REVISTA COLOMBIANA DE FISICA, VOL. 33, No

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "REVISTA COLOMBIANA DE FISICA, VOL. 33, No"

Transcripción

1 CÁLCULO DE LA CONSTANTE DE BOLTZMAN A PARTIR DE MEDIDAS DE LA CARACTERÍSTICA IV DE UNA CELDA SOLAR. M. Grizález*, C. Quiñones y G. Gordillo Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia Fax.: , 1 *Universidad de la Amazonia, Florencia RESUMEN En este trabajo se describe un método desarrollado especialmente para determinar la constante de Boltzman a partir de medidas experimentales y de la simulación teórica de la característica IV de una celda solar bajo iluminación y en oscuro. Inicialmente se determina experimentalmente la corriente inversa de saturación I o y la resistencia serie R s de la celda solar mediante medida de la característica IV en oscuro y bajo iluminación respectivamente. Utilizando los valores de I o y R s en la ecuación qv IRs I = I exp 1 que describe la variación de la corriente de la celda en nkt oscuro en dependencia del voltaje de polarización V se obtiene el factor de diodo n mediante comparación de la curva experimental de I vs V con la simulada teóricamente. Finalmente graficando valores de ln(i/io 1) vs qvirs se obtiene el valor de la constante de Boltzman. INTRODUCCION La descripción del funcionamiento de dispositivos semiconductores incluye conceptos básicos de termodinámica y de transporte eléctrico que incorporan generalmente la constante de Boltzman k. Este hecho permite determinar experimentalmente la constante k mediante un experimento sencillo relacionado con medidas de corriente en función del voltaje de polarización aplicado a un díodo rectificador comercial, asumiendo que la relación corriente voltaje está dada por la siguiente ecuación [1]. I = I o [exp(v/v T ) 1 ] [1] Donde V es el voltaje de polarización, V T =kt/q es el potencial térmico y k la constante de Boltzman. La obtención de k asumiendo que las medidas de la característica IV de un díodo se comportan de acuerdo a la ecuación (1) no es totalmente correcta, ya que la Ec.1 solo es válida para díodos ideales con una resistencia serie Rs igual a cero y un factor de idealidad n igual a 1. Para díodos comerciales, se debe incluir el efecto de la resistencia serie y del factor n en la Ec. 1. En este caso la relación corriente voltaje está por la Ec. 2: V IR s I = I exp 1 [2] nvt

2 REVISTA COLOMBIANA DE FISICA, VOL. 33, No. 2, 21 En este caso la obtención de k es mas complicada debido a que se necesita conocer el valor de la resistencia serie Rs y del factor de díodo n. En este trabajo, se describirá un procedimiento para determinar la constante de Boltzman a partir de medidas de la característica IV de una celda solar (que es básicamente un díodo P/N) bajo iluminación y en oscuro. Para ello se asume que la relación corriente voltaje está descrita por la Ec.2. FUNCIONAMIENTO BASICO DE UNA CELDA SOLAR La celda solar es un dispositivo fabricado especialmente para que convierta la radiación solar directamente en energía eléctrica mediante un fenómeno físico denominado efecto fotovoltaico. Su funcionamiento incluye dos procesos: a. Generación de portadores de carga (electrones y cargas positivas denominadas huecos) mediante absorción de radiación (fotones de luz). b. Generación de una corriente eléctrica a través de un campo eléctrico interno, que se forma mediante la unión de un material semiconductor tipo N con un semiconductor tipo P (díodo P/N), tal como se muestra en la Fig. 1 E Contacto superior Usuario Iph Fig No.1: Estructura típica de una celda solar, indicando la formación de la zona de carga espacial (ZCE) y correspondiente campo eléctrico interno (E) En la fig. 1 se muestra la estructura típica de una celda solar. Esta consiste básicamente en la unión de un semiconductor tipo P con un semiconductor tipo N a los cuales se les deposita un contacto eléctrico. Al unir el semiconductor N con el semiconductor P, se forma cerca de la unión una zona de carga negativa en el lado izquierdo y una zona de carga positiva en el lado derecho. Esta zona denominada zona de carga espacial (ZCE) crea a su vez el campo eléctrico interno E de la celda. Los portadores de carga fotogenerados son transportados inicialmente por mecanismos de difusión hasta el borde de la zona de carga espacial y posteriormente son arrastrados por el campo eléctrico interno hacia el circuito exterior, generando de está manera una corriente eléctrica, I ph. 35

3 La fig.2 muestra las curvas de corriente vs voltaje que se obtienen típicamente con una celda solar bajo iluminación y en oscuro. Relación IV en oscuro Relación IV bajo iluminación di/dv = 1/Rs I= V M V OC I M I sc di/dv =1/Rp V= Fig.2: Característica IV de una celda solar en oscuro y bajo iluminación, indicando los parámetros que la caracterizan (Voc, Isc, I M, V M ) Los parámetros que caracterizan el funcionamiento de una celda solar son: Corriente de corto circuito Isc, que se define como la corriente de la celda cuando el voltaje de polarización es cero. Voltaje de circuito abierto Voc, que se define como el voltaje de la celda cuando la corriente de la misma es cero. La potencia máxima generada por la celda P M = V M I M. Factor de llenado FF= V M I M /VocIsc Eficiencia de conversión η= V oc xi sc xff/p, donde P es la potencia de la radiación incidente. CALCULO DE LA CONSTANTE DE BOLTZMAN De la Ec. 2 se puede derivar la siguiente expresión: V IR ln I 1 = [3] I nv T La pendiente de la gráfica de ln(i/i 1) vs VIR s es igual a1/nv T. El Valor de nv T se puede obtener experimentalmente de medidas de la característica IV tanto en oscuro como bajo iluminación como sigue: Inicialmente se realiza la característica IV en oscuro, de la cual se pueden obtener los valores de I, V e Io. Posteriormente se hacen medidas de la característica IV bajo iluminación, con la cual se puede obtener el valor de R s a través de la medida de la pendiente de la curva IV en I= (ver Fig. 2). Existen varios métodos para determinar experimentalmente el valor de R s (2,3,4), sin embargo nosotros usamos un método sencillo que da muy 36

4 REVISTA COLOMBIANA DE FISICA, VOL. 33, No. 2, 21 buenos resultados cuando Voc >> nv T (5), lo cual se cumple en el caso de la celda usada en nuestro experimento. Con los datos de I, V, I y R s obtenidos en el paso anterior se hace una gráfica de ln(i/i 1) vs VIR s y la pendiente de esta gráfica es igual a1/nv T. Finalmente haciendo un cálculo teórico de la curva I vs V en oscuro se puede obtener el valor de n, mediante comparación de la curva teórica con la obtenida experimentalmente. RESULTADOS Y DISCUSIÓN MEDIDA DE LA CARACTERÍSTICA IV DE UNA CELDA SOLAR DE SIPOLICRISTALINO En la Fig.3 se muestra la característica IV de una celda solar de Sipolicristalino usada en este trabajo para realizar las correspondientes medidas experimentales que nos permitieron obtener los parámetros usados en el cálculo teórico de la constante de Boltzman. En la tabla 1 se presentan los valores obtenidos para los parámetros que caracterizan la celda solar (Corriente de corto circuito I SC, voltaje de circuito abierto V OC, resistencia serie Rs y resistencia paralelo Rp). En la Fig.4 se compara la curva experimental de I vs V tomada en oscuro con la calculada teóricamente utilizando los parámetros listados en la tabla 1. Se encontró que la curva obtenida teóricamente reproduce bastante bien los resultados experimentales usando un valor de n=2.9. En el recuadro se observa la recta que resulta de graficar ln(i/io1) vs VIRs. Utilizando el valor de la pendiente de la recta y el valor de n obtenido de la simulación teórica de la característica IV en oscuro, se calculó el valor de la constante de Boltzman k. El valor obtenido para k fue de 1.39x1 23 J/K asumiendo que la temperatura a la cual se hizo el experimento fue de 3K. 2 1 I(mA) IV(Con Ilum.) IV (Sin Ilum.) V(mV) Fig.3: Característica IV de una celda de Si, bajo iluminación (8 mw/cm 2 ) y en oscuro. Tabla 1: Valores obtenidos para la celda solar cuya característica IV se muestra en la Fig.2 V oc = 47 mv J sc = 25 ma/cm 2 Rs =.7Ω Rp = 7Ω Io = 9x1 4 A A = 16 cm

5 Fig. No. 4: Comparación de la característica IV de la celda solar de Si con la correspondiente obtenida teóricamente usando los parámetros de la tabla 1. En el recuadro se observa la recta que resulta de graficar ln(i/io1) vs VIRs CONCLUSIONES En este trabajo se implementó un método novedoso para determinar experimentalmente la constante de Boltzman, a partir de medidas de la característica IV de una celdas solar y de la comparación de la curva IV obtenida experimentalmente con la correspondiente calculada teóricamente utilizando parámetros obtenidos experimentalmente. Mediante este método se obtuvo un valor de k=1.39x1 23 J/K que concuerda bastante bien con el reportado en la literatura. AGRADECIMIENTOS Este trabajo fue realizado con apoyo económico de la Universidad Nacional de Colombia (Cont. Dinain DIC276 y DIC118) y COLCIENCIAS (Cont. 452) REFERENCIAS [1] D. G. Fisher, The physics teacher, 3 (1992)315. [2] M. Wolf and H. Rauchenbach, Advanced Energy Conversion, 3(1982)26 [3] K. Rajkanan and J. Shewchun, Solid St. Electron., 22(1979)193 [4] G.L. Araujo and E. Sanchez, IEEE Trans. Electron. Dev. ED29(1982)1511 [5] D. S. Chan, J. R. Phillips and C.H. Phang, Solid St. Elect., 29,3(1986)329 38

REVISTA COLOMBIANA DE FISICA, VOL. 33, No. 2. 2001 MEDIDA Y SIMULACION TEORICA DE LA CARACTERISTICA I-V DE UNA CELDA SOLAR

REVISTA COLOMBIANA DE FISICA, VOL. 33, No. 2. 2001 MEDIDA Y SIMULACION TEORICA DE LA CARACTERISTICA I-V DE UNA CELDA SOLAR REVITA COLOMBIANA DE FIICA, VOL. 33, No. 2. 21 MEDIDA Y IMULACION TEORICA DE LA CARACTERITICA I-V DE UNA CELDA OLAR O. Herrera, C. Quiñones y G. Gordillo 1 Departamento de Física, Universidad Nacional

Más detalles

Energía Solar Fotovoltaica. Adriano Peña, Rolando. Universidad Nacional De Ingeniería.

Energía Solar Fotovoltaica. Adriano Peña, Rolando. Universidad Nacional De Ingeniería. 1 Caracterización Del Voltaje V OC De Una Celda Fotovoltaica De Silicio Monocristalino Con Respecto a La Temperatura Energía Solar Fotovoltaica Adriano Peña, Rolando Universidad Nacional De Ingeniería

Más detalles

Estudio y caracterización de células solares fotovoltaicas

Estudio y caracterización de células solares fotovoltaicas Estudio y caracterización de células solares fotovoltaicas Esta práctica consta de tres partes: en la primera analizaremos varias células fotovoltaicas (monocristalina y policristalina), obteniendo su

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos EL42A - Circuitos Electrónicos Clase No. 2: Diodos Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 3 de agosto de 2009 P. Parada (DIE) EL42A - Circuitos

Más detalles

SEMICONDUCTORES. Silicio intrínseco

SEMICONDUCTORES. Silicio intrínseco Tema 3: El Diodo 0 SEMICONDUCTORES Silicio intrínseco 1 SEMICONDUCTORES Conducción por Huecos A medida que los electrones se desplazan a la izquierda para llenar un hueco, el hueco se desplaza a la derecha.

Más detalles

Función de Transferencia en dispositivos eléctricos. Taller de Construcción de Efectos, U2 Sesión 1

Función de Transferencia en dispositivos eléctricos. Taller de Construcción de Efectos, U2 Sesión 1 Función de Transferencia en dispositivos eléctricos Taller de Construcción de Efectos, U2 Sesión 1 Definición La Función de Transferencia de un sistema es una expresión matemática que relaciona la salida

Más detalles

INTRODUCCIÓN: OBJETIVOS:

INTRODUCCIÓN: OBJETIVOS: INTRODUCCIÓN: En el desarrollo de esta práctica se observará experimentalmente el comportamiento del transistor bipolar BJT como amplificador, mediante el diseño, desarrollo e implementación de dos amplificadores

Más detalles

EL PREMIO NOBEL DE FÍSICA 1956

EL PREMIO NOBEL DE FÍSICA 1956 EL PREMIO NOBEL DE FÍSICA 1956 EL TRANSISTOR BIPOLAR EL TRANSISTOR BIPOLAR El transistor bipolar (BJT Bipolar Junction Transistor) fue desarrollado en los Laboratorios Bell Thelephone en 1948. El nombre

Más detalles

OPTOELECTRÓNICA I. Veamos inicialmente el comportamiento de la JPN ante la incidencia de fotones.

OPTOELECTRÓNICA I. Veamos inicialmente el comportamiento de la JPN ante la incidencia de fotones. OPTOELECTRÓNICA I DETECTORES DE JUNTURA P-N: Veamos inicialmente el comportamiento de la JPN ante la incidencia de fotones. Queremos que los fotones actúen en la zona de deplexión. Por lo tanto hacemos

Más detalles

El Diodo. Lección Ing. Jorge Castro-Godínez. II Semestre Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica

El Diodo. Lección Ing. Jorge Castro-Godínez. II Semestre Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica El Diodo Lección 03.1 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez El Diodo 1 / 29 Contenido 1 Modelo del Diodo

Más detalles

Energía Solar Fotovoltaica IE Informe Práctica #2: LA CELDA SOLAR COMO TRANSFORMADOR DE ENERGIA

Energía Solar Fotovoltaica IE Informe Práctica #2: LA CELDA SOLAR COMO TRANSFORMADOR DE ENERGIA Energía Solar Fotovoltaica IE-1117 Informe Práctica #2: LA CELDA SOLAR COMO TRANSFORMADOR DE ENERGIA Enrique García Mainieri B12711 Resumen: En esta práctica se utiliza una celda solar como un transformador

Más detalles

Eficiencia límite en la conversión de la energía solar mediante células fotovoltaicas

Eficiencia límite en la conversión de la energía solar mediante células fotovoltaicas Eficiencia límite en la conversión de la energía solar mediante células fotovoltaicas Moisés Garín Escrivá (003) Este trabajo revisa la eficiencia máxima en la conversión de la energía solar en electricidad

Más detalles

Incidencia de Anestesia General en Operación Cesárea: Registro de Tres Años. Castillo Alvarado, Frencisco Miguel. CAPÍTULO III

Incidencia de Anestesia General en Operación Cesárea: Registro de Tres Años. Castillo Alvarado, Frencisco Miguel. CAPÍTULO III CAPÍTULO III ESTADÍSTICA DE LOS PORTADORES DE CARGA DEL SEMICONDUCTOR 1. Introducción. Cada material suele presentar varias bandas, tanto de conducción (BC) como de valencia (BV), pero las más importantes

Más detalles

LA UNIÓN P-N. La unión p-n en circuito abierto. Diapositiva 1 FUNDAMENTOS DE DISPOSITIVOS ELECTRONICOS SEMICONDUCTORES

LA UNIÓN P-N. La unión p-n en circuito abierto. Diapositiva 1 FUNDAMENTOS DE DISPOSITIVOS ELECTRONICOS SEMICONDUCTORES Diapositiva 1 LA UNÓN PN La unión pn en circuito abierto FUNDAMENTOS DE DSPOSTOS ELECTRONCOS SEMCONDUCTORES A K Zona de deplexión Unión p n Contacto óhmico ones de impurezas dadoras ones de impurezas aceptoras

Más detalles

DETERMINACIÓN DEL POTENCIAL DE BANDA PLANA

DETERMINACIÓN DEL POTENCIAL DE BANDA PLANA DETERMINACIÓN DEL POTENCIAL DE BANDA PLANA La inferíase semiconductor-electrolito puede ser representada por dos capacitores en serie; un capacitor la doble capa de Helmholtz (C H ) y a la otra región

Más detalles

UD6.- TEORIA DE SEMICONDUCTORES EL DIODO

UD6.- TEORIA DE SEMICONDUCTORES EL DIODO UD6. TEORIA DE SEMICONDUCTORES EL DIODO Centro CFP/ES CONSTITUCIÓN INTERNA DE LA MATERIA Moléculas y Átomos 1 CONSTITUCIÓN INTERNA DE LA MATERIA Clasificación de los cuerpos CONSTITUCIÓN INTERNA DE LA

Más detalles

ELECTRONICA GENERAL. Tema 2. Teoría del Diodo.

ELECTRONICA GENERAL. Tema 2. Teoría del Diodo. Tema 2. Teoría del Diodo. 1.- En un diodo polarizado, casi toda la tensión externa aplicada aparece en a) únicamente en los contactos metálicos b) en los contactos metálicos y en las zonas p y n c) la

Más detalles

Tarea 4: Informe de experimentos II

Tarea 4: Informe de experimentos II Universidad de Costa Rica Facultad de Ingeniería Escuela de Ingeniería Eléctrica IE1117 Energía Solar Fotovoltaica I ciclo 2015 Tarea 4: Informe de experimentos II Rodolfo Arias Porras, A20485 Profesor:

Más detalles

Electrónica 1. Práctico 3 Diodos 1

Electrónica 1. Práctico 3 Diodos 1 Electrónica 1 Práctico 3 Diodos 1 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic Circuits,

Más detalles

Electrónica Analógica I Prof. Ing. Mónica L. González. Diodo Zener: características y especificaciones en hojas de datos

Electrónica Analógica I Prof. Ing. Mónica L. González. Diodo Zener: características y especificaciones en hojas de datos Diodo Zener: características y especificaciones en hojas de datos Cuando la tensión inversa aplicada a un diodo de juntura PN excede cierto valor denominado tensión de ruptura la corriente inversa crece

Más detalles

Informe de laboratorio 1. La célula fotovoltaica

Informe de laboratorio 1. La célula fotovoltaica Universidad de Costa Rica Facultad de Ingeniería Escuela de Ingeniería Eléctrica IE-1117 Energía Solar Fotovoltaica Prof: Ing. José Antonio Conejo Badilla I semestre 2015 Informe de laboratorio 1 La célula

Más detalles

A.1. El diodo. - pieza básica de la electrónica: unión de un semiconductor de tipo p y otro de tipo n es un elemento no lineal

A.1. El diodo. - pieza básica de la electrónica: unión de un semiconductor de tipo p y otro de tipo n es un elemento no lineal A.1.1. Introducción A.1. El diodo - pieza básica de la electrónica: unión de un semiconductor de tipo p y otro de tipo n es un elemento no lineal A.1.2. Caracterización del diodo - al unirse la zona n

Más detalles

PARÁMETROS ELÉCTRICOS DE LA CÉLULA SOLAR

PARÁMETROS ELÉCTRICOS DE LA CÉLULA SOLAR PARÁMETROS ELÉCTRICOS DE LA CÉLULA SOLAR CURVA I-V La curva IV de una célula solar ideal es la superposición de la curva IV del diodo con la corriente fotogenerada. La luz tiene el efecto de desplazar

Más detalles

ENERGÍA FOTOVOLTAICA Dr. Ricardo Guerrero Lemus ENERGÍA FOTOVOLTAICA. Dr. Ricardo Guerrero Lemus

ENERGÍA FOTOVOLTAICA Dr. Ricardo Guerrero Lemus ENERGÍA FOTOVOLTAICA. Dr. Ricardo Guerrero Lemus ENERGÍA FOTOVOLTAICA Dr. Ricardo Guerrero Lemus 1 DEFINICIÓN: La energía fotovoltaica es energía eléctrica creada mediante la excitación de portadores de carga eléctrica al interaccionar con fotones procedentes

Más detalles

Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor.

Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor. Electrónica Tema 1 Semiconductores Contenido Consideraciones previas: Fuentes de corriente Teorema de Thevenin Teorema de Norton Conductores y Semiconductores Unión p-n Fundamentos del diodo 2 Fuente de

Más detalles

ESTRUCTURA DEL ÁTOMO

ESTRUCTURA DEL ÁTOMO ESTRUCTURA DEL ÁTOMO BANDAS DE VALENCIA Y DE CONDUCCIÓN MECANISMOS DE CONDUCCIÓN EN UN SEMICONDUCTOR SEMICONDUCTORES *Semiconductor *Cristal de silicio *Enlaces covalentes. Banda de valencia *Semiconductor

Más detalles

FUNDAMENTOS FISICOS DE LAS CELDAS SOLARES

FUNDAMENTOS FISICOS DE LAS CELDAS SOLARES FUNDAMENTOS FISICOS DE LAS CELDAS SOLARES INTRODUCCION Las celdas solares son dispositivos de conversión directa que transforman (directamente, sin procesos intermedios) la potencia del sol en potencia

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos EL42A - Circuitos Electrónicos Clase No. 12: Transistores de Efecto de Campo (3) Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 10 de Septiembre de 2009

Más detalles

Práctica Nº 4 DIODOS Y APLICACIONES

Práctica Nº 4 DIODOS Y APLICACIONES Práctica Nº 4 DIODOS Y APLICACIONES 1.- INTRODUCCION El objetivo Los elementos que conforman un circuito se pueden caracterizar por ser o no lineales, según como sea la relación entre voltaje y corriente

Más detalles

i = Is e v nv T ANÁLISIS MATEMÁTICO UTILIZANDO LA CARACTERÍSTICA REAL DEL DIODO (APROXIMACIONES SUCESIVAS)

i = Is e v nv T ANÁLISIS MATEMÁTICO UTILIZANDO LA CARACTERÍSTICA REAL DEL DIODO (APROXIMACIONES SUCESIVAS) ANÁLISIS MATEMÁTICO UTILIZANDO LA CARACTERÍSTICA REAL DEL DIODO (APROXIMACIONES SUCESIVAS) i Is e v nv T 1 Voltaje térmico VT kt/q k : Constante de Boltzman 1,38 x 10-23 joules/kelvin T temperatura en

Más detalles

TAREA 4: Laboratorio 2 de celdas fotovoltaicas

TAREA 4: Laboratorio 2 de celdas fotovoltaicas Universidad de Costa Rica Escuela de Ingeniería Eléctrica IE 1117 Energía Solar Fotovoltaica Diego Redondo Angulo B05163 Experimento 10: TAREA 4: Laboratorio 2 de celdas fotovoltaicas Figura 1: Montaje

Más detalles

Circuitos Electrónicos Analógicos EL3004

Circuitos Electrónicos Analógicos EL3004 Circuitos Electrónicos Analógicos EL3004 Guía de Ejercicios Diodos Profesor: Marcos Díaz Auxiliar: Jorge Marín Semestre Primavera 2009 Problema 1 Considere el circuito de la figura: Calcule la corriente

Más detalles

Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas

Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas Pr.B.4. Detección de luz e imágenes 1. Un detector de Ge debe ser usado en un sistema de comunicaciones

Más detalles

ELECTRONICA GENERAL Y APLICADA-FACULTAD DE INGENIERIA. UNCuyo - Ing. Roberto HAARTH

ELECTRONICA GENERAL Y APLICADA-FACULTAD DE INGENIERIA. UNCuyo - Ing. Roberto HAARTH Página1 OBJETIVOS Comprender el concepto de rectificación y filtrado de una fuente de alimentación de energía eléctrica. Reconocer las características y parámetros de rectificación de media onda y onda

Más detalles

Ley de Ohm Medición de Resistencias

Ley de Ohm Medición de Resistencias Trabajo Práctico N o 3 Ley de Ohm Medición de Resistencias Fabián Shalóm (fabianshalom@hotmail.com) Tomás Corti (tomascorti@fibertel.com.ar) Ramiro Olivera (ramaolivera@hotmail.com) Mayo de 2004 Cátedra

Más detalles

Calibrado de un termistor

Calibrado de un termistor Introducción a la Física Experimental Ejemplo de Informe Calibrado de un termistor J. Güémez Comp. G. Alfonso GRUPO 2B (Prof. R. Valiente) Noviembre 25, 2003 Resumen Se ha calibrado un termistor de cubierta

Más detalles

INDICE Prologo Semiconductores II. Procesos de transporte de carga en semiconductores III. Diodos semiconductores: unión P-N

INDICE Prologo Semiconductores II. Procesos de transporte de carga en semiconductores III. Diodos semiconductores: unión P-N INDICE Prologo V I. Semiconductores 1.1. clasificación de los materiales desde el punto de vista eléctrico 1 1.2. Estructura electrónica de los materiales sólidos 3 1.3. conductores, semiconductores y

Más detalles

Figura 1 Figura 2. b) Obtener, ahora, un valor más preciso de V D para la temperatura T a. V AA

Figura 1 Figura 2. b) Obtener, ahora, un valor más preciso de V D para la temperatura T a. V AA DODOS. Se desea diseñar el circuito de polarización de un diodo emisor de luz (LED) de arseniuro de galio (GaAs) conforme a la figura. La característica - del LED se representa en la figura, en la que

Más detalles

Sesión 7 Fundamentos de dispositivos semiconductores

Sesión 7 Fundamentos de dispositivos semiconductores Sesión 7 Fundamentos de dispositivos semiconductores Componentes y Circuitos Electrónicos Isabel Pérez / José A García Souto www.uc3m.es/portal/page/portal/dpto_tecnologia_electronica/personal/isabelperez

Más detalles

Dispositivos Electrónicos

Dispositivos Electrónicos Dispositivos Electrónicos AÑO: 2010 TEMA 3: PROBLEMAS Rafael de Jesús Navas González Fernando Vidal Verdú E.T.S. de Ingeniería Informática Ingeniero Técnico en Informática de Sistemas: Curso 1º Grupo

Más detalles

Práctica #2. Figura 1. Diagrama de conexiones para la práctica #2

Práctica #2. Figura 1. Diagrama de conexiones para la práctica #2 Práctica #2 Durante esta práctica se hizo el siguiente montaje: Figura 1. Diagrama de conexiones para la práctica #2 En el que se utilizó una celda solar, lámpara que simula la radiación solar y un motor

Más detalles

Tema 6: DISPOSITIVOS OPTOELECTRÓNICOS

Tema 6: DISPOSITIVOS OPTOELECTRÓNICOS Tema 6: DISPOSITIVOS OPTOELECTRÓNICOS 6.1 Interacción entre los semiconductores y la luz. Absorción de luz con generación luminosa de pares electrón hueco. Generación de luz por recombinación radiativa

Más detalles

MATERIALES ELECTRICOS JUNTURA PN

MATERIALES ELECTRICOS JUNTURA PN MATERIALES ELECTRICOS JUNTURA PN Consideremos por separado un Semiconductor Tipo N y un semiconductor tipo P. Analicemos el Diagrama de Bandas de cada uno por separado. El semiconductor Tipo N tendrá una

Más detalles

Transistor BJT: Fundamentos

Transistor BJT: Fundamentos Transistor BJT: Fundamentos Lección 05.1 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Transistor BJT 1 / 48 Contenido

Más detalles

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser Ley de Ohm La resistencia se define como la razón entre la caída de tensión, entre los dos extremos de una resistencia, y la corriente que circula por ésta, tal que 1 Teniendo en cuenta que si el voltaje

Más detalles

Corriente y Circuitos Eléctricos

Corriente y Circuitos Eléctricos Módulo: Medición y Análisis de Circuitos Eléctricos Unidad 1 Unidades y Mediciones Eléctricas Responda en su cuaderno las siguientes preguntas: Cuestionario 1 1.- Defina los siguientes conceptos, indicando

Más detalles

CAPÍTULO 6. Arreglo de celdas solares y carga de las baterías para obtener la fuente de alimentación de VCD del convertidor.

CAPÍTULO 6. Arreglo de celdas solares y carga de las baterías para obtener la fuente de alimentación de VCD del convertidor. CAPÍTULO 6 Arreglo de celdas solares y carga de las baterías para obtener la fuente de alimentación de VCD del convertidor. 6.1 Introducción. En este capítulo se define la corriente de corto circuito Icc,

Más detalles

Universidad Nacional de Quilmes Electrónica Analógica I. Diodo: Circuitos rectificadores

Universidad Nacional de Quilmes Electrónica Analógica I. Diodo: Circuitos rectificadores 1 Diodo: Circuitos rectificadores Una aplicación típica de los diodos es en circuitos rectificadores los cuales permiten convertir una tensión alterna en una tensión continua. Los circuitos rectificadores

Más detalles

PRÁCTICA Nº1. DIODOS. 1.- Toma un diodo rectificador 1N4007 y realiza el montaje de la figura 1 utilizando una fuente de continua.

PRÁCTICA Nº1. DIODOS. 1.- Toma un diodo rectificador 1N4007 y realiza el montaje de la figura 1 utilizando una fuente de continua. PRÁCTICA Nº1. DIODOS CURVA CARACTERÍSTICA DEL DIODO. 1.- Toma un diodo rectificador 1N4007 y realiza el montaje de la figura 1 utilizando una fuente de continua. Figura 1. Montaje eléctrico para polarizar

Más detalles

XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física

XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física PRUEBA EXPERIMENTAL A NOMBRE: RUT: CURSO: NUMERO TOTAL DE PAGINAS ESCRITAS: PUNTAJE TOTAL La constante de Planck de la física cuántica y

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA DENOMINACIÓN DE LA ASIGNATURA: Dispositivos y Circuitos

Más detalles

FES. Electrones libres en los metales. Modelo de Sommerfeld.

FES. Electrones libres en los metales. Modelo de Sommerfeld. . Suponemos que el sólido metálico se puede modelizar de acuerdo a las siguientes hipótesis: 1. En el metal existen los denominados electrones de conducción que están constituidos por todos los electrones

Más detalles

Práctica 1.- Característica del diodo Zener

Práctica 1.- Característica del diodo Zener A.- Objetivos Práctica 1.- Característica del diodo ener 1.-Medir los efectos de la polarización directa e inversa en la corriente por el diodo zener. 2.-Determinar experimentalmente y representar la característica

Más detalles

Tema 5.-Corriente eléctrica

Tema 5.-Corriente eléctrica Tema 5: Corriente eléctrica Fundamentos Físicos de la ngeniería Primer curso de ngeniería ndustrial Curso 2009/2010 Dpto. Física plicada 1 Índice ntroducción Corriente eléctrica Sentido de la corriente

Más detalles

DEPARTAMENTO: Electrónica ASIGNATURA: CÓDIGO: PAG.: 1 Electrónica I REQUISITOS: Redes Eléctricas I. (2107)

DEPARTAMENTO: Electrónica ASIGNATURA: CÓDIGO: PAG.: 1 Electrónica I REQUISITOS: Redes Eléctricas I. (2107) CÓDIGO: PAG.: 1 I Redes s I. (2107) PROPÓSITOS Esta asignatura es la continuación de los estudios en electrónica que deben cursar los estudiantes del ciclo común en el plan de estudio de y es requisito

Más detalles

LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM

LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM OBJETIVO Estudiar empíricamente la relación existente entre el voltaje aplicado a un conductor y la corriente eléctrica que genera. EQUIPAMIENTO 1. Circuito

Más detalles

El transistor es un dispositivo no lineal que puede ser modelado utilizando

El transistor es un dispositivo no lineal que puede ser modelado utilizando Modelo de Ebers-Moll para transistores de unión bipolar El transistor es un dispositivo no lineal que puede ser modelado utilizando las características no lineales de los diodos. El modelo de Ebers-Moll

Más detalles

TEMA 2. Semiconductores

TEMA 2. Semiconductores TEMA 2 ÍNDICE 2.1. CONDUCTORES, SEMICONDUCTORES Y AISLANTES 2.2. ESTRUCTURA CRISTALINA. MODELO DE ENLACE COVALENTE 2.3. CONCEPTO DE PORTADOR. CONCEPTO DE CAMPO ELÉCTRICO 2.4. MOVILIDAD DE PORTADORES POR

Más detalles

PRÁCTICA NÚMERO 10 LEY DE OHM

PRÁCTICA NÚMERO 10 LEY DE OHM PRÁCTICA NÚMERO 10 LEY DE OHM I. Objetivos. Investigar si los siguientes elementos eléctricos son óhmicos: a) Una resistencia comercial. b) Un diodo rectificador. II. Material. 1. Dos multímetros. 2. Dos

Más detalles

PRÁCTICA PD4 REGULACIÓN DE VOLTAJE CON DIODOS ZENER

PRÁCTICA PD4 REGULACIÓN DE VOLTAJE CON DIODOS ZENER elab, Laboratorio Remoto de Electrónica ITEM, Depto. de Ingeniería Eléctrica PRÁCTICA PD4 REGULACIÓN DE OLTAJE CON DIODO ENER OBJETIO Analizar teóricamente y de forma experimental la aplicación de diodos

Más detalles

Introducción. Energía. Demanda creciente Fuerte uso de combustibles fósiles: f. Necesidad de formas alternativas de obtener energía

Introducción. Energía. Demanda creciente Fuerte uso de combustibles fósiles: f. Necesidad de formas alternativas de obtener energía Introducción Energía Demanda creciente Fuerte uso de combustibles fósiles: f Recurso limitado Contaminación Necesidad de formas alternativas de obtener energía Introducción Energía a Solar Ventajas Fuente

Más detalles

Resistores en circuitos eléctricos

Resistores en circuitos eléctricos Resistores en circuitos eléctricos Experimento : Resistencias en circuitos eléctricos Estudiar la resistencia equivalente de resistores conectados tanto en serie como en paralelo. Fundamento Teórico. Cuando

Más detalles

DETERMINACIÓN DE LA BANDA PROHIBIDA (BAND GAP) EN Si

DETERMINACIÓN DE LA BANDA PROHIBIDA (BAND GAP) EN Si DETERMINACIÓN DE LA BANDA PROHIBIDA (BAND GAP) EN Si Travizano, Matías, Romano, Sebastián y Kamienkowski, Juan Laboratorio 5, Departamento de física, UBA- 00 Resumen En este trabajo se realizó la medición

Más detalles

NORMA TÉCNICA COLOMBIANA 4405

NORMA TÉCNICA COLOMBIANA 4405 NORMA TÉCNICA NTC COLOMBIANA 4405 1998-06-24 EFICIENCIA ENERGÉTICA. EVALUACIÓN DE LA EFICIENCIA DE LOS SISTEMAS SOLARES FOTOVOLTAICOS Y SUS COMPONENTES E: ENERGY EFFICIENCY. EVALUATION OF THE EFFICIENCY

Más detalles

Curso Energía Fotovoltaica. Aspectos técnicos y aplicaciones

Curso Energía Fotovoltaica. Aspectos técnicos y aplicaciones Curso Energía Fotovoltaica Aspectos técnicos y aplicaciones Caracterización de celdas y generadores fotovoltaicos Reinhold Schmidt Introducción Fuente energética Sistema fotovoltaico Bombeo Red eléctrica

Más detalles

E.E.S. I. Universidad Abierta Interamericana Facultad de Tecnología Informática. Trabajo de Investigación. Cristian La Salvia

E.E.S. I. Universidad Abierta Interamericana Facultad de Tecnología Informática. Trabajo de Investigación. Cristian La Salvia Universidad Abierta Interamericana Facultad de Tecnología Informática E.E.S. I Trabajo de Investigación Alumno: Profesor: Cristian La Salvia Lic. Carlos Vallhonrat 2009 Descripción de la investigación...

Más detalles

Laboratorio 5 - Dpto. de Física - FCEyN - UBA Diciembre 2000

Laboratorio 5 - Dpto. de Física - FCEyN - UBA Diciembre 2000 Medición del ancho de banda en Si y Ge mediante un método óptico Martín G. Bellino E-mail : colquide@starmedia.com.ar y bellino@cnea.gov.ar Práctica especial Laboratorio 5 - Dpto. de Física - FCEyN - UBA

Más detalles

Ley de Ohm y dependencia de la resistencia con las dimensiones del conductor

Ley de Ohm y dependencia de la resistencia con las dimensiones del conductor ey de Ohm y dependencia de la resistencia con las dimensiones del conductor Ana María Gervasi y Viviana Seino Escuela Normal Superior N 5, Buenos Aires, anamcg@ciudad.com.ar Instituto Privado Argentino

Más detalles

La ley de desplazamiento de Wien (Premio Nobel 1911):

La ley de desplazamiento de Wien (Premio Nobel 1911): Trabajo de laboratorio Nro 1: Verificación de la ley de Stefan Boltzmann y determinación de la constante de Planck mediante el análisis de la radiación del cuerpo negro Introducción Toda superficie cuya

Más detalles

PRÁCTICA PD2 CIRCUITOS RECORTADORES

PRÁCTICA PD2 CIRCUITOS RECORTADORES elab, Laboratorio Remoto de Electrónica ITESM, Depto. de Ingeniería Eléctrica PRÁCTICA PD2 CIRCUITOS RECORTADORES OBJETIVOS Utilizar la característica no lineal de los diodos rectificadores en un circuito

Más detalles

Ley de enfriamiento de Newton considerando reservorios finitos

Ley de enfriamiento de Newton considerando reservorios finitos Ley de enfriamiento de Newton considerando reservorios finitos María ecilia Molas, Florencia Rodriguez Riou y Débora Leibovich Facultad de Ingeniería, iencias Exactas y Naturales Universidad Favaloro,.

Más detalles

Principios de la Conversión fotovoltaica

Principios de la Conversión fotovoltaica Universidad Nacional Autónoma de México Centro de Investigación en Energía Curso de Especialización Sistemas Fotovoltaicos de Interconexión FIRCO Morelos, 16 a 20 de enero de 2012 UNIVERSIDAD VERACRUZANA

Más detalles

PRÁCTICA NÚMERO 5 LEY DE OHM

PRÁCTICA NÚMERO 5 LEY DE OHM PRÁCTICA NÚMERO 5 LEY DE OHM I. Objetivos. 1. Investigar si los siguientes elementos eléctricos son óhmicos o no: - Una resistencia comercial. - Un diodo rectificador. II. Material. 1. Dos multímetros.

Más detalles

CONTROL A LAZO ABIERTO PARA UN MOTOR DC SIMPLE RESUMEN

CONTROL A LAZO ABIERTO PARA UN MOTOR DC SIMPLE RESUMEN CONTROL A LAZO ABIERTO PARA UN MOTOR DC SIMPLE Pablo A. Velásquez G. Departamento de Ingeniería Eléctrica y Computación, The Ohio State University Email: velasquezgarrido.1@osu.edu RESUMEN Este artículo

Más detalles

CELDAS SOLARES INTRODUCCION

CELDAS SOLARES INTRODUCCION CELDAS SOLARES INTRODUCCION La energía eléctrica no esta presente en la naturaleza como fuente de energía primaria y, en consecuencia, sólo podemos disponer de ella mediante la transformación de alguna

Más detalles

LEY DE RADIACIÓN DE STEFAN-BOLTZMANN OBJETIVO Comprobación de la ley de radiación de Stefan-Boltzmann. MATERIAL Termómetro, 2 polímetros, amperímetro, termopila, bombilla con filamento de tungsteno, generador

Más detalles

Tema 5. Diodo y rectificación. Ingeniería Eléctrica y Electrónica

Tema 5. Diodo y rectificación. Ingeniería Eléctrica y Electrónica 1 Tema 5. iodo y rectificación 2 La unión p-n. El diodo de unión Índice Principio básico de operación. Característica I-V Modelos circuitales del diodo El diodo Zener. Otros tipos de diodos Circuitos básicos

Más detalles

CURSO TALLER ACTIVIDAD 16 DIODOS I. DIODO RECTIFICADOR

CURSO TALLER ACTIVIDAD 16 DIODOS I. DIODO RECTIFICADOR CURSO TALLER ACTIVIDAD 16 DIODOS I. DIODO RECTIFICADOR Un diodo es un dispositivo semiconductor. Los dispositivos semiconductores varían sus propiedades al variar la temperatura (son sensibles a la temperatura).

Más detalles

IE1117 - Temas especiales II en máquinas eléctricas: Energía solar fotovoltaica. TAREA 3 Josué Otárola Sánchez

IE1117 - Temas especiales II en máquinas eléctricas: Energía solar fotovoltaica. TAREA 3 Josué Otárola Sánchez IE1117 - Temas especiales II en máquinas eléctricas: Energía solar fotovoltaica TAREA 3 Josué Otárola Sánchez A84674 Ejercicio 2: Cambio de polaridad en la celda solar El montaje realizado se resume en

Más detalles

Nanociencia et Moletrónica

Nanociencia et Moletrónica J. E. Flores-Mena, L. A. Juárez Moran, J. Díaz Reyes y H. Coyotecatl Azucena 1571 Internet Electronic Journal* Nanociencia et Moletrónica Diciembre 2010, Vol. 8, N 2, pp. 1571-1584 Caracterización eléctrica

Más detalles

Transformación en estado sólido: Aspectos Básicos

Transformación en estado sólido: Aspectos Básicos Transformación en estado sólido: Aspectos Básicos Tema: Transformación en estado sólido: aspectos básicos Abstract: En este tema se presentan los aspectos teóricos de la termodinámica asociada a los procesos

Más detalles

OBJETIVOS CONSULTA PREVIA. La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias.

OBJETIVOS CONSULTA PREVIA. La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias. OBJETIVOS 1. Analizar y experimentar con un regulador de tensión a base de diodos Zener. 2. Medir los valores más importantes de los rectificadores monofásicos de media onda, onda completa con tap central

Más detalles

UNIVERSIDAD CENTROAMERICANA

UNIVERSIDAD CENTROAMERICANA UNIVERSIDAD CENTROAMERICANA CARRERA: INGENIERÍA EN SISTEMAS Y TECNOLOGÍAS DE LA INFORMACIÓN INTEGRANTES: LUIS CARLOS CAJINA BUSTOS PERLA CASAYA CALERO SHARON RADARANY MEJIA ASIGNATURA: CIRCUITOS ELECTRÓNICOS

Más detalles

TECNOLOGÍA ELECTRÓNICA

TECNOLOGÍA ELECTRÓNICA ESCUELA UNIVERSITARIA POLITECNICA Segundo Curso INGENIERÍA TÉCNICA INDUSTRIAL Especialidad ELECTRICIDAD. Sección ELECTRÓNICA REGULACIÓN Y AUTOMATISMOS Prog. de la asignatura TECNOLOGÍA ELECTRÓNICA CURSO

Más detalles

Práctica 5: Ondas electromagnéticas planas en medios dieléctricos

Práctica 5: Ondas electromagnéticas planas en medios dieléctricos Práctica 5: Ondas electromagnéticas planas en medios dieléctricos OBJETIVO Esta práctica de laboratorio se divide en dos partes principales. El primer apartado corresponde a la comprobación experimental

Más detalles

ENERGIAS DE LIBRE DISPOSICION

ENERGIAS DE LIBRE DISPOSICION Térmica -Energía Solar La energía solar térmica aprovecha directamente la energía emitida por el sol. Su calor es recogido en colectores líquidos o de gas que son expuestos a la radiación solar absorbiendo

Más detalles

Capítulo 1. Historia y fundamentos físicos de un transistor.

Capítulo 1. Historia y fundamentos físicos de un transistor. Capítulo 1. Historia y fundamentos físicos de un transistor. 1.1 Fundamentos del transistor TBJ 1.1.1 Corrientes en un transistor de unión o TBJ El transistor bipolar de juntura, o TBJ, es un dispositivo

Más detalles

PRACTICA 02 LEY DE OHM

PRACTICA 02 LEY DE OHM PRACTICA 02 LEY DE OHM OBJETIVOS 1. Comprobar la Ley de Ohm en un Reóstato, en DC. 2. Estudiar el comportamiento de una lámpara incandescente. 3. Realizar mediciones empleando métodos técnicos e industriales.

Más detalles

Teoría de Telecomunicaciones

Teoría de Telecomunicaciones El Ruido y su Filtraje Universidad del Cauca Teoría de Telecomunicaciones 1 Introducción El Ruido Las señales eléctricas no deseadas suelen ser generadas por diversas fuentes, generalmente clasificadas

Más detalles

Tema 5.-Corriente eléctrica

Tema 5.-Corriente eléctrica Tema 5: Corriente eléctrica Fundamentos Físicos de la Ingeniería Primer curso de Ingeniería Industrial Curso 2006/2007 Dpto. Física Aplicada III Universidad de Sevilla 1 Índice Introducción Corriente eléctrica

Más detalles

Física II CF-342 Ingeniería Plan Común.

Física II CF-342 Ingeniería Plan Común. Física II CF-342 Ingeniería Plan Común. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Física

Más detalles

1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE

1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE Ejercicios relativos al transistor bipolar Problemas de transistores BJT en estática 1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IC IB VC VB

Más detalles

Temario. Introducción Recurso solar Paneles FV Modelo eléctrico Central FV Seguimiento Visita a planta FV

Temario. Introducción Recurso solar Paneles FV Modelo eléctrico Central FV Seguimiento Visita a planta FV Temario Introducción Recurso solar Paneles FV Modelo eléctrico Central FV Seguimiento Visita a planta FV Introducción Generación eléctrica global Otras renovables: 1.164 GWh TOTAL: 22.389 GWh Fuente: REN

Más detalles

3.1. Conceptos básicos sobre semiconductores

3.1. Conceptos básicos sobre semiconductores 1 3.1. Conceptos básicos sobre semiconductores Estructura interna de los dispositivos electrónicos La mayoría de los sistemas electrónicos se basan en dispositivos semiconductores Resistencia: R=ρL/S Materiales

Más detalles

Potencia y energía electromagnética.

Potencia y energía electromagnética. Potencia y energía electromagnética. Importancia. Existen muchos dispositivos de interés práctico para los ingenieros electrónicos y eléctricos que se basan en la transmisión o conversión de energía electromagnética.

Más detalles

Trabajo Practico: Transistores

Trabajo Practico: Transistores Universidad Abierta Interamericana Trabajo Practico: Transistores Alumnos: Profesor: Campus: Turno: Andrés Martín Dellafiore Facundo Juarez Martín Castiñeira Daniel Zuccari Eduardo Sandoval Solá Marcos

Más detalles

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 8

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 8 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica 1. TEMA

Más detalles

Contactos metal-semiconductor

Contactos metal-semiconductor Contactos metal-semiconductor Lección 02.1 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez

Más detalles

DINÁMICA DE UN ELÉCTRON EN UN CAMPO ELÉCTRICO UNIFORME

DINÁMICA DE UN ELÉCTRON EN UN CAMPO ELÉCTRICO UNIFORME DINÁMICA DE UN ELÉCTRON EN UN CAMPO ELÉCTRICO UNIFORME Maicol Llano Moncada, Alex Rollero Dita, Carlos Martínez Agudelo, Luis Santos ID: 000294172, ID: 000293236, ID: 000170111, ID: 000292336 Maicol.llano@upb.edu.co,

Más detalles

EFECTO TERMOLÉCTRICO. Este efecto, conocido como Peltier Seebeck, es reversible. Esto no se produce en todos los materiales

EFECTO TERMOLÉCTRICO. Este efecto, conocido como Peltier Seebeck, es reversible. Esto no se produce en todos los materiales EFECTO TERMOLÉCTRICO Los dispositivos termoeléctricos se basan en el hecho de que cuando ciertos materiales son calentados, generan un voltaje eléctrico significativo. Los electrones se mueven del extremo

Más detalles