ecuaciones Algebraicas y Trascendentes con la TI Voyage 200 Fermí Vilà Fermí Vilà TI Voyage 200 2 Método de las Cuerdas o Regla de las Partes

Más detalles

Capítulo 2: Inducción y recursión Clase 2: El principio de Inducción Fuerte

Capítulo 2: Inducción y recursión Clase 2: El principio de Inducción Fuerte Capítulo 2: Inducción y recursión Clase 2: El principio de Inducción Fuerte Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 2: Inducción y Recursión 1 / 20 Motivación

Más detalles

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular.

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. MODELOS DE COMPUTACION I Preguntas Tipo Test Indicar si son verdaderas o falsas las siguientes afirmaciones: 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. 2.

Más detalles

RELACIÓN DE PROBLEMAS DE CLASE DE PROGRAMACIÓN LINEAL ENTERA

RELACIÓN DE PROBLEMAS DE CLASE DE PROGRAMACIÓN LINEAL ENTERA RELACIÓN DE PROBLEMAS DE CLASE DE PROGRAMACIÓN LINEAL ENTERA SIMPLEX Y LINEAL ENTERA a Resuelve el siguiente problema con variables continuas positivas utilizando el método simple a partir del vértice

Más detalles

Club GeoGebra Iberoamericano. 9 INECUACIONES 2ª Parte

Club GeoGebra Iberoamericano. 9 INECUACIONES 2ª Parte 9 INECUACIONES 2ª Parte INECUACIONES INTRODUCCIÓN Los objetivos de esta segunda parte del tema serán la resolución de inecuaciones con GeoGebra y la aplicación que tiene este software para la representación

Más detalles

Método de Sustitución

Método de Sustitución Método de Sustitución El nombre de este método nos indica qué es lo que vamos a hacer: para resolver el S.E.L. de dos ecuaciones con dos incógnitas vamos a «despejar» una de las incógnitas de una de las

Más detalles

Autómatas Deterministas. Ivan Olmos Pineda

Autómatas Deterministas. Ivan Olmos Pineda Autómatas Deterministas Ivan Olmos Pineda Introducción Los autómatas son una representación formal muy útil, que permite modelar el comportamiento de diferentes dispositivos, máquinas, programas, etc.

Más detalles

PROGRAMACION CONCURRENTE Y DISTRIBUIDA

PROGRAMACION CONCURRENTE Y DISTRIBUIDA PROGRAMACION CONCURRENTE Y DISTRIBUIDA V.2 Redes de Petri: Análisis y validación. J.M. Drake 1 Capacidad de modelado y capacidad de análisis El éxito de un método de modelado es consecuencia de su capacidad

Más detalles

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO.

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO. RAZONAMIENTO Y DEMOSTRACIÓN Determina la distancia entre pares de puntos. Calcula las coordenadas del punto medio del segmento cuyos extremos son dos puntos dados. Halla la pendiente de una recta. COMUNICACIÓN

Más detalles

Desde los programas más simples escritos en un lenguaje de programación suelen realizar tres tareas en forma secuencial.

Desde los programas más simples escritos en un lenguaje de programación suelen realizar tres tareas en forma secuencial. Tipos de Datos Desde los programas más simples escritos en un lenguaje de programación suelen realizar tres tareas en forma secuencial. Entrada de datos Procesamientos de datos Salida de resultados Los

Más detalles

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente. ÁLGEBRA DE MATRICES Página 47 REFLEXIONA Y RESUELVE Elección de presidente Ayudándote de la tabla, estudia detalladamente los resultados de la votación, analiza algunas características de los participantes

Más detalles

b 11 cm y la hipotenusa

b 11 cm y la hipotenusa . RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS UNIDAD : Trigonometría II Resolver un triángulo es conocer la longitud de cada uno de sus lados y la medida de cada uno de sus ángulos. En el caso de triángulos rectángulos,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

Algoritmos y Estructuras de Datos Curso 06/07. Ejercicios

Algoritmos y Estructuras de Datos Curso 06/07. Ejercicios 9..En un problema de backtracking estamos interesados en almacenar de forma explícita el árbol recorrido por el algoritmo. De cada nodo del árbol sólo necesitamos saber un número, que indica el orden en

Más detalles

Universidad Nacional de Ingeniería Facultad de Ciencias. Física Computacional CC063. Algebra Lineal. Prof: J. Solano 2012-I

Universidad Nacional de Ingeniería Facultad de Ciencias. Física Computacional CC063. Algebra Lineal. Prof: J. Solano 2012-I Universidad Nacional de Ingeniería Facultad de Ciencias Física Computacional CC063 Algebra Lineal Prof: J. Solano 2012-I Introduccion Aqui trabjaremos con operaciones basicas con matrices, tales como solucion

Más detalles

TRIGONOMETRÍA ESFÉRICA 2001 Kepler C k Ikastegia

TRIGONOMETRÍA ESFÉRICA 2001 Kepler C k Ikastegia TRIGNMETRÍ ESFÉRI 2001 Kepler k Ikastegia 2 1.1 Introducción La Trigonometría es una rama de la Matemática en la que se analiza la medida de las partes de los triángulos, tanto de los triángulos planos

Más detalles

Problemas de la Ruta más m s corta

Problemas de la Ruta más m s corta Modelos de Redes: Problemas de la Ruta más m s corta M. En C. Eduardo Bustos Farías as Problemas de la Ruta más m s corta Problemas de la Ruta más m s corta Se trata de encontrar la ruta de menor distancia,

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x

Más detalles

El pipeline de visualización es el conjunto de

El pipeline de visualización es el conjunto de Sistemas de Visualización Pipeline de visualización 3D Definición del modelo geométrico Transformaciones geométricas Transformaciones de visualización Volumen de visualización Proyecciones Pipeline de

Más detalles

Es un conjunto de objetos llamados vértices o nodos unidos por enlaces llamados aristas o arcos, que permiten representar relaciones binarias entre

Es un conjunto de objetos llamados vértices o nodos unidos por enlaces llamados aristas o arcos, que permiten representar relaciones binarias entre Es un conjunto de objetos llamados vértices o nodos unidos por enlaces llamados aristas o arcos, que permiten representar relaciones binarias entre elementos de un conjunto. Típicamente, un grafo se representa

Más detalles

4ta. Práctica. Búsqueda en árbol con contrincante: MiniMax con poda Alfa-Beta. Inteligencia Artificial Prácticas 2004/2005

4ta. Práctica. Búsqueda en árbol con contrincante: MiniMax con poda Alfa-Beta. Inteligencia Artificial Prácticas 2004/2005 4ta. Práctica Búsqueda en árbol con contrincante: MiniMax con poda Alfa-Beta Inteligencia Artificial Prácticas 2004/2005 Decisiones Perfectas en Juegos de DOS Participantes Definición de Juego Estado Inicial:

Más detalles

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia

Más detalles

open green road Guía Matemática tutora: Jacky Moreno .cl

open green road Guía Matemática tutora: Jacky Moreno .cl Guía Matemática ÁNGULOS tutora: Jacky Moreno.cl 1. Geometría La geometría es una de las ramas de las matemáticas más antiguas que se encarga de estudiar las propiedades del espacio, principalmente las

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

S.E.L.: 3 ecuaciones con 3 incógnitas

S.E.L.: 3 ecuaciones con 3 incógnitas 1 S.E.L.: 3 ecuaciones con 3 incógnitas Ahora vamos a generalizar el procedimiento que hemos utilizado para resolver sistemas de una ecuación con una incógnita y de 2 ecuaciones con dos incógnitas. Para

Más detalles