ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M."

Transcripción

1 1 Introducción ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la Estimación Puntual, que es uno de los tres grandes conjuntos de técnicas que utilizaremos en la Inferencia Estadística. La situación general que vamos a considerar es la siguiente: Disponemos de una muestra aleatoria (X 1,..., X n ) de una característica X de una población. Pensamos que esta característica puede ser adecuadamente modelizada mediante un modelo de probabilidad con función de masa P θ (x) (en el caso discreto) o con función de densidad f θ (x) (en el caso continuo). En cualquiera de los casos, lo único que nos falta por conocer es el valor del parámetro θ Θ que es desconocido. Lo que tratamos de hacer en este capítulo es encontrar estimaciones puntuales de este parámetro desconocido. En primer lugar, se plantearán dos ejemplos sencillos que servirán como motivación. Ejemplo 1.- En los ejercicios de cálculo de probabilidades, siempre se suele hablar de monedas equilibradas pero, naturalmente, no todas lo son. Nos gustaría conocer aproximadamente (estimar) la probabilidad de cara de una determinada moneda, y llamamos p = P (Cara). Necesitamos datos, para lo cual lanzamos la moneda, por ejemplo, 100 veces, y anotamos los resultados. Supongamos que obtenemos 55 caras y 45 cruces. Desde un punto de vista formal, las caras y las cruces pueden ser codificadas mediante unos y ceros, de modo que tenemos una muestra aleatoria (X 1,..., X 100 ) de X = { 1 (si sale cara) con probabilidad p 0 (si sale cruz) con probabilidad 1 p y, por tanto, X puede ser modelizada mediante un modelo de Bernoulli con parámetro p desoconocido. En este caso sencillo, parece razonable estimar la probabilidad de cara de la siguiente forma: ˆp = Frecuencia relativa de caras = Número de caras obtenidas Número de lanzamientos = = 0, 55 1

2 Ejemplo 2.- En una fábrica, se está ensayando una nueva fibra sintética, y se quiere conocer aproximadamente (estimar) cuál es la resistencia media a la rotura de las cuerdas fabricadas con esta nueva fibra. Llamaremos µ al valor de esta resistencia media que se quiere estimar. Necesitamos datos, para lo cual medimos la resistencia de, por ejemplo, 100 cuerdas, y anotamos los resultados. Supongamos que obtenemos una resistencia media muestral de 31 unidades. Desde un punto de vista formal, lo que tenemos es una muestra aleatoria (X 1,..., X 100 ) de la característica X = Resistencia a la rotura, que puede ser modelizada mediante una distribución N(µ; σ), con parámetros µ y σ desconocidos. En este caso sencillo, parece razonable estimar la resistencia media de la siguiente forma: ˆµ = Resistencia media muestral = x = 31 Obsérvese que µ es la resistencia media (desconocida) de toda la producción, mientras que x es la resistencia media (conocida) de una muestra. Si todas las situaciones a las que nos tuviéramos que enfrentar fueran tan sencillas e intuitivas como las de los ejemplos anteriores, seguramente no necesitaríamos desarrollar una metodología general de la estimación puntual. Pero, por un lado, los problemas no siempre son tan sencillos y, por otro lado, la intuición, a veces no nos dice nada, y otras veces nos resulta engañosa. Por este motivo, vamos a dar una metodología general que nos permita enfrentarnos a este tipo de problemas de un modo sistemático y lo más objetivo posible. 2 Estimadores puntuales En primer lugar, vamos a definir lo que entenderemos por un estimador puntual del parámetro θ: Definición.- Sea (X 1,..., X n ) una muestra aleatoria de una característica X de una población con función de masa P θ (x) (caso discreto), o con función de densidad f θ (x) (caso continuo), donde θ Θ es desconocido. Un estimador puntual de θ es una función T que a cada posible muestra (x 1,..., x n ) le hace corresponder una estimación T (x 1,..., x n ) de θ. 2

3 Observaciones: 1. Lo que vamos a estimar habitualmente es θ pero, en algunos casos, podría interesarnos estimar alguna función de θ. Por ejemplo, cuando X N(µ; σ), nos puede interesar estimar la desviación típica σ, pero también podemos estar interesados en estimar la varianza σ 2. En lo que sigue, sólo nos referiremos a la estimación de θ, pero teniendo claro que no habría ningún problema en extender las ideas a la estimación de alguna función de θ. 2. Evidentemente, T = T (X 1,..., X n ) es una variable aleatoria. En realidad, un estimador puntual no es más que un estadístico con una misión especial: acercarse lo más posible al verdadero y desconocido valor del parámetro. 3. La definición que hemos dado de estimador puntual es enormemente general y engloba, tanto estimadores muy razonables, como estimadores completamente absurdos. Por este motivo, lo siguiente que vamos a hacer es indicar alguna propiedad deseable para un estimador razonable. 3 Error cuadrático medio. Estimadores insesgados Definición.- El error cuadrático medio de un estimador T, para estimar θ, se define como: ECM(T ) = E[(T θ) 2 ] = E[(T (X 1,..., X n ) θ) 2 ] El objetivo de la definición está bastante claro: (a) T (X 1,..., X n ) θ mide el error que se comete al estimar θ mediante T (X 1,..., X n ). (b) Consideramos el cuadrado de ese error para evitar que las diferencias positivas se compensen con las negativas. (c)finalmente, calculamos cuanto vale, en promedio, este error cuadrático. Esta idea del error cuadrático medio ya fue utilizada para definir la recta de regresión. Por supuesto, lo que nos interesa es utilizar estimadores con 3

4 un error cuadrático pequeño. Para ver como puede conseguirse un error cuadrático pequeño, veamos una forma alternativa de expresarlo: E[(T θ) 2 ] = E[((T E[T ]) + (E[T ] θ)) 2 ] = E[(T E[T ]) 2 ] + (E[T ] θ) 2 = V (T ) + (Sesgo de T ) 2 donde: Sesgo de T = E[T ] θ De este modo, el error cuadrático medio se puede reducir, bien reduciendo la varianza del estimador, o bien reduciendo su sesgo. Una manera de eliminar completamente el sesgo es trabajar con estimadores insesgados: Definición.- Un estimador T es insesgado (o centrado) para estimar θ, cuando verifica: E[T ] = θ Los estimadores insesgados, no sólo son interesantes porque contribuyan a reducir el error cuadrático medio; son interesantes por sí mismos ya que, en promedio, sus estimaciones aciertan con el objetivo de estimar θ. Es sencillo encontrar ejemplos de estimadores insesgados: Ejemplo 1 (continuado).- Consideramos una muestra aleatoria (X 1,..., X n ) de X Bernoulli(p) (recordemos que este modelo será utilizado siempre que se quiera estimar una proporción p). Se había considerado que un estimador razonable para p podía ser: ˆp = Frecuencia relativa de éxitos = 1 n Xi = X Es muy sencillo comprobar que este estimador es insesgado para p: [ 1 ] E[ˆp] = E Xi = 1 E[Xi ] = 1 n n n (np) = p También es muy sencillo hallar su error cuadrático medio: ECM(ˆp) = ECM( X) = V ( X) + (Sesgo) 2 = V (X) n = p(1 p) n 4

5 Ejemplo 2 (continuado).- Consideramos una muestra aleatoria (X 1,..., X n ) de una característica X N(µ; σ). Se había considerado que un estimador razonable para µ podía ser: ˆµ = 1 n Xi = X Es muy sencillo comprobar que este estimador es insesgado para µ: [ 1 ] E[ˆµ] = E Xi = 1 E[Xi ] = 1 n n n (nµ) = µ También es muy sencillo hallar su error cuadrático medio: ECM(ˆµ) = ECM( X) = V ( X) + (Sesgo) 2 = V (X) n = σ2 n En cualquier caso, la cuestión fundamental sobre los estimadores puntuales es la que se planteaba en la introducción y sigue todavía sin respuesta: Es posible dar una metodología general que nos permita construir estimadores puntuales de un modo sistemático y lo más objetivo posible? Vamos a dar respuesta a esta cuestión en las dos siguientes secciones. 4 Método de los momentos En el Ejemplo 2 de la Introducción, se quería estimar la resistencia media a la rotura de las cuerdas fabricadas con una nueva fibra, y se proponía estimar esa resistencia media de todas las cuerdas fabricadas, mediante la resistencia media de las cuerdas utilizadas en una muestra. La idea intuitiva que hay detrás de este modo de proceder es que, seguramente, la media muestral (conocida) será bastante parecida a la media de toda la producción (desconocida). Esta idea intuitiva es la que se utiliza para formalizar el método de los momentos: Definición.- Sea (X 1,..., X n ) una muestra aleatoria de una característica X con función de masa P θ (x) (o función de densidad f θ (x)), donde θ = (θ 1,..., θ k ). El estimador de θ por el método de los momentos es el formado por los valores θ 1,..., θ k que se obtienen al resolver en θ 1,..., θ k el siguiente sistema de k ecuaciones: E[X] = 1 ni=1 X n i E[X 2 ] = 1 ni=1 X 2 n i E[X k ] = 1 ni=1 X k n i 5

6 Observaciones: 1. La justificación del método de los momentos es sencilla: se basa en la intuición de que los momentos de la población (E[X], E[X 2 ],... ) se parecerán a los respectivos momentos de la muestra ( 1 Xi, 1 n n X 2 i,... ). En consecuencia, consideramos k ecuaciones derivadas de esta intuición (tantas como componentes tiene el parámetro que necesitamos estimar). El nombre del método procede de que utilizamos los momentos (poblacionales y muestrales). 2. Hay que señalar, no obstante, que el método de los momentos presenta a veces graves inconvenientes. Por ejemplo, es perfectamente posible que la estimación obtenida corresponda a valores que están fuera del espacio paramétrico. Obviamente, esto último no es muy aconsejable. 5 Método de máxima verosimilitud El método más ampliamente utilizado para construir estimadores puntuales es el método de máxima verosimilitud. Está basado también en una idea intuitiva muy sencilla y no presenta inconvenientes serios como le ocurre a veces al método de los momentos. En el ejemplo siguiente vemos las ideas básicas que nos llevarán a la definición general. Ejemplo 3.- Consideramos una urna con 4 bolas, que pueden ser blancas o negras, pero no sabemos en qué proporción. Llamaremos θ a la proporción (desconocida) de bolas blancas en la urna, que puede tomar los valores θ Θ = { 0, } 1 4, 1 2, 3 4, 1 Para obtener información sobre este parámetro, extraemos de la urna 2 bolas con reemplazamiento (de esta forma, las observaciones son independientes). Supongamos que la primera bola observada es blanca y la segunda negra, de modo que la muestra obtenida es (B, N). La probabilidad que los diferentes valores de θ le dan a la muestra obtenida recibe el nombre de función de verosimilitud y es de la siguiente forma: L(θ) = P θ (B, N) = 6 0 si θ = 0 3/16 si θ = 1/4 4/16 si θ = 1/2 3/16 si θ = 3/4 0 si θ = 1

7 La idea del método de máxima verosimilitud es muy sencilla y muy razonable: tomar como estimación de θ, aquel valor que hace más probable (más verosímil) la muestra obtenida. Por tanto, en este caso, si la muestra obtenida era (B, N), la estimación de máxima verosimilitud sería: ˆθ = 1/2 Esta idea intuitiva del Ejemplo 3 es la que se utiliza para formalizar el método de máxima verosimilitud: Definición.- Sea (X 1,..., X n ) una muestra aleatoria de una característica X con función de masa P θ (x) (o función de densidad f θ (x)), donde θ = (θ 1,..., θ k ). La función de verosimilitud de θ es: L(θ) = P θ (x 1,..., x n ) = P θ (x 1 )... P θ (x n ) (caso discreto) L(θ) = f θ (x 1,..., x n ) = f θ (x 1 )... f θ (x n ) (caso continuo) El estimador de máxima verosimilitud de θ es el formado por los valores (ˆθ 1,..., ˆθ k ) que maximizan la función de verosimilitud L(θ). Observaciones: 1. La función de verosimilitud expresa la probabilidad (o la densidad) que los diferentes valores de θ le dan a la muestra obtenida. Lo que hacemos, por tanto, es maximizar esa probabilidad (o densidad), es decir, elegir el valor de θ que hace más verosímil la muestra obtenida. 2. Por la propia definición, la estimación de máxima verosimilitud siempre es un valor del espacio paramétrico (algo que no siempre ocurre con el método de los momentos). 3. El procedimiento más habitual para obtener el estimador de máxima verosimilitud es el siguiente: Obtenemos la función de verosimilitud: L(θ) = P θ (x 1,..., x n ) = P θ (x 1 )... P θ (x n ) Por supuesto, si estamos en un caso continuo, utilizaríamos la función de densidad del modelo utilizado. Obtenemos ln L(θ) en vez de L(θ), ya que es más fácil de manejar y presenta los mismos máximos y mínimos. 7

8 Despejamos θ 1,..., θ k del siguiente sistema de ecuaciones: ln L(θ) θ 1 = ln L(θ) θ k = 0 Por supuesto, hay que tener precaución con este procedimiento, ya que el punto crítico obtenido no tiene por qué corresponder a un máximo. También puede ocurrir que la función de verosimilitud se maximice en un extremo y no obtengamos nada con este procedimiento. 8

INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M.

INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la estimación mediante Intervalos de Confianza, que es otro de los tres grandes

Más detalles

Tema 6. Estimación puntual

Tema 6. Estimación puntual Tema 6. Estimación puntual Contenidos Planteamiento del problema Criterios de comparación de estimadores: Insesgadez Estimadores de mínima varianza Error cuadrático medio Consistencia Métodos para obtener

Más detalles

Tema 7: Introducción a la Teoría sobre Estimación

Tema 7: Introducción a la Teoría sobre Estimación Tema 7: Introducción a la Teoría sobre Estimación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 7: Introducción a la Teoría sobre Estimación

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

Estimación de Máxima Verosimilitud Utilizando la Función optim en R

Estimación de Máxima Verosimilitud Utilizando la Función optim en R Estimación de Máxima Verosimilitud Utilizando la Función optim en R Juan F. Olivares-Pacheco * 15 de diciembre de 2006 Resumen En este trabajo se muestra el método de verosimilitud para la estimación de

Más detalles

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica ECONOMETRÍA II Prof.: Begoña Álvarez 2007-2008 TEMA 1 INTRODUCCIÓN Estimación por máxima verosimilitud y conceptos de teoría asintótica 1. ESTIMACIÓN POR MÁXIMA VEROSIMILITUD (MAXIMUM LIKELIHOOD) La estimación

Más detalles

Introducción a la Inferencia Estadística

Introducción a la Inferencia Estadística MÁSTER EN ESTADÍSTICA PÚBLICA Experto Universitario: Estadística Aplicada y Técnicas de Encuestación 1 Introducción a la Inferencia Estadística Estimación puntual paramétrica M a Teresa Gómez Departamento

Más detalles

Al conjunto de todos los sucesos que ocurren en un experimento aleatorio se le llama espacio de sucesos y se designa por S. Algunos tipos de sucesos:

Al conjunto de todos los sucesos que ocurren en un experimento aleatorio se le llama espacio de sucesos y se designa por S. Algunos tipos de sucesos: 1.- CÁLCULO DE PROBABILIDADES. Un experimento aleatorio es aquel que puede dar lugar a varios resultados, sin que pueda ser previsible enunciar con certeza cuál de éstos va a ser observado en la realización

Más detalles

Tema 4: Variables Aleatorias

Tema 4: Variables Aleatorias Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales 1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución

Más detalles

Tema 1: Distribuciones en el muestreo

Tema 1: Distribuciones en el muestreo Tema 1: Distribuciones en el muestreo 1 (transparencias de A. Jach http://www.est.uc3m.es/ajach/) Muestras aleatorias Estadísticos Concepto de distribución muestral Media muestral Distribución muestral

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Auxiliar 9. MNL y MLE. Daniel Olcay. 21 de octubre de 2014 IN4402. Daniel Olcay (IN4402) Auxiliar 9 21 de octubre de / 13

Auxiliar 9. MNL y MLE. Daniel Olcay. 21 de octubre de 2014 IN4402. Daniel Olcay (IN4402) Auxiliar 9 21 de octubre de / 13 Auxiliar 9 MNL y MLE Daniel Olcay IN4402 21 de octubre de 2014 Daniel Olcay (IN4402) Auxiliar 9 21 de octubre de 2014 1 / 13 Índice Modelos no lineales Probabilidad lineal Probit Logit Máxima verosimilitud

Más detalles

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio Muestra aleatoria Conceptos probabiĺısticos básicos El problema de inferencia Estadísticos. Media y varianza

Más detalles

Técnicas de Muestreo Métodos

Técnicas de Muestreo Métodos Muestreo aleatorio: Técnicas de Muestreo Métodos a) unidad muestral elemental: a.1) muestreo aleatorio simple a.2) muestreo (seudo)aleatorio sistemático a.3) muestreo aleatorio estratificado b) unidad

Más detalles

2 Espacio muestral y σ-álgebra de sucesos

2 Espacio muestral y σ-álgebra de sucesos 1 Introducción ESPACIOS DE PROBABILIDAD Julián de la Horra Departamento de Matemáticas U.A.M. Los espacios de probabilidad son las estructuras que se utilizan en Matemáticas para estudiar los fenómenos

Más detalles

Muestreo de variables aleatorias

Muestreo de variables aleatorias Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 Distribución de la muestra 3 4 5 Distribuciones de la media y la varianza en poblaciones normales Introducción Tiene como

Más detalles

Inferencia. Mauricio Olivares. 19 de junio de 2015 ITAM

Inferencia. Mauricio Olivares. 19 de junio de 2015 ITAM Inferencia Mauricio Olivares ITAM 19 de junio de 2015 Recuerda de nuestra clase anterior que m(x) = α + βx. Recuerda de nuestra clase anterior que m(x) = α + βx. Esta es una relación poblacional, no hay

Más detalles

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10 Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,

Más detalles

Tema 8: Contraste de hipótesis

Tema 8: Contraste de hipótesis Tema 8: Contraste de hipótesis 1 En este tema: Conceptos fundamentales: hipótesis nula y alternativa, nivel de significación, error de tipo I y tipo II, p-valor. Contraste de hipótesis e IC. Contraste

Más detalles

EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD)

EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD) EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD) Fortino Vela Peón fvela@correo.xoc.uam.mx FVela-0 Objetivo Introducir las ideas básicas del principio de máxima verosimilitud. Problema Considere el experimento

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M.

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Abordaremos en este capítulo el modelo de regresión lineal múltiple, una vez que la mayor parte de las

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

TEMA 2: DISTRIBUCIÓN DE PROBABILIDAD

TEMA 2: DISTRIBUCIÓN DE PROBABILIDAD TEMA 2: DISTRIBUCIÓN DE PROBABILIDAD A partir de un experimento aleatorio cualquiera, se obtiene su espacio muestral E. Se llama variable aleatoria a una ley (o función) que a cada elemento del espacio

Más detalles

Tema 13: Distribuciones de probabilidad. Estadística

Tema 13: Distribuciones de probabilidad. Estadística Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

Estadística I Tema 7: Estimación por intervalos

Estadística I Tema 7: Estimación por intervalos Estadística I Tema 7: Estimación por intervalos Tema 7: Estimación por intervalos Ideas a transmitir Definición e interpretación frecuentista. Intervalos de confianza para medias y varianzas en poblaciones

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

Estimaciones puntuales. Estadística II

Estimaciones puntuales. Estadística II Estimaciones puntuales Estadística II Estimación Podemos hacer dos tipos de estimaciones concernientes a una población: una estimación puntual y una estimación de intervalo. Una estimación puntual es un

Más detalles

2 Modelo de Diseño de Experimentos con dos factores sin interacción. Hipótesis del modelo

2 Modelo de Diseño de Experimentos con dos factores sin interacción. Hipótesis del modelo MODELO DE DISEÑO DE EXPERIMENTOS (VARIOS FACTORES) Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Los modelos de diseño de experimentos sirven, en general, para tratar de explicar

Más detalles

Intervalos de Confianza

Intervalos de Confianza Intervalos de Confianza Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Intervalo de Confianza Se puede hacer una estimación puntual de

Más detalles

INDICE Capítulo I: Conceptos Básicos Capitulo II: Estadística Descriptiva del Proceso

INDICE Capítulo I: Conceptos Básicos Capitulo II: Estadística Descriptiva del Proceso INDICE Capítulo I: Conceptos Básicos 1.- Introducción 3 2.- Definición de calidad 7 3.- Política de calidad 10 4.- Gestión de la calidad 12 5.- Sistema de calidad 12 6.- Calidad total 13 7.- Aseguramiento

Más detalles

Problemas resueltos Muestreo Vicente Manzano-Arrondo, 2013

Problemas resueltos Muestreo Vicente Manzano-Arrondo, 2013 Problemas resueltos Muestreo Vicente Manzano-Arrondo, 201 1 En todos los casos vamos a suponer que las muestras se obtienen siguiendo un muestreo aleatorio simple desde poblaciones de tamaño prácticamente

Más detalles

Tema 8: Estimación por intervalos de confianza.

Tema 8: Estimación por intervalos de confianza. Estadística 84 Tema 8: Estimación por intervalos de confianza. 8.1 Introducción. Cuando tratamos la estimación puntual, uno de los problemas que se plantearon es que el valor de la estimación es sólo uno

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales Tema 5. Muestreo y distribuciones muestrales Contenidos Muestreo y muestras aleatorias simples La distribución de la media en el muestreo La distribución de la varianza muestral Lecturas recomendadas:

Más detalles

Introducción al Tema 7. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones.

Introducción al Tema 7. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. Introducción al Tema 7 1 Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. V.A. de uso frecuente Tema 7. Modelos probabiĺısticos discretos

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

Tema 9: Introducción al problema de la comparación de poblaciones

Tema 9: Introducción al problema de la comparación de poblaciones Tema 9: Introducción al problema de la comparación de poblaciones Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 9: Introducción al problema

Más detalles

ESTADÍSTICA I Tema 3: Estimación puntual paramétrica

ESTADÍSTICA I Tema 3: Estimación puntual paramétrica ESTADÍSTICA I Tema 3: Estimación puntual paramétrica Planteamiento del problema Estimadores. Concepto, error cuadrático medio y propiedades deseables Construcción de estimadores: el método de máxima verosimilitud

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

Definición Una hipótesis es una afirmación acerca de un parámetro.

Definición Una hipótesis es una afirmación acerca de un parámetro. Capítulo 8 Prueba de hipótesis Existen dos áreas de interés en el proceso de inferencia estadística: la estimación puntual y las pruebas de hipótesis. En este capítulo se presentan algunos métodos para

Más detalles

Intervalo para la media si se conoce la varianza

Intervalo para la media si se conoce la varianza 178 Bioestadística: Métodos y Aplicaciones nza para la media (caso general): Este se trata del caso con verdadero interés práctico. Por ejemplo sirve para estimar intervalos que contenga la media del colesterol

Más detalles

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07 TEMA 2: Estimadores y distribuciones en el muestreo 1) Introducción 2) Tipos de muestreos 3) Estadísticos INDICE 4) Estimadores y propiedades 5) Distribución muestral 6) Teorema Central del Límite 7) Distribuciones

Más detalles

EJERCICIOS DE PROBABILIDAD

EJERCICIOS DE PROBABILIDAD EJERCICIOS DE ROBABILIDAD Ejercicio nº 1.- Lanzamos dos dados sobre la mesa y anotamos los dos números obtenidos. a) Cuántos elementos tiene el espacio muestral? b) Describe los sucesos: A "Obtener al

Más detalles

Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis

Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis Matemáticas 2.º Bachillerato Intervalos de confianza. Contraste de hipótesis Depto. Matemáticas IES Elaios Tema: Estadística Inferencial 1. MUESTREO ALEATORIO Presentación elaborada por el profesor José

Más detalles

ESTADÍSTICA I Tema 4: Estimación por intervalos de confianza

ESTADÍSTICA I Tema 4: Estimación por intervalos de confianza ESTADÍSTICA I Tema 4: Estimación por intervalos de confianza El concepto de intervalo de confianza (IC) IC aproximados basados en el TCL: intervalos para una proporción Determinación del mínimo tamaño

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Mag. María del Carmen Romero 2014 romero@econ.unicen.edu.ar Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo

Más detalles

1. Lanzamos una moneda 400 veces. Halla la probabilidad de que el número de caras sea mayor que 200.

1. Lanzamos una moneda 400 veces. Halla la probabilidad de que el número de caras sea mayor que 200. 1. Lanzamos una moneda 400 veces. Halla la probabilidad de que el número de caras sea mayor que 200. 2. Lanzamos una moneda 400 veces. Halla la probabilidad de que el número de caras esté entre 180 y 220.

Más detalles

Tema 6: Introducción a la Inferencia Bayesiana

Tema 6: Introducción a la Inferencia Bayesiana Tema 6: Introducción a la Inferencia Bayesiana Conchi Ausín Departamento de Estadística Universidad Carlos III de Madrid concepcion.ausin@uc3m.es CESGA, Noviembre 2012 Contenidos 1. Elementos básicos de

Más detalles

Guía docente MÉTODOS ESTADÍSTICOS PARA LA EMPRESA

Guía docente MÉTODOS ESTADÍSTICOS PARA LA EMPRESA 1. Introducción Guía docente MÉTODOS ESTADÍSTICOS PARA LA EMPRESA Los análisis económicos y empresariales se efectúan sobre la base de la toma de decisiones, las cuales se toman a partir de la información

Más detalles

Resumen teórico de los principales conceptos estadísticos

Resumen teórico de los principales conceptos estadísticos Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Muestreo aleatorio simple Resumen teórico Resumen teórico de los principales conceptos estadísticos Muestreo aleatorio

Más detalles

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................

Más detalles

Muestreo probabilístico. Estimadores

Muestreo probabilístico. Estimadores Capítulo 1 Muestreo probabilístico. Estimadores Como hemos definido anteriormente, el muestreo es el proceso que nos permite la extracción de una muestra a partir de una población. Dentro de este muestreo

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA INFERENCIA ESTADÍSTICA 1. DEFINICIÓN DE INFERENCIA ESTADÍSTICA Llamamos Inferencia Estadística al proceso de sacar conclusiones generales para toda una población a partir del estudio de una muestra, así

Más detalles

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN En este artículo, se trata de explicar una metodología estadística sencilla y sobre todo práctica, para la estimación del tamaño de muestra

Más detalles

Estadística Inferencial

Estadística Inferencial Estadística Inferencial 1 Sesión No.2 Nombre: Distribuciones muestrales Contetualización Toda cantidad que se obtiene de una muestra con el propósito de estimar un parámetro poblacional se llama estadístico

Más detalles

PROBABILIDAD. Profesor: Rafael Núñez Nogales CÁLCULO DE PROBABILIDADES. Experimentos y sucesos

PROBABILIDAD. Profesor: Rafael Núñez Nogales CÁLCULO DE PROBABILIDADES. Experimentos y sucesos PROBABILIDAD CÁLCULO DE PROBABILIDADES Experimentos y sucesos Experimento aleatorio Es aquel cuyo resultado depende del azar, es decir no se puede predecir de antemano qué resultado se va a obtener aunque

Más detalles

T2. El modelo lineal simple

T2. El modelo lineal simple T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN SIMPLE Julián de la Horra Departamento de Matemáticas U.A.M.

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN SIMPLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción MODELO DE REGRESIÓN SIMPLE Julián de la Horra Departamento de Matemáticas U.A.M. Los modelos de regresión sirven, en general, para tratar de expresar una variable respuesta (numérica) en

Más detalles

Tema 8: Regresión y Correlación

Tema 8: Regresión y Correlación Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice

Más detalles

Estadística. Generalmente se considera que las variables son obtenidas independientemente de la misma población. De esta forma: con

Estadística. Generalmente se considera que las variables son obtenidas independientemente de la misma población. De esta forma: con Hasta ahora hemos supuesto que conocemos o podemos calcular la función/densidad de probabilidad (distribución) de las variables aleatorias. En general, esto no es así. Más bien se tiene una muestra experimental

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

Ejercicios de Cálculo de Probabilidades

Ejercicios de Cálculo de Probabilidades Ejercicios de Cálculo de Probabilidades Ejercicio nº 1.- De una bolsa que tiene 10 bolas numeradas del 0 al 9, se extrae una bola al azar. a Cuál es el espacio muestral? b Describe los sucesos: A "Mayor

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas

Más detalles

BLOQUE DE EJERCICIOS. ESTADÍSTICA Y PROBABILIDAD.

BLOQUE DE EJERCICIOS. ESTADÍSTICA Y PROBABILIDAD. BLOQUE DE EJERCICIOS. ESTADÍSTICA Y PROBABILIDAD. Estadística Unidimensional 1. Se quieren realizar los siguientes estudios: Eficacia de un medicamento en 120 pacientes. Resistencia que presentan a la

Más detalles

TEMA 4 Modelo de regresión múltiple

TEMA 4 Modelo de regresión múltiple TEMA 4 Modelo de regresión múltiple José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Estructura de este tema Modelo de regresión múltiple.

Más detalles

Tema 2: Estimación puntual

Tema 2: Estimación puntual Tema 2: Estimación puntual 1 (basado en el material de A. Jach (http://www.est.uc3m.es/ajach/) y A. Alonso (http://www.est.uc3m.es/amalonso/)) Planteamiento del problema: estimador y estimación Insesgadez

Más detalles

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre

Más detalles

Teoría de muestras 2º curso de Bachillerato Ciencias Sociales

Teoría de muestras 2º curso de Bachillerato Ciencias Sociales TEORÍA DE MUESTRAS Índice: 1. Introducción----------------------------------------------------------------------------------------- 2 2. Muestras y población-------------------------------------------------------------------------------

Más detalles

TEMA 4: CONTROL POR VARIABLES Hoja de ejercicios (Entregar el 7 -problema de examen-)

TEMA 4: CONTROL POR VARIABLES Hoja de ejercicios (Entregar el 7 -problema de examen-) MÉTODOS ESTADÍSTICOS PARA LA MEJORA DE LA CALIDAD INGENIERIA DE TELECOMUNICACIONES TEMA 4: CONTROL POR VARIABLES Hoja de ejercicios (Entregar el 7 -problema de examen-) 1. Un proceso industrial fabrica

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis Facultad de Ciencias Sociales, UdelaR Índice 1. Introducción: hipótesis estadística, tipos de hipótesis, prueba de hipótesis 2.

Más detalles

INFERENCIA ESTADÍSTICA Notas de clase. Profesores: A. Leonardo Bañuelos S. Nayelli Manzanarez Gómez

INFERENCIA ESTADÍSTICA Notas de clase. Profesores: A. Leonardo Bañuelos S. Nayelli Manzanarez Gómez INFERENCIA ESTADÍSTICA Notas de clase Profesores: A. Leonardo Bañuelos S. Naelli Manzanarez Gómez TEMA II ESTIMACIÓN PUNTUAL DE PARÁMETROS POBLACIONALES La estimación puntual de un parámetro relativo a

Más detalles

Probabilidad del suceso imposible

Probabilidad del suceso imposible º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I TEMA 6.- ESTADÍSTICA INFERENCIAL PROFESOR: RAFAEL NÚÑEZ -------------------------------------------------------------------------------------------------------------------------------------------------------------.-

Más detalles

4. Prueba de Hipótesis

4. Prueba de Hipótesis 4. Prueba de Hipótesis Como se ha indicado anteriormente, nuestro objetivo al tomar una muestra es extraer alguna conclusión o inferencia sobre una población. En nuestro interés es conocer acerca de los

Más detalles

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA ESTADÍSTICA La estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comprobaciones y sacar conclusiones. Un estudio estadístico consta

Más detalles

Tema 7 Intervalos de confianza Hugo S. Salinas

Tema 7 Intervalos de confianza Hugo S. Salinas Intervalos de confianza Hugo S. Salinas 1 Introducción Hemos definido la inferencia estadística como un proceso que usa información proveniente de la muestra para generalizar y tomar decisiones acerca

Más detalles

Regresión múltiple. Demostraciones. Elisa Mª Molanes López

Regresión múltiple. Demostraciones. Elisa Mª Molanes López Regresión múltiple Demostraciones Elisa Mª Molanes López El modelo de regresión múltiple El modelo que se plantea en regresión múltiple es el siguiente: y i = β 0 + β 1 x 1i + β 2 x 2i +...+ β k x ki +

Más detalles

6. ESTIMACIÓN DE PARÁMETROS

6. ESTIMACIÓN DE PARÁMETROS PROBABILIDAD Y ESTADÍSTICA Sesión 7 6. ESTIMACIÓN DE PARÁMETROS 6.1 Características el estimador 6. Estimación puntual 6..1 Métodos 6..1.1 Máxima verosimilitud 6..1. Momentos 6.3 Intervalo de confianza

Más detalles

Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio

Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio En ocasiones en que no es posible o conveniente realizar un censo (analizar a todos los elementos de una población),

Más detalles

CONTRASTE DE HIPÓTESIS

CONTRASTE DE HIPÓTESIS CONTRASTE DE HIPÓTESIS Antonio Morillas A. Morillas: Contraste de hipótesis 1 CONTRASTE DE HIPÓTESIS 1. Introducción 2. Conceptos básicos 3. Región crítica óptima i. Teorema de Neyman-Pearson ii. Región

Más detalles

8 Resolución de algunos ejemplos y ejercicios del tema 8.

8 Resolución de algunos ejemplos y ejercicios del tema 8. INTRODUCCIÓN A LA ESTADÍSTICA. GRUPO 71 LADE. 29 8 Resolución de algunos ejemplos y ejercicios del tema 8. 8.1 Ejemplos. Ejemplo 49 Supongamos que el tiempo que tarda en dar respuesta a un enfermo el personal

Más detalles

Tema 10: Introducción a los problemas de Asociación y Correlación

Tema 10: Introducción a los problemas de Asociación y Correlación Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación

Más detalles

Teoría de muestras. Distribución de variables aleatorias en el muestreo. 1. Distribución de medias muestrales

Teoría de muestras. Distribución de variables aleatorias en el muestreo. 1. Distribución de medias muestrales Teoría de muestras Distribución de variables aleatorias en el muestreo 1. Distribución de medias muestrales Dada una variable estadística observada en una población, se puede calcular se media y su desviación

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10 Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Tema 6. Estadística Descriptiva e Introducción a la Inferencia Estadística

Tema 6. Estadística Descriptiva e Introducción a la Inferencia Estadística Tema 6. Estadística Descriptiva e Introducción a la Inferencia Estadística Fuente de los comics: La Estadística en Comic. LarryGonicky Woollcatt Smith. Ed. ZendreraZariquiey, 1999 ESTADÍSTICA ESTADÍSTICA

Más detalles

Variables Aleatorias Discretas

Variables Aleatorias Discretas Profesor Alberto Alvaradejo Ojeda 9 de septiembre de 2015 Índice 1. Variable aleatoria 3 1.1. Discretas...................................... 3 1.2. Continuas..................................... 3 1.3.

Más detalles

Grado en Ingeniería Informática Estadística Tema 5: Teoría Elemental del Muestreo e Inferencia Paramétrica Ángel Serrano Sánchez de León

Grado en Ingeniería Informática Estadística Tema 5: Teoría Elemental del Muestreo e Inferencia Paramétrica Ángel Serrano Sánchez de León Grado en Ingeniería Informática Estadística Tema 5: Teoría Elemental del Muestreo e Inferencia Paramétrica Ángel Serrano Sánchez de León Distribuciones Muestrales 1. Sea una población de 5 números: 2,

Más detalles

Modelos de suavizado, aditivos y mixtos

Modelos de suavizado, aditivos y mixtos Carmen Armero 1 de junio de 2011 Introducción Introducción Modelos lineales, LM Modelos aditivos, AM Modelos lineales generalizados, GLM GAM I Un modelo lineal generalizado (GAM) es un modelo lineal generalizado

Más detalles

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo Estructura de este tema Tema 3 Contrastes de hipótesis José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Qué es un contraste de hipótesis? Elementos de un contraste: hipótesis,

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 5 Esperanza y momentos Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST.

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Modelo 2008) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Modelo 2008) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Modelo 28) Selectividad-Opción A Tiempo: 9 minutos Problema 1 (3 puntos) Dadas las matrices A = y B = 1 1 2 1 1 n 1 1 1, X = a) Hallar los valores

Más detalles

Tema 3. VARIABLES ALEATORIAS.

Tema 3. VARIABLES ALEATORIAS. 3..- Introducción. Tema 3. VARIABLES ALEATORIAS. Objetivo: Encontrar modelos matemáticos para el trabajo con probabilidad de sucesos. En particular, se quiere trabajar con funciones reales de variable

Más detalles

Estadistica II Tema 1. Inferencia sobre una población. Curso 2009/10

Estadistica II Tema 1. Inferencia sobre una población. Curso 2009/10 Estadistica II Tema 1. Inferencia sobre una población Curso 2009/10 Tema 1. Inferencia sobre una población Contenidos Introducción a la inferencia Estimadores puntuales Estimación de la media y la varianza

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Intervalos de confianza Álvaro José Flórez 1 Escuela de Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles