FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes)"

Transcripción

1 FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES (Alguos coceptos importates) 1. Error de apreciació. Lo primero que u experimetador debe coocer es la apreciació del istrumeto co el que va a trabajar, es decir la idetermiació de la escala de lectura del mismo. Este tipo de errores se emplea para la cuatificació de la idetermiació de los datos e dos casos muy especiales. El primero es cuado sólo se puede hacer ua sola medició por las características especiales del material a medir (esayos destructivos, etc.) El segudo es cuado se hace varias medicioes y todos los valores coicide, por lo que la Teoría de Errores Casuales o puede emplearse (falta de sesibilidad del istrumeto, módulo de fluctuacioes o detectables, etc.). Ambos casos coicide e que se tiee u solo dato y allí, la úica maera de determiar el error es cosiderado la idetermiació de la escala. Básicamete hay tres tipos de escalas de lectura e los istrumetos de laboratorio: a) de lectura directa co escala cotiua b) de lectura directa co escala digital c) de lectura idirecta por alieació Los istrumetos de lectura directa so aquellos dode el valor de la medició puede obteerse directamete de su escala. a) Los istrumetos de lectura directa co escala cotiua, so los que a simple vista se puede observar toda la escala que existe etre dos líeas idicadoras. El ejemplo clásico es la regla milimetrada, dode cada raya idica u mm, y se puede ver directamete el espacio etre dos rayas. Estimació de ua lectura: Es el meor itervalo que el operador puede estimar co la escala del istrumeto del cual dispoe. Apreciació del istrumeto: Es el meor itervalo de la escala del istrumeto del cual se dispoe o sea su meor divisió. La estimació de ua lectura coicide co la apreciació del istrumeto cuado el operador o puede estimar mas allá de la correspodiete meor divisió del istrumeto que dispoe.

2 La estimació de ua lectura a veces suele ser meor que la apreciació del istrumeto del cual se dispoe. E efecto e el caso de ua regla milimetrada Ud. puede decir si su medida está más cerca de ua divisió milimétrica dada o de la siguiete, o e el medio de las dos auque allí o exista marca algua. Esta estimació depede del operador, de su experiecia, ateció y de las codicioes de la medida. A veces es posible mejorar ua escala dismiuyedo el error de apreciació allí dode o existe ua graduació etre dos marcas cosecutivas mediate algú artificio (el ojo humao, el uso de ua lupa, el uso de ua sub-escala o subdivisió, u verier, etc.). Si embargo es coveiete otar que la mejora e la apreciació del istrumeto o ecesariamete sigifica que la medició será mejor, como e el caso de istrumetos cuya exactitud o se puede mejorar más allá del dado por las divisioes de la escala, ya sea por características costructivas del istrumeto o factores de diseño, etc. La estimació de ua lectura a veces suele ser mayor que la apreciació del istrumeto del cual se dispoe, tal es el caso de medicioes dode, por ejemplo, ua aguja fluctúa etre más de ua meor divisió de la escala. E dicho caso la estimació de la lectura puede correspoder a dos, tres o más veces la meor divisió del istrumeto. Ua vez realizada la medició, la estimació de ua lectura se deomia error de apreciació. b) Los istrumetos de lectura directa co escala digital, so aquellos e que alguos valores o se puede ver a simple vista. Se trata de ua escala discreta e vez de cotiua como el caso aterior. E el caso de ua balaza co escala digital que va de gramo e gramo, el ojo humao o puede ver etre gramo y gramo por tal motivo es que se debe tomar como módulo del error de apreciació a la meor uidad de lectura. c) Istrumeto de lectura idirecta por alieació, las lecturas o se hace e forma directa, pues estos istrumetos carece de escala de lectura. El ejemplo más comú es la balaza de brazos, dode e u platillo se coloca la masa a pesar y e el otro se coloca las pesas patroes. Aquí la medició cosiste e equilibrar los brazos, lo que se aprecia por la coicidecia de ua aguja idicadora co el cetro de simetría que está idicado. Luego de lo cual se suma los valores de las pesas empleadas. El método para determiar el error de apreciació e estos casos, cosiste e lo siguiete: Se toma la meor pesa dispoible y se coloca cuidadosamete e el platillo observado si la aguja idicadora se desplaza de la posició de equilibrio, etoces, si es así, el valor de dicha pesa será el módulo del error de apreciació, justamete porque eso es lo que puede apreciarse; si o es así, hay que colocar la siguiete pesa patró dispoible de mayor peso que la aterior y se observa si se pierde el equilibrio, de ser el caso, tal será el módulo del error de apreciació, y e caso cotrario se toma otra pesa y así sucesivamete. 2. Sesibilidad de u istrumeto de medició. Es el umbral míimo de detecció de u istrumeto de medició. Por lo geeral la sesibilidad de u istrumeto está relacioada co la capacidad del istrumeto para producir ua lectura, es decir, la meor catidad de la magitud que puede ser medible. Por ejemplo, la sesibilidad de u fotómetro usado e la determiació de elemetos químicos se expresa e p.p.m. (partes por milló) y es la míima catidad que puede llegar a ser detectada co el istrumeto. E el caso de dos balazas, la más sesible será aquella que produzca ua lectura o respuesta co ua pesa de meor valor. Los istrumetos más sesibles so aquellos que produce desviacioes de su estado de equilibrio co meores perturbacioes.

3 3. Tiempo de respuesta de u istrumeto de medició. Etre dos istrumetos o equipos, el que tega u mejor tiempo de respuesta será aquel que ate ua variació del sistema, auque sea míima, tega ua respuesta más rápida ate la perturbació. 4. Gaacia o factor de amplificació. La relació que existe etre la magitud de la señal de salida de u istrumeto y la magitud de la señal de etrada se deomia gaacia. Si la señal de salida es mayor que la señal de etrada la gaacia se deomia factor de amplificació e idica por cuátas veces es multiplicado el valor de la señal de etrada. 5. Precisió. Ua maera de clasificar las causas de error es observado sus efectos, es decir se las clasifica segú si afecta la precisió o si afecta la exactitud de las medicioes efectuadas. Precisió es la cualidad que tiee u istrumeto de poder repetir, e mayor o meor grado, los valores correspodietes a ua cierta magitud medida e las mismas codicioes. La precisió es repetitividad de datos cuado el sistema o varía. Co respecto a los errores, este cocepto se ecuetra ítimamete ligado a los errores casuales o accidetales y es iversamete proporcioal a ellos. Es costumbre decir que, cuado los errores casuales so pequeños e ua experiecia, el istrumeto, equipo o método de trabajo tiee gra precisió, pero o quiere decir que sea exacto o que tiee gra exactitud. La precisió tiee que ver co la dispersió e ua forma iversamete proporcioal: a mayor precisió, meor dispersió, meor desvío estádar, meor error casual. La dispersió de los datos obteidos por u sistema de medició, que mide veces u mismo valor patró de ua magitud física, o bie, de ua magitud cualquiera, se cuatifica co el Desvío Stadard (DS) de los datos. La precisió se cuatifica como la iversa del error relativo. 1 ER = ó M 6. Exactitud. Es la obteció de datos lo más cercaamete posible al valor más probable. La exactitud se ecuetra viculada a los errores sistemáticos. Cuado u istrumeto, e ua determiada experiecia tiee errores

4 sistemáticos pequeños, se dice que es de gra exactitud. Se cuatifica mediate el sesgo que es igual, e valor absoluto, a la diferecia etre el valor verdadero y el valor medio. Por lo tato a mayor exactitud, meor error sistemático, meor sesgo. = Por lo geeral, u equipo para ser sesible, preciso y exacto deberá siempre teer que sacrificar algo de estos tres coceptos. Se debe aceptar u istrumeto que sea cofiable dismiuyedo e algo los tres parámetros y así coseguir la cojució de estos tres coceptos. 7. Precisió y Exactitud. Ua aalogía clásica para difereciar dichos coceptos es la de comparar ua medició o experimeto co u tiro al blaco. Imagiado que se ha efectuado ua serie muy larga de disparos a u blaco se puede platear tres situacioes diferetes, tal como se aprecia e la figura: a) Los impactos e el blaco tiee muy poca dispersió etre sí, por ello se habla de que hay mucha precisió e la serie de disparos; si embargo todos está lejos del cetro por lo que se dice que hay poca exactitud. b) E este caso los disparos se distribuye simétricamete alrededor del cetro por lo que estadísticamete se puede decir que el sistema es muy exacto, pero los disparos tiee ua gra dispersió por lo que se lo califica como poco preciso. c) E este caso se da la situació ideal puesto que los disparos está muy jutos alrededor del cetro y co muy poca dispersió etre los mismos, el sistema es preciso y exacto. La aalogía de lo aterior co ua serie de medicioes es imediata, si se piesa que los impactos e el blaco so los resultados que se obtiee e las medicioes, y que cada disparo es equivalete a ua medició. Por otra parte, el sistema para disparar es el equivalete del sistema de medició. La pricipal diferecia de esta aalogía es que mietras el valor verdadero de ua magitud jamás se cooce, el cetro del blaco es observable a simple vista. 8. Valor medio.

5 El valor medio o promedio de ua serie de medicioes se defie como la sumatoria de las mismas dividida la catidad de medicioes. El valor medio o media aritmética es la medida de tedecia cetral más coocida. Es la medida descriptiva que la mayoría de las persoas tiee e mete cuado se habla del promedio. = i 1 i 9. Desviació media. Es el promedio de las desviacioes de todos los valores idividuales, o sea, es la sumatoria de todos los valores absolutos de los errores aparetes de las medicioes realizadas dividido por el úmero total de medicioes. d = i 1 i La desviació media represeta la catidad e que ua medida idepediete de la serie se ha desviado del valor que se cosidera más probable. 10. Rechazo de valores. Suele ocurrir que a veces, e ua serie de medicioes parecidas, se ecuetre que uo o más de los valores uméricos difiere e forma cosiderable de los otros y eseguida se piesa e rechazarlos, para calcular el valor promedio. La probabilidad matemática ha idicado muchos camios o reglas para determiar la justificació de esos rechazos. Uo de ellos es, elimiar ese valor o valores dudosos y calcular el valor promedio y la desviació de los valores restates. El valor rechazado está justificado matemáticamete, si la desviació del valor que se rechaza co respecto al promedio es igual o mayor que cuatro veces la desviació media de los valores restates. 4 * d rechazado restates 4 * d rechazado - restates restates rechazado es el error del valor rechazado y se llama Error Aormal. 11. Població y Muestra.

6 Se defie població de valores como el mayor grupo de valores de ua variable aleatoria por los cuales se tiee u cierto iterés e u mometo dado. Por ejemplo, si se tiee iterés e el peso de todos los adolescetes iscriptos e u determiado sistema escolar provicial, la població costa de todos estos pesos. Si el iterés se cetra sólo e el peso de los alumos de primer año del sistema, se tiee ua població distita. La població puede ser fiita o ifiita. Ua muestra puede defiirse simplemete como ua parte de ua població. Supógase que ua població costa del peso de todos los adolescetes de ivel secudario iscriptos e u determiado sistema escolar provicial. Si se reúe para el aálisis el peso de sólo ua fracció de estos iños, se tiee sólo ua parte de la població de pesos, es decir, se tiee ua muestra. 12. Desvío Stadard. El desvío estádar permite obteer ua medida de la dispersió de los valores co respecto a la disemiació de los mismos e toro a su media. Cuado los valores de u cojuto de observacioes está muy próximos a su media, la dispersió (desvío estádar) es meor que cuado está distribuidos sobre u amplio recorrido. Desvío stadard muestral: DS = i 1 ( i ) -1 2 Para el caso teórico de efectuar ifiitas medicioes, se obtedría u valor verdadero del desvío stadard, llamado desvío stadard real ( ) (poblacioal). La relació etre ambos desvíos stadard está dada por: DS * k = DSº cuado = úmero de medicioes hechas. DS = desvío stadard muestral. Subestimació del valor verdadero. k = factor de correcció de Gurlad y Tripathi y se ecuetra tabulado para distitos valores de. DSº = desvío stadard corregido. = desvío stadard real o poblacioal. 13. Error real del valor medio.

7 Es la cuatificació del error casual: M = z * DSº / Geeralmete e Física se emplea z = 1, por lo que el error real del valor medio se asimila al error stadard de estimació. Error stadard de estimació = DSº / Y el valor verdadero se expresará como: = M 14. Error relativo. El error relativo de ua medició directa se calcula como el cociete etre el error real del valor medio (M) y el valor más probable ( ) ER = M ER% = M * 100 Y e ua medició idirecta, como el cociete etre el error delta de la fució y la fució. ER = ER% = * 100

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

1 Valores individuales del conjunto

1 Valores individuales del conjunto 5/03/00 METROLOGÍA ESTADÍSTICA ANÁLISIS DE DATOS Cuado se obtiee uo o más grupos de datos, producto de repeticioes i e ua medida, la mejor forma de represetarlas, es mediate las Medidas de tedecia cetral

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

Unidad N 2. Medidas de dispersión

Unidad N 2. Medidas de dispersión Uidad N 2 Medidas de dispersió Ua seguda propiedad importate que describe ua serie de datos uméricos es ua variació. La variació es la catidad de dispersió o propagació e los datos. Dos series de datos

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0

FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0 DEPARTAMENTO DE FÍSICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS Y DE MONTES UNIVERSIDAD DE CÓRDOBA FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0 1. Itroducció al cálculo de

Más detalles

MUESTREO Y ESTIMACIÓN ESTADÍSTICA

MUESTREO Y ESTIMACIÓN ESTADÍSTICA 1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA U Modelo de Costeo por Procesos JOSE ANTONIO CARRANZA PALACIOS *, JUAN MANUEL RIVERA ** INTRODUCCION U aspecto fudametal e la formulació

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 3: Teoría de errores. Implementos

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 3: Teoría de errores. Implementos ITM, Istitució uiversitaria Guía de Laboratorio de Física Mecáica Práctica 3: Teoría de errores Implemetos Regla, balaza, cilidro, esfera metálica, flexómetro, croómetro, computador. Objetivos E esta práctica

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

Orden en los números naturales

Orden en los números naturales 88 Aritmética U istrumeto para medir usado fraccioes comues Refleioes adicioales Dividir ua uidad e partes iguales: El Teorema de Thales se refiere a dividir u segmeto e cualquier úmero de segmetos iguales.

Más detalles

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS)

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 1 Supogamos que ua variable aleatoria X sigue ua ley N(µ; =,9). A partir de ua muestra de tamaño = 1, se obtiee ua media muestral

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

Probabilidad y estadística

Probabilidad y estadística Probabilidad y estadística MEDIDAS DE TENDENCIA CENTRAL, MEDIDAS DE DISPERSIÓN, GRÁFICAS, E INTERPRETANDO RESULTADOS Prof. Miguel Hesiquio Garduño. Est. Mirla Beavides Rojas Depto. De Igeiería Química

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG Covolució Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció... Aálisis de Sistemas Discretos Lieales e Ivariates e el Tiempo.... Técicas

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco MEDIDAS DE RESUMEN Jorge Galbiati Riesco Las medidas de resume sirve para describir e forma resumida u cojuto de datos que costituye ua muestra tomada de algua població. Podemos distiguir cuatro grupos

Más detalles

2.- Estudio Poblacional y Muestral Univariante

2.- Estudio Poblacional y Muestral Univariante .- Estudio Poblacioal y Muestral Uivariate Població: Colectivo de persoas o elemetos co ua característica comú, objeto de estudio. Imposibilidad de estudio de esta característica e toda la població - Coste

Más detalles

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística,, McGraw Hill.

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística,, McGraw Hill. GLOSARIO ESTADÍSTICO Fuete: Murray R. Spiegel, Estadística,, McGraw Hill. CONCEPTOS Y DEFINICIONES ESPECIALES Es el estudio cietífico de los La estadística posee tres campos métodos para recoger, orgaizar,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

Departamento Administrativo Nacional de Estadística

Departamento Administrativo Nacional de Estadística Departameto Admiistrativo acioal de Estadística Direcció de Regulació, Plaeació, Estadarizació y ormalizació -DIRPE- Especificacioes de Coeficiete y Variaza Ecuesta de Cosumo Cultural Julio 008 ESPECIFICACIOES

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 8-9 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe respoder

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...}

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...} ESTADÍSTICA BÁSICA 1.) Coceptos básicos: Estadística: Es ua ciecia que aaliza series de datos (por ejemplo, edad de ua població, altura de u equipo de balocesto, temperatura de los meses de verao, etc.)

Más detalles

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS 1. Medidas de resume descriptivas Para describir u cojuto de datos utilizamos ua serie de medidas, de igual forma que para describir a u persoa podemos utilizar

Más detalles

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC.

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC. APLICACIONES INFORMÁTICAS EN QUÍMICA Problemas Tema 2.3: Series, represetació de fucioes y costrucció de tablas e HC Grado e Química º SEMESTRE Uiversitat de Valècia Facultad de Químicas Departameto de

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 1) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Ua fábrica de muebles dispoe de 600 kg de madera para fabricar librerías de 1 y de 3 estates.

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 26 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 1. Los siguietes valores so medicioes del peso (e miles de toeladas) de grades taques de petróleo. 229, 232, 239, 232, 259, 361, 220, 260,

Más detalles

8. INTERVALOS DE CONFIANZA

8. INTERVALOS DE CONFIANZA 8. INTERVALOS DE CONFIANZA Al estimar el valor de u parámetro de la distribució teórica, o se provee iformació sobre la icertidumbre e el resultado. Esa icertidumbre es producida por la dispersió de la

Más detalles

Muestreo Estratificado.

Muestreo Estratificado. Muestreo Estratificado. 1.- Itroducció: Para aplicar este diseño, se precisa que la població esté dividida e subpoblacioes, estratos, que o se solape. Se seleccioa ua muestra probabilística e cada estrato

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20 Modelo 04. Problema 5A.- (Calificació máxima: putos) El coteido e alquitrá de ua determiada marca de cigarrillos se puede aproximar por ua variable aleatoria co distribució ormal de media µ descoocida

Más detalles

Muestreo sistemático

Muestreo sistemático Capítulo 1 Muestreo sistemático El muestreo sistemático es u tipo de muestreo que es aplicable cuado los elemetos de la població sobre la que se realiza el muestreo está ordeados Este procedimieto de muestreo

Más detalles

I VARIACIONES. Una variación es un arreglo ordenado de n objetos diferentes, tomados de r a la vez se denota por medio de:

I VARIACIONES. Una variación es un arreglo ordenado de n objetos diferentes, tomados de r a la vez se denota por medio de: ANALISIS COMBINATORIO. TEOREMA FUNDAMENTAL: Si u suceso puede teer lugar de m maeras distitas y cuado ocurre ua de ellas se puede realizar otro suceso imediatamete de formas diferetes, ambos sucesos, sucesivamete,

Más detalles

Probabilidad. Departamento de Análisis Matemático Universidad de La Laguna. 1. Introducción 1

Probabilidad. Departamento de Análisis Matemático Universidad de La Laguna. 1. Introducción 1 Probabilidad BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimeez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es) ALEJANDRO SANABRIA

Más detalles

INTRODUCCIÓN A LA PROBABILIDAD

INTRODUCCIÓN A LA PROBABILIDAD INTRODUIÓN L PROBBILIDD EXPERIMENTOS LETORIOS Y DETERMINISTS Los experimetos o feómeos cuyo resultado o puede coocerse hasta haber realizado la experiecia se llama aleatorios o estocásticos. uado el resultado

Más detalles

Intervalo de confianza para µ

Intervalo de confianza para µ Itervalo de cofiaza para p y ˆp1 ˆp ˆp1 ˆp ˆp z 1 α/ ; ˆp + z 1 α/, 7.6 ˆp + z 1 α/ ± z 1 α/ 1 + z 1 α/ ˆp1 ˆp + z 1 α/ 4 7.7 siedo ˆp = x/ y z 1 α/ el cuatil 1 α/ de la distribució ormal estádar. El itervalo

Más detalles

2 CARTAS DE CONTROL POR ATRIBUTOS

2 CARTAS DE CONTROL POR ATRIBUTOS 2 CARTAS DE CONTROL POR ATRIBUTOS Cualquier característica de calidad que pueda ser clasificada de forma biaria: cumple o o cumple, fucioa o o fucioa, pasa o o pasa, coforme o discoforme defectuoso, o

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

Teorema del Muestreo

Teorema del Muestreo Teorema del Muestreo Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice 1.1. Itroducció 1.2. Coversió aalógico-digital y digital-aalógico 1.3. Proceso

Más detalles

SEGUNDA EDICIÓN DEL CURSO DE CAPACITACION EN MATEMATICA PARA PROFESORES DE PRIMARIA MODULO IV ESTADISTICA DESCRIPITVA

SEGUNDA EDICIÓN DEL CURSO DE CAPACITACION EN MATEMATICA PARA PROFESORES DE PRIMARIA MODULO IV ESTADISTICA DESCRIPITVA SEGUNDA EDICIÓN DEL CURSO DE CAPACITACION EN MATEMATICA PARA PROFESORES DE PRIMARIA MODULO IV ESTADISTICA DESCRIPITVA ENCUENTRO NÚMERO UNO TECNICAS DE CONTEO. 28 DE SEPTIEMBRE DE 2014 MANAGUA FINANCIADO

Más detalles

Muestreo e Intervalos de Confianza

Muestreo e Intervalos de Confianza Muestreo e Itervalos de Cofiaza PROBLEMAS DE SELECTIVIDAD RESUELTOS MUESTREO E INTERVALOS DE CONFIANZA 1) E ua població ormal co variaza coocida se ha tomado ua muestra de tamaño 49 y se ha calculado su

Más detalles

TEMA 7. ESTIMACIÓN. 7.2. Estimación puntual. Propiedades deseables de los estimadores 7.2.1. Introducción y definiciones 7.2.2. Estimadores Insegados

TEMA 7. ESTIMACIÓN. 7.2. Estimación puntual. Propiedades deseables de los estimadores 7.2.1. Introducción y definiciones 7.2.2. Estimadores Insegados TEMA 7. ETIMACIÓN 7.1. Itroducció y defiicioes 7.. Estimació putual. Propiedades deseables de los estimadores 7..1. Itroducció y defiicioes 7... Estimadores Isegados 7.3. Estimació por itervalos de cofiaza

Más detalles

Muestreo. Mucho de las acciones y decisiones que se toman están basados en la información de una muestra.

Muestreo. Mucho de las acciones y decisiones que se toman están basados en la información de una muestra. 1 Muestreo Muco de las accioes y decisioes que se toma está basados e la iformació de ua muestra. La preguta que siempre se ace, es: qué tamaño de muestra es suficiete para obteer ua buea aproximació de

Más detalles

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: Progresioes aritméticas y geométricas Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/

Más detalles

Estadística Teórica II

Estadística Teórica II tervalos de cofiaza Estadística Teórica NTERVALOS DE CONFANZA Satiago de la Fuete Ferádez 77 tervalos de cofiaza CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA.

Más detalles

TEMA 6 MUESTRAS ALEATORIAS Y DISTRIBUCIONES EN EL MUESTREO

TEMA 6 MUESTRAS ALEATORIAS Y DISTRIBUCIONES EN EL MUESTREO .- Itroducció: TEMA MUESTRAS ALEATORIAS Y DISTRIBUCIONES EN EL MUESTREO Los aálisis estadísticos que se realiza e el mudo real tiee como objetivo estudiar las propiedades características de las poblacioes

Más detalles

SUCESIONES DE NÚMEROS REALES. PROGRESIONES

SUCESIONES DE NÚMEROS REALES. PROGRESIONES www.matesxroda.et José A. Jiméez Nieto SUCESIONES DE NÚMEROS REALES. PROGRESIONES. SUCESIONES DE NÚMEROS REALES. TÉRMINO GENERAL E las siguietes figuras observa el proceso que lleva a la creació de uevos

Más detalles

ANEXO. Es todo producto envasado y medido sin la presencia del consumidor y en condiciones de comercializarse.

ANEXO. Es todo producto envasado y medido sin la presencia del consumidor y en condiciones de comercializarse. ANEXO 1. MUESTREO Y TOLERANCIAS DE PRODUCTOS PREMEDIDOS 2. APLICACIÓN El presete reglameto se aplicará para la verificació de los coteidos etos de los productos promedios, etiquetados, co coteido omial

Más detalles

2,0 1,5. 1/v. Cooperatividad negativa 1,0 0,5

2,0 1,5. 1/v. Cooperatividad negativa 1,0 0,5 Ezimología Efecto cooperatio 1 EFECTO COOPERATIVO El efecto cooperatio ocurre e ezimas oligoméricas que posee arios sitios para la uió de sustrato y es el feómeo por el cual la uió de u ligado a ua ezima

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

PRUEBAS DE HIPÓTESIS

PRUEBAS DE HIPÓTESIS PRUEBAS DE HIPÓTESIS E vez de estimar el valor de u parámetro, a veces se debe decidir si ua afirmació relativa a u parámetro es verdadera o falsa. Vale decir, probar ua hipótesis relativa a u parámetro.

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

TRABAJO PRACTICO Nº 1

TRABAJO PRACTICO Nº 1 TRABAJO PRACTICO Nº 1 DEMANDA DE TRANSPORTE: ELASTICIDAD OFERTA DE TRANSPORTE: COSTOS AJUSTE DE FUNCIONES ANÁLISIS DE REGRESIÓN Objetivo: Aplicar a u caso práctico utilizado las herramietas básicas de

Más detalles

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS INTRODUCCIÓN

Más detalles

Física II (Biólogos y Geólogos)

Física II (Biólogos y Geólogos) Física II (Biólogos y Geólogos) SERIE 3 Iterferecia 1. La luz correspode a la radiació electromagética e la bada agosta de frecuecias de alrededor de 3,84x10 14 Hz hasta aproximadamete 7,69x10 14 Hz, mietras

Más detalles

Estadística Descriptiva

Estadística Descriptiva Igacio Cascos Ferádez Dpto. Estadística e I.O. Uiversidad Pública de Navarra Estadística Descriptiva Estadística ITT Soido e Image curso 2004-2005 1. Defiicioes fudametales La Estadística Descriptiva se

Más detalles

(finitas o infinitas)

(finitas o infinitas) Series ifiitas. SUCESIONES: Es u cojuto de úmeros: a,a a, dispuestos e u orde defiido y que guarda ua determiada ley de formació, que se expresa por ua formula Sucesió fiita: umero itado de térmios:, 5,8-5.

Más detalles

Estimación puntual y por intervalos de confianza

Estimación puntual y por intervalos de confianza Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6

Más detalles

Muestreo. Tipos de muestreo. Inferencia Introducción

Muestreo. Tipos de muestreo. Inferencia Introducción Germá Jesús Rubio Lua Catedrático de Matemáticas del IES Fracisco Ayala Muestreo. Tipos de muestreo. Iferecia Itroducció Nota.- Puede decirse que la Estadística es la ciecia que se preocupa de la recogida

Más detalles

ANALISIS ESTADISTICO DE VALORES EXTREMOS

ANALISIS ESTADISTICO DE VALORES EXTREMOS ANALISIS ESTADISTICO DE VALORES EXTREMOS Aplicacioes e hidrología Gloria Elea Maggio Dr. Jua F. Aragure 84 - Bueos Aires 4988 0083 www.oldor.com.ar oldor@oldor.com.ar R E S U M E N El objetivo de este

Más detalles

INTERVALOS DE CONFIANZA

INTERVALOS DE CONFIANZA Gestió Aeroáutica: Estadística Teórica Facultad Ciecias Ecoómicas y Empresariales Departameto de Ecoomía Aplicada Profesor: Satiago de la Fuete Ferádez NTERVALOS DE CONFANZA Gestió Aeroáutica: Estadística

Más detalles

PRUEBAS DE HIPOTESIS

PRUEBAS DE HIPOTESIS PRUEBAS DE HIPOTESIS Es posible estimar u parámetro a partir de datos muestrales, bie sea ua estimació putual o u itervalo de cofiaza. Pero: Si mi objetivo o es estimar u parámetro, sio determiar el cumplimieto

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas Semiario Uiversitario Matemática Módulo Expresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo y o la de estudio,

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1

Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 TEMA 10 CÁLCULO DE PROBABILIDADES 10.1 EXPERIENCIAS ALEATORIAS. SUCESOS EXPERIENCIAS DETERMINISTAS Y ALEATORIAS Se llama experiecia

Más detalles

Significado de la media y desviación estándar poblacional

Significado de la media y desviación estándar poblacional REV. OBSTET. GINECOL. - HOSP. SANTIAGO ORIENTE DR. LUIS TISNÉ BROUSSE 015; VOL 10 (1): 17-1 ARTÍCULO DE REVISIÓN Sigificado de la media y desviació estádar poblacioal Sócrates Aedo M 1, Gabriel Cavada

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

CADENAS DE MARKOV. Métodos Estadísticos en Ciencias de la Vida

CADENAS DE MARKOV. Métodos Estadísticos en Ciencias de la Vida CADENAS DE MARKOV Itroducció U proceso o sucesió de evetos que se desarrolla e el tiempo e el cual el resultado e cualquier etapa cotiee algú elemeto que depede del azar se deomia proceso aleatorio o proceso

Más detalles

1 EXPRESIONES ALGEBRAICAS

1 EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS E el leguaje matemático, se deomia expresioes algebraicas a toda combiació de letras y/o úmeros viculados etre si por las operacioes de suma, resta, multiplicació y poteciació de

Más detalles

Teorema del límite central

Teorema del límite central Teorema del límite cetral Carles Rovira Escofet P03/75057/01008 FUOC P03/75057/01008 Teorema del límite cetral Ídice Sesió 1 La distribució de la media muestral... 5 1. Distribució de la media muestral

Más detalles

Estadística para Química - 1er. cuat. 2007 - Marta García Ben

Estadística para Química - 1er. cuat. 2007 - Marta García Ben Ej. 1 Podriamos cosiderar S={0,1,} (los resultados o sería igualmete probables). Pero tambie podemos defiir S={CC,CS,SC,SS} describiedo todos los resultados de tirar dos moedas y luego asociar CC, CS 1,

Más detalles

TEMA 6. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA

TEMA 6. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA TEMA 6. INTRODUCCIÓN A LA INFERENCIA ETADÍTICA 6.. Itroducció 6.. Coceptos básicos 6.3. Muestreo aleatorio simple 6.4. Distribucioes asociadas al muestreo 6.4.. Distribució Chi-Cuadrado 6.4.. Distribució

Más detalles

Aplicaciones del cálculo integral vectorial a la física

Aplicaciones del cálculo integral vectorial a la física Aplicacioes del cálculo itegral vectorial a la física ISABEL MARRERO epartameto de Aálisis Matemático Uiversidad de La Lagua imarrero@ull.es Ídice 1. Itroducció 1 2. Itegral doble 1 2.1. Motivació: el

Más detalles

Óptica geométrica Espejos y lentes

Óptica geométrica Espejos y lentes 0-03-04 U i v e r s i d a d C a t ó l i c a d e l N o r t e D e p a r t a m e t o d e E s e ñ a z a d e l a s C i e c i a s B á s i c a s. Óptica geométrica Espejos y letes Uidad. Óptica geométrica La

Más detalles