Compartir Saberes. Guía para maestro. Líneas Notables. Guía realizada por Bella Peralta Profesional en Matemáticas.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Compartir Saberes. Guía para maestro. Líneas Notables. Guía realizada por Bella Peralta Profesional en Matemáticas."

Transcripción

1 Guía para maestro Guía realizada por Bella Peralta Profesional en Matemáticas

2 Las líneas y puntos notables de un triángulo es uno de los contenidos matemáticos que le permiten la estudiante profundizar y solucionar situaciones en contextos matemáticos y no matemáticos. A continuación se dan algunas orientaciones para abordar este tema en el aula de clase con la ayuda del software de Geogebra. 1. Importancia del tema En un triángulo pueden trazarse unas rectas especiales que se denomina líneas notables, la intersección de estas líneas se denominan puntos notables. La altura de un triángulo es el segmento perpendicular trazado desde un vértice del triángulo al lado opuesto o a su prolongación. Las alturas de un triángulo se cortan en un mismo punto llamado Ortocentro. Figura 1. Tazado de las tres alturas y el ortocentro

3 La mediana es el segmento que une un vértice del triángulo con el punto medio de su lado opuesto. Las tres medianas de un triángulo se cortan en un mismo punto, llamado baricentro. Figura 2. Trazo de las medianas y del baricentro La bisectriz es el segmento que divide un ángulo del triángulo en dos ángulos congruentes. Se extiende desde el vértice del ángulo hasta su lado opuesto. Las tres bisectrices de un triángulo se cortan en un mismo punto llamado Incentro. Figura 3. Trazo de la bisectriz y del incentro

4 Figura 4. Medianas e incentro La mediatriz es la recta perpendicular que pasa por el punto medio de cada lado del triángulo. Las mediatrices de un triángulo se cortan en un mismo punto llamado circuncentro. El circuncentro es el centro de la circunferencia que pasa por los tres vértices del triángulo. Esta circunferencia se denomina circunferencia circunscrita al triángulo. Figura 5. Mediatrices y circuncentro

5 2. Orientaciones curriculares Según los Estándares Básicos de Competencias en Matemáticas (MEN, 2006), el estudiante debe usar argumentos geométricos para resolver y formular problemas en contextos matemáticos y en otras ciencias. 3. Conocimientos previos Es necesario que el estudiante domine conceptos básicos de geometría como punto, punto medio, recta, recta perpendicular, circunferencia, radio, ángulo, clasificación de triángulos entre otros. 4. Metas Al finalizar la aplicación de esta guía el estudiante usará argumentos geométricos para resolver situaciones matemáticas. 5. Materiales Guía del estudiante Sala de sistemas VideoBeam Geogebra 6. Temporalidad La actividad propuesta pretende que el estudiante realice construcciones geométricas para identificar propiedades y relaciones de las líneas y puntos notables de un triángulo. La sesión debe iniciarse explicando al estudiante la utilización de las herramientas del Geogebra. Es necesario que se destine dos sesiones para la construcción de las cuatro

6 líneas notables. Los momentos 1 y 2 se desarrollan en la Sesión 1 y los momentos 3,4 y 5 en la sesión 2. Sesión 1. La sesión 1, consiste en la explicación del uso de las herramientas del Geogebra, y la construcción de las alturas y medianas de un triángulo. Momento 1. En este momento, el estudiante sigue las indicaciones del profesor para la construcción de las alturas de un triángulo, para luego realizar movimientos con el cursor sobre uno de los vértices y concluir que si el triángulo es: Acutángulo el ortocentro está ubicado en el interior. Rectángulo el ortocentro coincide con el vértice del ángulo recto. Obtusángulo el ortocentro se encuentra en el exterior del triángulo. Momento 2. En el momento 2, se orienta la construcción de las medianas de un triángulo, llevando al estudiante a deducir que las medianas de un triángulo se cortan en un punto llamado baricentro y que este siempre estará ubicado dentro del triángulo. Se cierra esta sesión preguntando a los estudiantes sobre las dificultades presentadas y resolviendo sus inquietudes. Sesión 2. La sesión 2, consiste en construir las bisectrices y mediatrices de un triángulo, así como la autoevaluación del estudiante. Momento 3. Para el momento 3, se inicia la construcción de las bisectrices, es necesario que se siga el paso a paso explicado en la guía de materiales para facilitarles la construcción a los estudiantes, y que estos lleguen a concluir que el incentro es el centro de la circunferencia inscrita en el triángulo.

7 Momento 4. En el momento 4, el profesor orienta la construcción de las tres mediatrices de un triángulo y la identificación del punto de corte de las tres mediatrices que se denomina circuncentro. El estudiante debe llegar a deducir que el circuncentro es el centro de la circunferencia que pasa por los tres vértices del triángulo. Momento 5. En este momento los estudiantes realizan su autoevaluación. Criterios Lo logré Tengo que mejorar No lo logré Construyo triángulos utilizando herramientas tecnológicas. Trazo líneas notables en un triángulo. Encuentro características de los puntos de intersección de las líneas notables de un triángulo. 7. Evaluación Para evaluar el proceso de aprendizaje de los escolares se proponen los siguientes criterios de evaluación. Criterio nivel Superior: Reconoce las características de los puntos de intersección de las líneas notables de un triángulo. Criterio de nivel Alto: Traza líneas notables en un triangulo. Criterio de nivel Básico: Reconoce las características y propiedades de los triángulos. Referencias Ministerio de Educación Nacional. (2006). Estándares Básicos de Competencias en Matemáticas. Bogotá-Colombia. Magisterio. Bautista, M. Salgado, D. Nivia, L. Acosta, M, Orjuela, J. (2004). Algebra y geometría I. Bogotá. Editorial Santillana.

8 Compartir Guía para el maestro Bogotá - Colombia

Guía para maestro. Polígonos. Compartir Saberes

Guía para maestro. Polígonos.  Compartir Saberes Guía para maestro Guía realizada por Bella Peralta Profesional en Matemáticas Master en educación Las formas geométricas hacen parte de la naturaleza y su estudio permite en los estudiantes reconocer y

Más detalles

ACTIVIDADES. b. Completa la actividad haciendo lo mismo para los vértices restantes. Qué observas?

ACTIVIDADES. b. Completa la actividad haciendo lo mismo para los vértices restantes. Qué observas? ACADEMIA SABATINA RECTAS Y PUNTOS DEL TRIÁNGULO ACTIVIDADES 1. Materiales: triángulos de papel, regla y compás. a. Toma un triángulo cualquiera, escoge uno de sus vértices y haz un doblez de tal modo que

Más detalles

Triángulos IES BELLAVISTA

Triángulos IES BELLAVISTA Triángulos IES BELLAVISTA Definiciones y notación Un triángulo es la figura plana limitada por tres rectas que se cortan dos a dos. Los puntos de corte se denominan vértices. El triángulo tiene tres lados

Más detalles

Compartir Saberes. Guía para maestro. Función Afín. Guía realizada por Bella Peralta Profesional en Matemáticas.

Compartir Saberes. Guía para maestro. Función Afín. Guía realizada por Bella Peralta Profesional en Matemáticas. Guía para maestro Guía realizada por Bella Peralta Profesional en Matemáticas La función afín es estudiada de diversas formas en las matemáticas escolares, además de profundizar en algunos aspectos de

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS

GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS Un punto se nombra con letras mayúsculas: A, B, C Una recta, formada por infinitos puntos, se nombra con letras minúsculas: a, b, c Dos rectas pueden ser paralelas, secantes o coincidentes. 1. Paralelas

Más detalles

Guía para maestro. Área y volumen de paralelepípedos. Compartir Saberes

Guía para maestro. Área y volumen de paralelepípedos.  Compartir Saberes Guía para maestro Guía realizada por Bella Peralta C. Magister en educación matemática Master en Educación bellaperaltamath@gmail.com En los objetos tridimensionales el cálculo del área nos permite determinar

Más detalles

Triángulo es la porción de plano limitado por tres rectas que se cortan dos a dos.

Triángulo es la porción de plano limitado por tres rectas que se cortan dos a dos. Definición Triángulo es la porción de plano limitado por tres rectas que se cortan dos a dos. Elementos primarios Vértice:, y. Lados:, y. Ángulos interiores:, y. Ángulos exteriores:, y. * Observaciones:

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.

Más detalles

Guía para maestro Guía realizada por Jefferson Bustos Profesional en Matemáticas Una de las grandes cuestiones de debate en la geometría, es considerar el quinto axioma de Euclides como verdadero o como

Más detalles

1º ESO TEMA 12 FIGURAS PLANAS

1º ESO TEMA 12 FIGURAS PLANAS 1º ESO TEMA 12 FIGURAS PLANAS 1 1.- POLÍGONOS Concepto de polígono POLÍGONO 2 1.- POLÍGONOS Elementos de un polígono Lado: segmento que une dos vértices consecutivos Vértice: punto en común entre dos lados

Más detalles

TALLER No. 17 GEOMETRÍA

TALLER No. 17 GEOMETRÍA TLLER No. 17 GEOMETRÍ ontenidos: Los triángulos Fecha de entrega: Mayo 12 de 2014 1. Investigue sobre las líneas y puntos notables en un triángulo. 2. Responda las siguientes preguntas: a. Qué es un polígono?

Más detalles

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el

Más detalles

UoL: La geometría del triángulo; figuras, formas y representaciones de objetos LO: Caracterización de los números figurados

UoL: La geometría del triángulo; figuras, formas y representaciones de objetos LO: Caracterización de los números figurados Subject Matemáticas Grade 8 UoL4 El triángulo: un polígono con propiedades especiales Title of LO3 Identificación de los puntos y las líneas notables del triángulo de Grado: 7 aprendizaje relacionado (pre

Más detalles

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 2- Explorando el triángulo. Fecha: Profesor: Fernando Viso

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 2- Explorando el triángulo. Fecha: Profesor: Fernando Viso GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 2- Explorando el triángulo. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual. Sin libros, ni cuadernos,

Más detalles

Grupo: 3º ESO B Matemáticas en Red

Grupo: 3º ESO B Matemáticas en Red CUADERNO DE TRABAJO 4: TRIÁNGULOS ACTIVIDAD 4.1. MEDIANAS DE UN TRIÁNGULO. BARICENTRO Dibuja un triángulo ABC. Puedes utilizar la herramienta Exponer/Ocultarr rótulo para visualizar los nombres de los

Más detalles

Módulo III: Geometría Elmentos del triángulo Teorema de Pitágoras Ángulos en la circunferencia

Módulo III: Geometría Elmentos del triángulo Teorema de Pitágoras Ángulos en la circunferencia Módulo III: Geometría Elmentos del triángulo Altura Bisectriz Simetral o mediatriz Transversal de gravedad Teorema de Pitágoras Ángulos en la circunferencia Ángulo del centro Ángulo inscrito Ángulo interior

Más detalles

ESTUDIO GEOMÉTRICO SOBRE EL TRIÁNGULO

ESTUDIO GEOMÉTRICO SOBRE EL TRIÁNGULO ESTUDIO GEOMÉTRICO SOBRE EL TRIÁNGULO 1. EL TRIÁNGULO COMO POLÍGONO Debemos comenzar el estudio geométrico del triángulo considerándolo como el más sencillo de los polígonos. Así, vamos a considerar algunas

Más detalles

ACTIVIDADES PROPUESTAS

ACTIVIDADES PROPUESTAS GEOMETRÍA DINÁMICA ACTIVIDADES PROPUESTAS 1. Dibujar un pentágono y trazar sus diagonales. 2. A partir de una circunferencia c y de un punto exterior A, trazar la circunferencia que tiene centro en el

Más detalles

Geometría 1 de Secundaria: I Trimestre. yanapa.com. Rayo. I: ELEMENTOS DE LA GEOMETRÍA - SEGMENTOS ELEMENTOS DE LA GEOMETRÍA El Plano

Geometría 1 de Secundaria: I Trimestre. yanapa.com. Rayo. I: ELEMENTOS DE LA GEOMETRÍA - SEGMENTOS ELEMENTOS DE LA GEOMETRÍA El Plano I: ELEMENTOS DE LA GEOMETRÍA - SEGMENTOS ELEMENTOS DE LA GEOMETRÍA El Plano Rayo Segmento : Rayo de Origen O y que pasa por B : Rayo de Origen O y que pasa por A La Recta : Se lee Segmento AB : Se lee

Más detalles

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS. EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se

Más detalles

MATEMÁTICAS (GEOMÉTRÍA)

MATEMÁTICAS (GEOMÉTRÍA) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMÉTRÍA) GRADO:6 O DOCENTE: Nubia E. Niño C. FECHA: 9 / 06 / 15 Guía Didáctica 3 1 Desempeños: * Identifica, clasifica

Más detalles

Guía para maestro. Múltiplos y divisores. Compartir Saberes.

Guía para maestro. Múltiplos y divisores. Compartir Saberes. Guía para maestro Guía realizada por Bella Peralta C. Magister en Educación Matemática bellaperaltamath@gmail.com Los procedimientos para encontrar el mínimo común múltiplo, máximo común divisor y factorizar

Más detalles

GEOMETRÍA. Contenidos a desarrollar: Circunferencia. Mediatriz. Bisectriz. Alturas. Medianas. Puntos notables del triángulo.

GEOMETRÍA. Contenidos a desarrollar: Circunferencia. Mediatriz. Bisectriz. Alturas. Medianas. Puntos notables del triángulo. GEOMETRÍA Contenidos previos: Recta. Segmento. Semirrecta. Ángulos. Clasificación. Ángulos opuestos por el vértice. Ángulos adyacentes. Clasificación de triángulos. Propiedades elementales. Contenidos

Más detalles

Complemento de un ángulo es lo que le falta al ángulo para completar 90. Complemento de un ángulo es lo que le falta al ángulo para completar 180

Complemento de un ángulo es lo que le falta al ángulo para completar 90. Complemento de un ángulo es lo que le falta al ángulo para completar 180 CLASIFICACIÓN DE ÁNGULOS Nombre Definición Figura Ángulo recto Mide 90 Ángulo agudo Mide menos de 90 Ángulo obtuso Mide más de 90 Ángulo extendido Mide 180 Ángulo completo Mide 360 ÁNGULOS COMPARATIVOS

Más detalles

Teoremas de los ángulos. Los ángulos adyacentes son suplementarios. Los ángulos opuestos por el vértice son congruentes

Teoremas de los ángulos. Los ángulos adyacentes son suplementarios. Los ángulos opuestos por el vértice son congruentes Resumen de Matemática LiceoProm14.tk Nomenclatura: (Solo para circunferencias) Rectas perpendiculares Rectas paralelas Teoremas de los ángulos Teorema 1: Los ángulos adyacentes son suplementarios. Teorema

Más detalles

Puntos y rectas en el triángulo

Puntos y rectas en el triángulo Puntos y rectas en el triángulo En los triángulos hay un conjunto de rectas y puntos importantes. Las rectas son las bisectrices, las mediatrices, las alturas, las medianas y las bisectrices exteriores.

Más detalles

Ángulos consecutivos, suplementarios, adyacentes, opuestos por el vértice y complementarios.

Ángulos consecutivos, suplementarios, adyacentes, opuestos por el vértice y complementarios. ÁNGULOS Dadas dos semirrectas de origen común (Ox, Oy), no opuestas ni coincidentes, llamaremos ángulo convexo de vértice O, a la intersección del semiplano de borde la recta sostén de Ox, que contiene

Más detalles

1. INCENTRO Y ORTOCENTRO EN UN TRIÁNGULO ACUTÁNGULO.

1. INCENTRO Y ORTOCENTRO EN UN TRIÁNGULO ACUTÁNGULO. 1. INCENTRO Y ORTOCENTRO ❶ Sitúate en el ortocentro como punto de partida. ❷ Recorre la altura hasta el lado más alejado. ❸ Desplázate por el perímetro hasta el vértice más próximo. ❹ Dirígete al incentro.

Más detalles

TEMA 1. ELEMENTOS DE GEOMETRIA EN EL PLANO

TEMA 1. ELEMENTOS DE GEOMETRIA EN EL PLANO 2ª EVALUACIÓN AMPLIACIÓN MATEMÁTICAS TEMA 1. ELEMENTOS DE GEOMETRIA EN EL PLANO 1. EL PUNTO El punto es uno de los conceptos primarios de geometría. El punto no es un objeto físico y no tiene dimensiones

Más detalles

Guía para maestro. Rectas perpendiculares y paralelas. Compartir Saberes.

Guía para maestro. Rectas perpendiculares y paralelas. Compartir Saberes. Guía para maestro Guía realizada por Yenny Nanjo Naranjo Máster en Educación Matemática yennymarce3@gmail.com A diario nos preguntamos por qué en una carretera no se unen nunca las dos rectas que la delimitan?

Más detalles

Unidad 11. Figuras planas

Unidad 11. Figuras planas Unidad 11. Figuras planas Matemáticas Múltiplo 1.º ESO / Resumen Unidad 11 FIGURS LNS OLÍGONOS IRUNFERENI SIMETRÍ Elementos onstrucción lasificación Según el número de lados óncavos y convexos Regulares

Más detalles

TRIÁNGULOS Y CUADRILÁTEROS.

TRIÁNGULOS Y CUADRILÁTEROS. TRIÁNGULOS Y CUADRILÁTEROS. 1. Triángulos. Al polígono de tres lados se le llama triángulo. Clasificación: Según sus lados, un triángulo puede ser Equilátero, si tiene los tres lados iguales Isósceles,

Más detalles

Triángulos. 1. En todo triángulo la suma de sus ángulos interiores es En todo triángulo la suma de los ángulos exteriores es 360

Triángulos. 1. En todo triángulo la suma de sus ángulos interiores es En todo triángulo la suma de los ángulos exteriores es 360 Triángulos Es un polígono formado por tres segmentos cuyos tres puntos de intersección no están en línea recta. Triángulo ABC A,B y C son vértices del triángulo α, β, γ s interiores. a, b y c, longitud

Más detalles

TEMA 6: LAS FORMAS POLIGONALES

TEMA 6: LAS FORMAS POLIGONALES EDUCACIÓN PLÁSTICA Y VISUAL 1º DE LA E.S.O. TEMA 6: LAS FORMAS POLIGONALES Los polígonos son formas muy atractivas para realizar composiciones plásticas. Son la base del llamado arte geométrico, desarrollado

Más detalles

Lugar Polígono Circunferencia

Lugar Polígono Circunferencia 6. Problemas dirigidos 6.6 Puntos notables Objetivos Se pretende ejemplificar el uso de GeoGebra como ayuda en la exploración, descubrimiento o comprobación de lugares geométricos. Hemos elegido algunos

Más detalles

ACTIVIDAD FINAL DEL CURSO MAT08-13-CALCULA

ACTIVIDAD FINAL DEL CURSO MAT08-13-CALCULA ACTIVIDAD FINAL DEL CURSO MAT08-13-CALCULA Actividad realizada por José Antonio Hidalgo Planelles email: lanik666@hotmail.com A) DESARROLLO DE LOS CONTENIDOS Los contenidos elegidos para desarrollar en

Más detalles

Guía para maestro. Semejanza de triángulos. Compartir Saberes

Guía para maestro. Semejanza de triángulos.  Compartir Saberes Guía para maestro Guía realizada por Nury Espinosa Profesional en Matemáticas Master en Educación La semejanza geométrica busca desarrollar diversos aspectos dentro de los cuales se encuentran: la identificación

Más detalles

4. GEOMETRÍA // 4.3. PROPIEDADES DE LOS

4. GEOMETRÍA // 4.3. PROPIEDADES DE LOS 4. GEOMETRÍA // 4.3. PROPIEDADES DE LOS POLÍGONOS. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS. 4.3.1. Dos nuevas demostraciones del teorema de Pitágoras. La demostración china del teorema

Más detalles

Introducción. 1. Sabes por qué se sostienen los triángulos? 2. Son todos iguales?

Introducción. 1. Sabes por qué se sostienen los triángulos? 2. Son todos iguales? EL TRIÁNGULO: Un polígono con propiedades especiales Identificación de los puntos y las líneas notables del triángulo Introducción 1. Sabes por qué se sostienen los triángulos? 2. Son todos iguales? Figura

Más detalles

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6. ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el

Más detalles

IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS. Nombre: Grado: Costrucciones

IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS. Nombre: Grado: Costrucciones IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS Nombre: Grado: 9 5 1. Costrucciones 2. las rectas y puntos notables de un triángulo Sabemos que los polígonos son figuras cerradas planas, de lados rectos,

Más detalles

Ángulos y Triángulos. mmm... ojalá te sirva este módulo. Cristopher Oyarzún. Mauricio Vásquez. Asignatura: Álgebra. Profesor: Orlando Torres

Ángulos y Triángulos. mmm... ojalá te sirva este módulo. Cristopher Oyarzún. Mauricio Vásquez. Asignatura: Álgebra. Profesor: Orlando Torres y Triángulos Integrantes: Felipe Lara Cristopher Oyarzún Mauricio Vásquez mmm... ojalá te sirva este módulo Asignatura: Álgebra Profesor: Orlando Torres Para aprender sobre los ángulos primero tenemos

Más detalles

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo

Más detalles

LOS POLIGONOS. 1. Definiciones.

LOS POLIGONOS. 1. Definiciones. LOS POLIGONOS 1. Definiciones. Un triángulo es un polígono cerrado y convexo constituido por tres ángulos (letras mayúsculas y sentido contrario a las agujas del reloj) y tres lado (letras minúsculas).

Más detalles

Introducción. 1. Sabes por qué se sostienen los triángulos? 2. Son todos iguales?

Introducción. 1. Sabes por qué se sostienen los triángulos? 2. Son todos iguales? EL TRIÁNGULO: Un polígono con propiedades especiales Identificación de los puntos y las líneas notables del triángulo Introducción 1. Sabes por qué se sostienen los triángulos? 2. Son todos iguales? Figura

Más detalles

Guía para maestro. Expresiones algebraicas. Guía para el maestro. Compartir Saberes

Guía para maestro. Expresiones algebraicas. Guía para el maestro.  Compartir Saberes Guía para maestro Guía realizada por Bella Peralta C. Magister en Educación Matemática bellaperaltamath@gmail.com Como es una rama de las matemáticas para representar generalizaciones, estructuras, relaciones

Más detalles

4. GEOMETRÍA // 4.3. PROPIEDADES DE LOS

4. GEOMETRÍA // 4.3. PROPIEDADES DE LOS 4. GEOMETRÍA // 4.3. PROPIEDADES DE LOS POLÍGONOS. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 4.3.1. Dos nuevas demostraciones del teorema de Pitágoras. 4.3.1. Dos nuevas

Más detalles

Compartir Saberes. Guía para maestro. Números Racionales. Guía realizada por Bella Peralta Profesional en Matemáticas.

Compartir Saberes. Guía para maestro. Números Racionales. Guía realizada por Bella Peralta Profesional en Matemáticas. Guía para maestro Guía realizada por Bella Peralta Profesional en Matemáticas Los números racionales son usados para representar situaciones de medición continua, es decir, aquellas situaciones que no

Más detalles

Geometría con GeoGebra

Geometría con GeoGebra Geometría con GeoGebra Geometría con GeoGebra 2 Actividad 1: Para empezar Puesta en marcha del programa Para arrancar el programa, haz doble clic sobre el icono que está en el Escritorio. (si no encuentras

Más detalles

MATEMÁTICAS Y SU DIDÁCTICA

MATEMÁTICAS Y SU DIDÁCTICA MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se

Más detalles

Las bisectrices de dos ángulos adyacentes son perpendiculares. Las bisectrices de los ángulos opuestos por el vértice están en línea recta.

Las bisectrices de dos ángulos adyacentes son perpendiculares. Las bisectrices de los ángulos opuestos por el vértice están en línea recta. CONCEPTOS Y TEOREMAS BÁSICOS PARA LA RESOLUCIÓN DE PROBLEMAS DE GEOMETRÍA PLANA 1. CONSIDERACIONES GENERALES El objeto de la Geometría plana es el estudio de las figuras geométricas en el plano desde el

Más detalles

Clasificación de los triángulos

Clasificación de los triángulos COLEGIO ITALO BOLIVIANO CRISTOFORO COLOMBO PROF. HEINS VEGA Clasificación de los triángulos Triángulo: Figura geométrica cerrada delimitada por tres segmentos de recta. Los segmentos son los lados del

Más detalles

8 GEOMETRÍA DEL PLANO

8 GEOMETRÍA DEL PLANO EJEROS PROPUESTOS 8.1 alcula la medida del ángulo que falta en cada figura. 6 A 145 15 105 160 130 En un triángulo, la suma de las medidas de sus ángulos es 180. Ap 180 90 6 8 El ángulo mide 8. En un hexágono,

Más detalles

Guía para maestro. Adición de fracciones. Compartir Saberes.

Guía para maestro. Adición de fracciones. Compartir Saberes. Guía para maestro Guía realizada por Bella Peralta C. Magister en Educación Matemática bellaperaltamath@gmail.com Su estudio inicia desde los primeros años de escolaridad y se extiende hasta finalizar

Más detalles

Algunos conceptos básicos de Trigonometría DEFINICIÓN FIGURA OBSERVACIONES. Nombre y definición Figura Característica

Algunos conceptos básicos de Trigonometría DEFINICIÓN FIGURA OBSERVACIONES. Nombre y definición Figura Característica Ángulos. DEFINICIÓN FIGURA OBSERVACIONES Ángulo. Es la abertura formada por dos semirrectas unidas en un solo punto llamado vértice. Donde: α = Ángulo O = Vértice OA = Lado inicial OB = Lado terminal Un

Más detalles

Profesora: Tamara Grandón Valdés.

Profesora: Tamara Grandón Valdés. GUIA MATEMATICA 7 BASICO UNIDAD 5: GEOMETRIA. CONTENIDOS : Identificar ángulos, calculo de ángulos entre paralelas, calculo de ángulos en el triangulo, tipos de triángulos, elementos del triangulo. NOMBRE:

Más detalles

Figuras planas. Definiciones

Figuras planas. Definiciones Figuras planas Definiciones Polígono: definición Un polígono es una figura plana (yace en un plano) cerrada por tres o más segmentos. Los lados de un polígono son cada uno de los segmentos que delimitan

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

*SIMETRAL DE UN TRAZO.: perpendicular en el punto medio.

*SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *DISTANCIA ENTRE DOS PUNTOS EN EL PLANO: P(x a, y b ). Q(x a, y b ) 2 b + ya yb d= ( ) ( ) 2 x a x *SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *ALTURA: perpendicular bajada del vértice al

Más detalles

Tema 2: --TRAZADOS DE FORMAS POLIGONALES

Tema 2: --TRAZADOS DE FORMAS POLIGONALES Tema 2: --TRAZADOS DE FORMAS POLIGONALES 1.- TRIÁNGULOS: - CLASIFICACIÓN Y PUNTOS NOTABLES 2.- CUADRILÁTEROS: PROPIEDADES Y CLASIFICACIÓN 3.- POLÍGONOS REGULARES: CLASIFICACIÓN Y CONSTRUCCIÓN Ø INTRODUCCIÓN:

Más detalles

Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles.

Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles. FICHA REFUERZO TEMA 12: FIGURAS PLANAS Y ESPACIALES CURSO: 1 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja

Más detalles

Guía para maestro. Congruencia y semejanza. Guía para el maestro. Compartir Saberes

Guía para maestro. Congruencia y semejanza. Guía para el maestro.  Compartir Saberes Guía para maestro Guía realizada por Nury Yolanda Espinosa Baracaldo Profesional en Matemáticas nespinosa@colegioscompartir.org Gracias a la congruencia de triángulos podemos saber si dos o más figuras

Más detalles

Geometría del Triángulo con la TI Voyage 200 Fermí Vilà

Geometría del Triángulo con la TI Voyage 200 Fermí Vilà Fermí Vilà TI Voyage 200 1 Geometría del Triángulo con la TI Voyage 200 Fermí Vilà Fermí Vilà TI Voyage 200 2 Las tres medianas de un triángulo se cortan en un único punto, que se denomina BARICENTRO del

Más detalles

TEMA Nombre IES ALFONSO X EL SABIO

TEMA Nombre IES ALFONSO X EL SABIO 1. Trazar la mediatriz del segmento AB 2. Trazar la perpendicular a la semirrecta s en su extremo A sin prolongar ésta 3. Dividir el arco de circunferencia en dos partes iguales. 4. Dividir gráficamente

Más detalles

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto

Más detalles

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos.

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Geometría plana B6 Triángulos Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Clasificación de los polígonos Según el número de lados los polígonos se llaman: Triángulo

Más detalles

Guía para maestro. Área de polígonos regulares. Compartir Saberes.

Guía para maestro. Área de polígonos regulares. Compartir Saberes. Guía para maestro Guía realizada por Yenny Marcela Naranjo Máster en Educación Matemática yennymarce3@gmail.com Generalmente, en las pruebas se escucha acerca del área y del perímetro, esto sucede dado

Más detalles

11. ALGUNOS PROBLEMAS CON TRIÁNGULOS

11. ALGUNOS PROBLEMAS CON TRIÁNGULOS 11. ALGUNOS PROBLEMAS CON TRIÁNGULOS Estos problemas son ejemplos de aplicación de las propiedades estudiadas. 11.1. Determinar la posición de un topógrafo que tiene tres vértices geodésicos A,B,C, si

Más detalles

Líneas y puntos notables

Líneas y puntos notables ALTURA Corresponde al segmento que sale de un vértice y corta en forma perpendicular al lado opuesto o a su prolongación. Para anotarlo usaremos la letra h con el subíndice que india el vértice que le

Más detalles

Rectas notables de un triángulo Dirección:

Rectas notables de un triángulo Dirección: Rectas notables de un triángulo Dirección: http://proyectodescartes.org/uudd/materiales_didacticos/rectasnotables-js/index.html Alumno/a: Curso: Grupo 1.- Observa los datos que aparecen en la escena de

Más detalles

MATHEMATICA. Geometría - Triángulos. Ricardo Villafaña Figueroa. Ricardo Villafaña Figueroa. Material realizado con Mathematica y Geometry Expressions

MATHEMATICA. Geometría - Triángulos. Ricardo Villafaña Figueroa. Ricardo Villafaña Figueroa. Material realizado con Mathematica y Geometry Expressions MATHEMATICA Geometría - Triángulos Material realizado con Mathematica y Geometry Expressions Contenido TRIÁNGULOS... 3 Cálculo de los ángulos interiores de un triángulo... 3 Baricentro... 6 Ortocentro...

Más detalles

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo:

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo: 3º ESO E UNIDAD 11.- GEOMETRÍA DEL PLANO PROFESOR: RAFAEL NÚÑEZ ------------------------------------------------------------------------------------------------------------------------------------- 1.-

Más detalles

Guía 2: Puntos, rectas y circunferencias notables en el triángulo. Teorema de Pitágoras. Ternas Pitagóricas

Guía 2: Puntos, rectas y circunferencias notables en el triángulo. Teorema de Pitágoras. Ternas Pitagóricas Guía 2: Puntos, rectas y circunferencias notables en el triángulo. Teorema de Pitágoras. Ternas Pitagóricas duardo Sarabia 27 de enero de 2011 Puntos, rectas y circunferencias notables en el triángulo.

Más detalles

REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA

REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA MAT B Repartido Nº I REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA Conceptos primitivos Partiremos de un conjunto que llamaremos espacio, E, a cuyos elementos llamamos puntos, (a los cuales escribiremos

Más detalles

PROBLEMAS DE CORTE EUCLIDIANO

PROBLEMAS DE CORTE EUCLIDIANO PROBLEMAS DE CORTE EUCLIDIANO Sugerencias para quien imparte el curso El alumno debe comprender las definiciones de las rectas notables de un triangulo, de tal forma que pueda aplicar lo aprendido en esta

Más detalles

20. Rectas y puntos notables

20. Rectas y puntos notables Matemáticas II, 2012-II Lugares geométricos En geometría es útil conocer varios lugares geométricos. Un lugar geométrico es un conjunto de puntos que satisfacen una cierta propiedad. Ejemplo 1. El lugar

Más detalles

UNIDAD DE APRENDIZAJE III

UNIDAD DE APRENDIZAJE III UNIDAD DE APRENDIZAJE III Saberes procedimentales 1. Emplea de manera sistemática conceptos algebraicos, geométricos, trigonométricos y de geometría analítica. 2. Relaciona una ecuación algebraica con

Más detalles

Contenidos. Triángulos I. Elementos primarios. Clasificación. Elementos secundarios. Propiedad Intelectual Cpech

Contenidos. Triángulos I. Elementos primarios. Clasificación. Elementos secundarios. Propiedad Intelectual Cpech ontenidos Triángulos I Elementos primarios lasificación Elementos secundarios Triángulos Es un polígono de tres lados. Posee tres vértices, tres lados, tres ángulos interiores y tres ángulos exteriores.

Más detalles

Departamento de Bachillerato Preparatoria UNAM Matemáticas V Plan 100 Ciclo 06 / 07 TAREA 2, PARCIAL 3 TEMA: Ecuación de Primer Grado

Departamento de Bachillerato Preparatoria UNAM Matemáticas V Plan 100 Ciclo 06 / 07 TAREA 2, PARCIAL 3 TEMA: Ecuación de Primer Grado Departamento de Bachillerato Preparatoria UNAM Matemáticas V Plan 100 Ciclo 06 / 07 TAREA 2, PARCIAL 3 TEMA: Ecuación de Primer Grado NOMBRE DEL ESTUDIANTE: Apellido paterno Apellido materno Nombre(s)

Más detalles

Guía para maestro. Progresiones. Compartir Saberes.

Guía para maestro. Progresiones. Compartir Saberes. Guía para maestro Guía realizada por Bella Peralta C. Magister en Educación Matemática bellaperaltamath@gmail.com A continuación se presentan algunas orientaciones para su enseñanza y aprendizaje. 1. Importancia

Más detalles

GEOMETRÍA MÉTRICA. Plano afín:

GEOMETRÍA MÉTRICA. Plano afín: Plano afín: Es el plano vectorial al que se le ha dotado de un sistema de referencia compuesto por un origen y una base de dicho espacio vectorial. En el plano afín podemos asignar a cada punto del plano

Más detalles

Trabajo Práctico N 2: Geometría del triángulo

Trabajo Práctico N 2: Geometría del triángulo Trabajo Práctico N 2: Geometría del triángulo Problema 1: a. Qué puedes decir sobre los ángulos interiores de un triángulo rectángulo? Cuánto miden? b. Qué puedes decir sobre los ángulos interiores de

Más detalles

GEOGEBRA. Ejercicio 1. Localización del baricentro de un triángulo

GEOGEBRA. Ejercicio 1. Localización del baricentro de un triángulo 1 GEOGEBRA Ejercicio 1 Localización del baricentro de un triángulo En un triángulo, una mediana es el segmento que une un vértice con el punto medio del lado opuesto. Las tres medianas de un triángulo

Más detalles

Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2.

Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2. Wilson Herrera 1 Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2. 2. Hallar la ecuación de la recta que pasa por

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ANGULOS Y TRIANGULOS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ANGULOS Y TRIANGULOS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ANGULOS Y TRIANGULOS CONCEPTOS BÁSICOS Punto, línea recta y plano: son conceptos que no de nimos pero utilizamos su representación grá

Más detalles

Construcción de formas poligonales. Polígonos en la cúpula gótica de la catedral de Burgos (ISFTIC. Banco de imágenes).

Construcción de formas poligonales. Polígonos en la cúpula gótica de la catedral de Burgos (ISFTIC. Banco de imágenes). UNIDAD 2 Construcción de formas poligonales Polígonos en la cúpula gótica de la catedral de Burgos (ISFTIC. Banco de imágenes). E n esta Unidad se presentan construcciones de triángulos a partir de datos

Más detalles

Guía para maestro. Medidas de dispersión. Guía para el maestro. Compartir Saberes

Guía para maestro. Medidas de dispersión. Guía para el maestro.  Compartir Saberes Guía para maestro Guía realizada por Bella Peralta C. Magister en Educación Matemática bellaperaltamath@gmail.com bperalta@colegioscompartir.org Determinan si la media de la distribución de los datos es

Más detalles

Estándar Anual. Matemática. Ejercicios PSU. Guía práctica Generalidades de los triángulos GUICES022MT22-A16V1. Programa

Estándar Anual. Matemática. Ejercicios PSU. Guía práctica Generalidades de los triángulos GUICES022MT22-A16V1. Programa rograma Estándar nual Nº Guía práctica Generalidades de los triángulos Ejercicios U 1. Los ángulos interiores de un triángulo están en la razón 5 : 6 : 7, entonces el ángulo exterior adyacente al menor

Más detalles

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas.

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. MYP (MIDDLE YEARS PROGRAMME) 2015-2016 Fecha 30/03/2016 APUNTES DE GEOMETRÍA 1º ESO 1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. Un punto es una posición en el espacio, adimensional,

Más detalles

Guía para maestro. Representación de funciones trigonométricas. Compartir Saberes.

Guía para maestro. Representación de funciones trigonométricas. Compartir Saberes. Guía para maestro Guía realizada por Nury Yolanda Espinosa Baracaldo Profesional en Matemáticas nespinosa@colegioscompartir.org La trigonometría es la ciencia encargada de estudiar la relación que hay

Más detalles

Guía para maestro. Movimientos en el plano. Guía para el maestro. Compartir Saberes

Guía para maestro. Movimientos en el plano. Guía para el maestro.  Compartir Saberes Guía para maestro Guía realizada por Bella Peralta C. Magister en Educación Matemática bellaperaltamath@gmail.com bperalta@colegioscompartir.org Son transformaciones que conservan distancias y ángulos

Más detalles

Guía para maestro. Estructura multiplicativa. Compartir Saberes

Guía para maestro. Estructura multiplicativa.  Compartir Saberes Guía para maestro Guía realizada por Jenny Naranjo Profesional en Matemáticas Master en educación 1. Importancia del tema El tema de estructura multiplicativa ha sido trabajado por diferentes autores quienes

Más detalles

Ángulos 1º = 60' = 3600'' 1' = 60''

Ángulos 1º = 60' = 3600'' 1' = 60'' Ángulos Definición de ángulo Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. Medida de ángulos Para

Más detalles

Guía para maestro. Sistema de ecuaciones lineales. Compartir Saberes.

Guía para maestro. Sistema de ecuaciones lineales. Compartir Saberes. Guía para maestro Sistema de ecuaciones lineales Guía realizada por Yenny Marcela Naranjo Máster en Educación Matemática yennymarce3@gmail.com En esta guía se hace énfasis a la solución de sistemas de

Más detalles

Geometría Analítica. GEOMETRÍA ANALÍTICA PLANA SISTEMA DE COORDENADAS RECTANGULARES 1. DE UN PUNTO 2. DISTANCIA ENTRE DOS PUNTOS

Geometría Analítica.  GEOMETRÍA ANALÍTICA PLANA SISTEMA DE COORDENADAS RECTANGULARES 1. DE UN PUNTO 2. DISTANCIA ENTRE DOS PUNTOS Geometría Analítica GEOMETRÍA ANALÍTICA PLANA René Descartes, matemático francés, en 67 define una ecuación algebraica para cada figura geométrica; es decir, un conjunto de pares ordenados de números reales

Más detalles

Lámina 1: Rectas paralelas horizontales, verticales, inclinadas y cruzadas.

Lámina 1: Rectas paralelas horizontales, verticales, inclinadas y cruzadas. Lámina 1: Rectas paralelas horizontales, verticales, inclinadas y cruzadas. Lámina 2: Realiza los siguientes patrones Traza un segmento de 50 mm por el punto R paralelo a la recta r. Divide el segmento

Más detalles

P RACTICA. 1 Di cuáles de estos triángulos son: 2 Di cómo son, según sus lados y según sus ángulos, los triángulos siguientes:

P RACTICA. 1 Di cuáles de estos triángulos son: 2 Di cómo son, según sus lados y según sus ángulos, los triángulos siguientes: P RCTIC Polígonos: clasificación 1 Di cuáles de estos triángulos son: a) cutángulos. b) Rectángulos. c) Obtusángulos isósceles. B C D G E a) cutángulos: C, F y G. b) Rectángulos: D y E. c) Obtusángulos

Más detalles

PUNTOS NOTABLES DE UN TRIÁNGULO. Recuerda imprimir sólo aquellas hojas que vayas a utilizar (actividades grupales, sólo una por grupo).

PUNTOS NOTABLES DE UN TRIÁNGULO. Recuerda imprimir sólo aquellas hojas que vayas a utilizar (actividades grupales, sólo una por grupo). Objetivos de la unidad: PUNTOS NOTABLES DE UN TRIÁNGULO Conceptualizar las rectas notables de un triángulo y trazarlas para cualquier tipo de triángulo haciendo uso de instrumentos apropiados. Definir

Más detalles

V. Proyecto de exploración matemática para estudiantes de secundaria: Las huellas efímeras 1 de la geometría dinámica

V. Proyecto de exploración matemática para estudiantes de secundaria: Las huellas efímeras 1 de la geometría dinámica V. Proyecto de exploración matemática para estudiantes de secundaria: Las huellas efímeras 1 de la geometría dinámica Algunas calculadoras modernas 2 vienen dotadas de programas de geometría dinámica tales

Más detalles