2. MÉTODO DE COEFICIENTES INDETERMINADOS.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2. MÉTODO DE COEFICIENTES INDETERMINADOS."

Transcripción

1 . MÉTODO DE COEFICIENTES INDETERMINADOS. E un étodo r hllr un olución rticulr d l cución linl colt [], u conit fundntlnt n intuir l for d un olución rticulr. No udn dr rgl n l co d cucion linl con coficint vribl, ro í n l co d coficint contnt l º ibro h() d l cución d lguno tio cil. Ant d dr un rgl, conidrn lguno jlo. Ejlo : Hllr un olución rticulr d " + ' + 3 = 6 +. d d Obérv u l licr L = culuir olinoio d rir grdo, d d obtin otro olinoio d r grdo. Por tnto lógico conidrr un olución d l for = A+B. Sutitundo n l cución difrncil: L[ ] = 0 + A + 3(A + B) = 3A + (A + 3B) rá olución i: 3A + (A + 3B) = 6 + R 3A = 6 A Por tnto: = Lugo: A+ 3B= B = = Ejlo : Hllr un olución rticulr d " + ' = Si ctú coo n l co ntrior, robrí un olución rticulr, d l for = A+B. Rult: L[ ] = 0 + A u no ud idntificr con 4+8. Eto dbido u, l no itir térino n n l rir ibro d l cución, cundo lic l ordor L un olinoio P () d grdo obtin otro olinoio d grdo -. Por tnto r obtnr un olinoio d r grdo, hbrá d robr un olinoio d º grdo, con culuir térino indndint (.j.: 0). Por llo robrá un d l for: = A +B = (A+B) Sutitundo n l cución difrncil: L[ ] = A + (A + B) = R 4A = 4 A Por tnto: = Lugo: = A+ B= 8 B = 3 Ejlo 3: Hllr l olución gnrl d: " 3 ' 4 = + 6 Ecución crctrític d l corrondint hoogén: r -3r -4 = 0 : Ríc: r = 4 r = - Solución gnrl d l hoogén: H = c 4 + c - 3

2 Puto u l drivd d on últilo d, rc lógico robr coo olución rticulr = A. Sutitundo n l cución difrncil: L[ ] = 6 (4A 6A -4A) = 6 R Por tnto: A = - = Lugo l olución gnrl : = c Ejlo 4: Hllr un olución rticulr d 4 + c " 3 ' 4 = 5 Actundo coo n l co ntrior robndo = A -, l utituir n l cución difrncil, rult: L[ ] = A - + 3A - 4A - = 0, lo u utr u A - olución d l corrondint hoogén. Lugo no ud rlo d l colt. Si rub = A - ' ", rult: = A ( ), = A ( ) Lugo: L[ ] = A - [( - ) 3( ) 4] = -5A - Por tnto rá olución i A = -. E dcir: = - Not: En gnrl: S un cución difrncil d coficint contnt L[] = con olinoio crctrítico P(r). - Si α no ríz d P( r ) = 0 robrí un olución rticulr d l for: = A. Entonc L[A ] = A P(α) = A A = Lugo P( α) - Si α ríz il d P(r) = 0, rub = A, u: = P( α) [ ] A d L[ ] A d = P( α) A [ P( α) P'( )] LA A L d d α = d α d α = + = AP'( α) A = P'( α) Pro or r α ríz il d P(r) = 0, rult: P(r) = (r - α) P (r) con P (α) 0. Coo: P (r) = P (r) + (r - α) P (r), dduc u P (α) = P (α). α = Por tnto, n t co: A = P ( α D dond: ) = P ( α)

3 Pudn dr un rgl r cogr l odlo d olución rticulr robr, n l co d cucion linl con coficint contnt con º ibro h() d for olinóic, onncil, no, cono o roducto d to do tio. TABLA. For d un olución rticulr () d L[] = h(), cundo l cución tin coficint contnt; indo u olinoio crctrítico P(r),, P, Q, olinoio d grdo.. o + ) h( ) = ( ) = ( ) = P ( ) = [ A +... A ]. indo l ultilicidd d r = 0 coo ríz d P(r) = 0 b) h( ) = ( ) = A indo l ultilicidd d r = α coo ríz d P(r) = 0 c) h( ) = co β + b n β ( ) = [ Aco β + Bn β ] indo l ultilicidd d r = βi coo ríz d P(r) = 0 (Inclu co =0 ó b=0). d) h( ) = ( ) ( ) = P ( ) indo l ultilicidd d r = α coo ríz d P(r) = 0 ) h( ) = ( )co β + ( )nβ ( ) = [ P ( )co β + Q ( )nβ] indo l ultilicidd d r = βi coo ríz d P(r) = 0 = {,} f) h( ) = co β + b nβ ( ) = [ Aco β + Bnβ] indo l ultilicidd d r =α + βi coo ríz d P(r) = 0 (Inclu co =0 ó b=0). g) h( ) = ( ) ( ) = co β + ( ) α nβ [ P ( )coβ + Q ( )nβ] indo l ultilicidd d r =α + βi coo ríz d P(r) = 0 = {,} o Adá ud conidrr tbién l co n u h() u d lo odlo nt citdo. Bt ur l rinciio d uroición. 3

4 Lo ditinto tio d funcion h() u intrvinn n l tbl, on co rticulr dl últio á gnrl: ( ) co β + ( ) nβ dond () () on olinoio d grdo, rctivnt. L vlidz dl étodo o n u lo h() conidrdo on tl u l licrl L obtin un función dl io tio. Ejlo 5: Hllr l olución gnrl d: Ecución crctrític d l hoogén: r Solución gnrl d l hoogén: H = C + C - " + ' = ( 6 + ) + 0 co + r = 0 Ríc: r =, r = -. Sgún l nor d l tbl l rinciio d uroición rub: Entonc: = (A + B) + C co + D n = [A + (B + A) + B] + D co C n = [A + (B + 4A) + (B + A)] 4C co 4D n Sutitundo n l cución difrncil: 6A + ( 3B+ A) + ( D 6C)co ( 6D+ C) n = ( 6+ ) + 0co [ ] 6A = 6 3B+ A = Lugo: D 6C = 0 6D+ C = 0 A = B = 0 C = 3 D = = - 3co+ n Solución gnrl: - = c + c + - 3co + n Otr for: Por l rinciio d uroición, rí olución rticulr d l cución dd, l u d olucion rticulr corrondint l cucion: L[] = (6 + ) L[] = 0 co - Pr obtnr, rocdrí coo nt, robndo un olución dl tio: = (A + B), obtniéndo =. - Pr obtnr, tnindo n cunt u co l rt rl d i, bucrí un olución rticulr d L[] = 0 i torí l rt rl d l i. Aí u, r t últi cución rub : * = C i. Sutitundo n l cución difrncil + = 0 i, obtin: L[ * ] = C i [-4 + i ] = 0 i. 4

5 Lugo: C(i 6) = 0 0 i + 3 C = = 0 = 3 i.rult: * =-(3+i) i. i 3 0 Por tnto: = R * = R : -(3+i) i = R [-(3+i) (co + i n ], dcir: = -3 co + n L olución rticulr d l cución dd rí: = -3 co + n Ejlo 6: Qué for robrí coo olución rticulr d l cución 3 difrncil: " 3 ' + = co + n? Ecución crctrític d l hoogén: r 3r + = 0. Ríc: r = r =. Lugo H = c + c Coo olución rticulr gún l rgl dd robrí: 3 = A + (B + C) + D + E + Lco + Mn + F + G+ (H + I)co + (J + K)n + 5

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién

Más detalles

Capítulo 11. Suma de momentos angulares Valores propios Funciones propias Ejemplo. Momento angular total de un átomo hidrogenoide

Capítulo 11. Suma de momentos angulares Valores propios Funciones propias Ejemplo. Momento angular total de un átomo hidrogenoide apítulo Sua de oento angulare Valore propio Funcione propia Eeplo Moento angular total de un átoo hidrogenoide Sua de oento angulare La preencia de diferente tipo de oento angular orbital y de epín y á

Más detalles

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2 MsMtscom Intgrls Clculr l intgrl: ++ + (-) (+) - 7 + 8 ln - cos sn - - - + (+) ln ln 7 8 cos ln + + - +- - - + -+ ++ Ls gráfic (i), (ii) y (iii) corrspondn, no ncsrimnt por s ordn, ls d un función drivbl

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrics dtrinnts Mtrics dtrinnts. Ejrcicios d Slctividd. º.- Junio 99. i) Dfin rngo d un triz. ii) Un triz d trs fils trs coluns tin rngo trs, cóo pud vrir

Más detalles

Derivadas: Teoría y ejercicios DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

Derivadas: Teoría y ejercicios DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: Drivds: Torí jrcicios Bcillrto DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis =, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién ts d vrición instntán.

Más detalles

ERROR EN ESTADO ESTACIONARIO

ERROR EN ESTADO ESTACIONARIO UNIVESIDAD AUÓNOMA DE NUEVO EÓN FACUAD DE INGENIEÍA MECÁNICA Y EÉCICA EO EN ESADO ESACIONAIO INGENIEÍA DE CONO M.C. EIZABEH GPE. AA HDZ. M.C. OSÉ MANUE OCHA NÚÑEZ UNIVESIDAD AUÓNOMA DE NUEVO EÓN FACUAD

Más detalles

ERROR EN ESTADO ESTACIONARIO

ERROR EN ESTADO ESTACIONARIO UNIVESIDAD AUÓNOMA DE NUEVO LEÓN FACULAD DE INGENIEÍA MECÁNICA Y ELÉCICA EO EN ESADO ESACIONAIO INGENIEÍA DE CONOL M.C. ELIZABEH GPE. LAA HDZ. M.C. OSÉ MANUEL OCHA NÚÑEZ UNIVESIDAD AUÓNOMA DE NUEVO LEÓN

Más detalles

CAPITULO V FUNCIONES DE RED

CAPITULO V FUNCIONES DE RED UTOS EÉTOS g. Guvo A. Nv Buillo APTUO FUNONES DE ED 5. Frcuci col 5. Fució d dci y Adici 5. d rford 5.4 Fucio d rd 5.5 Polo y ro d fucio d rd 5.. FEUENA OMPEJA Much fucio ud dcriir l for grl f ( ) K dod

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID JUNIO 2008

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID JUNIO 2008 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID JUNIO El mn pnt o opcion, B. El lumno bá lgi UN Y SÓLO UN ll olv lo cuto jcicio qu cont. No pmit l uó clculo con cpci pntción gáfic. PUNTUCIÓN: L clificción

Más detalles

DERIVABILIDAD.. Intuitivamente: cuando no presenta saltos en ese punto. Toda función derivable en un punto, es continua en ese punto.

DERIVABILIDAD.. Intuitivamente: cuando no presenta saltos en ese punto. Toda función derivable en un punto, es continua en ese punto. ERIVABILIA.... inir unción continu n un punto. inir unción drivbl n un punto. s posibl ponr un jmplo d un unción qu n s: ) Continu y drivbl. b) rivbl y no continu. c) Continu y no drivbl. y s continu n

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2015 Juan Carlos Alonso Gianonatti OPCIÓN A

I.E.S. Mediterráneo de Málaga Junio 2015 Juan Carlos Alonso Gianonatti OPCIÓN A I.E.. Mdiáno d Málg Junio Jun Clo lono Ginoni OPCIÓN.- Conido l unción dinid n l inlo [ ]. Din l cución d l c ngn l cu qu pll l c qu p po lo puno P( Q(. ( puno..- Clcul l ingl indinid iguin d d ( puno.

Más detalles

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx Prubs d ccso Ensñns Univrsiris Oficils d Grdo. chillro. O. E. Mri: MTEMÁTCS nsruccions: El luno dbrá consr un d ls dos opcions propuss o. os jrcicios dbn rdcrs con clridd, dlldn ronndo ls rspuss. Puds

Más detalles

IV. POSICIONES GEODESICAS

IV. POSICIONES GEODESICAS IV. OICIOE GEODEIC Un d ls finlidds principls d l godsi s l cálculo d ls coordnds godésics d puntos sobr l lipsoid. Ests coordnds s dnoinn Ltitud y Longitud y stán sipr rfrids un sist godésico pr-dtrindo.

Más detalles

Ecuaciones de Segundo Grado II

Ecuaciones de Segundo Grado II Alumno: Fech:. ECUACIONES DE SEGUNDO GRADO II Ecuciones de Segundo Grdo II Nturlez de Ríces depende = b - 4c Discriminnte si Propieddes de ls Ríces sum b x x producto c x. x Formción de l Ecución se debe

Más detalles

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis =, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién ts d vrición instntán. Intrprtción ométric d

Más detalles

- SITUACION DEMOGRAFICA Y S X IA L. camente a c t iv a por Se c to r es 39

- SITUACION DEMOGRAFICA Y S X IA L. camente a c t iv a por Se c to r es 39 N ú m e r o I RECURSOS NATURALES PARA EL DESARROLLO ECONOMICO Y SOCIAL 1 9 10 S i tuacuón Ge o g r á f ic a y To p o g r á f ic a 1 Cl im a 3 Recursos d el Su elo y Uso de la T ie r r a 5 A g r ic u l

Más detalles

F U T S W W P V F W P V G U T S P V G F P V W P V P V W. nfec. G nfe C. Energía libre y fuerza electromotriz.

F U T S W W P V F W P V G U T S P V G F P V W P V P V W. nfec. G nfe C. Energía libre y fuerza electromotriz. nrgí libr y furz lctromotriz. Dsd un punto d vist trmodinámico, sbmos qu tmprtur constnt, l disminución d l nrgí libr d Hlmholtz, F (pr un procso rvrsibl), rprsnt l trbjo totl (W) hcho sobr los lrddors,

Más detalles

PROBLEMA RESUELTO DE ESTABILIDAD

PROBLEMA RESUELTO DE ESTABILIDAD Univeridd Ncionl de Rorio Fcultd de Cienci Exct Ingenierí y Agrimenur Ecuel de Ingenierí Electrónic Deprtmento de Electrónic ELECTRÓNICA III PROBLEMA RESUELTO DE ESTABILIDAD AUTOR: Federico Miyr REVISIÓN:

Más detalles

Deducción de las reglas de derivación. Partiendo de las derivadas de la función potencial, la función exponencial y la función seno, ( ) ( ) 1

Deducción de las reglas de derivación. Partiendo de las derivadas de la función potencial, la función exponencial y la función seno, ( ) ( ) 1 dmttmtics.wordprss.com Btriz d Otto Lópz Dducción d ls rgls d drivción Prtindo d ls drivds d l función potncil, l función ponncil l función sno, = R = f = =, f = sn = cos, f,, d ls rgls d drivción pr l

Más detalles

En imprenta: Anuario Martiano. Revista del Centro de Estudios Martianos. (La Habana, Cuba). Sección Estudios y aproximaciones

En imprenta: Anuario Martiano. Revista del Centro de Estudios Martianos. (La Habana, Cuba). Sección Estudios y aproximaciones Publicado en: Revista Cubana de Filosofía. Edición Digital No. 15. Junio - Septiembre 2009. ISSN: 1817-0137 En: http://revista.filosofia.cu/articulo.php?id=549 En imprenta: Anuario Martiano. Revista del

Más detalles

6 La transformada de Laplace

6 La transformada de Laplace CAPÍTULO 6 L trnformd de Lplce 6.4.3 Segund propiedd de trlción Et propiedd permitirá reolver ecucione diferencile donde prezcn funcione dicontinu. Pr entenderl e conveniente introducir un función con

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

S o b r e e l u s o y e l a b u s o d e l P e y o t e

S o b r e e l u s o y e l a b u s o d e l P e y o t e S o b r e e l u s o y e l a b u s o d e l P e y o t e ( L o p h o p h o r a w i l l i a m s i i ( L e m. e x S a l m - D y c k ) J. M. C o u l t.) I n v e s t i g a c i ó n r e a l i z a d a p o r : P

Más detalles

Automá ca. Ejercicios Capítulo3.EroresenEstadoEstacionario

Automá ca. Ejercicios Capítulo3.EroresenEstadoEstacionario Automác Ejrcicio Cítulo.ErornEtdoEtcionrio JoéRmónLltGrcí EthrGonzálzSrbi DámoFrnándzPérz CrloTorFrro MríSndrRoblGómz DrtmntodTcnologíElctrónic IngnirídSitmyAutomác Problm d Ingnirí d Sitm: Sitm Continuo.

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

1 E N V I T E 2 R E C H I F L E T R I S T O N G O 3 P A L I Z A M O R M O S A 4 C H U C E A D A F U L E R A 5 G A R R O T E E M B R E T A D O

1 E N V I T E 2 R E C H I F L E T R I S T O N G O 3 P A L I Z A M O R M O S A 4 C H U C E A D A F U L E R A 5 G A R R O T E E M B R E T A D O 1 E N V I T E 2 R E C H I F L E T R I S T O N G O 3 P A L I Z A M O R M O S A 4 C H U C E A D A F U L E R A 5 G A R R O T E E M B R E T A D O 6 E L C U E R O A T R A V E S A D O 7 E S P I A N T E 1983

Más detalles

Resolución de la EDO lineal de 2º orden a coeficientes constantes, homogénea

Resolución de la EDO lineal de 2º orden a coeficientes constantes, homogénea rof. Andr mpillo Análisis Mtmático II Rsolción d l EDO linl d º ordn coficints constnts, homogén onsidrmos l cción con. r st tipo d ccions difrncils, mos proponr n solción rificrmos q s trt d l solción

Más detalles

Relación 3. Sistemas de ecuaciones

Relación 3. Sistemas de ecuaciones Relción. Sistes de ecuciones Ejercicio. Consider el siste de ecuciones ) Eiste un solución del iso en l que? ) Resuelve el siste hoogéneo socido l siste ddo. c) H un interpretción geoétric tnto del siste

Más detalles

C o m i s i ó n E c o n ó n i c a p a r a A m é r i c a l a t i n a y e l C a r i b e t

C o m i s i ó n E c o n ó n i c a p a r a A m é r i c a l a t i n a y e l C a r i b e t % f i l i l í ^ * ' D i s t r. R E S T R I N G I D A. í â f l i l l U r / y w R. n o ^ *s 9 d e o c t u b r e d e 1 9 8 7 ORIGINAL: ESPAÑOL r C E P A L C o m i s i ó n E c o n ó n i c a p a r a A m é r

Más detalles

λ = A 2 en función de λ. X obtener las relaciones que deben

λ = A 2 en función de λ. X obtener las relaciones que deben Modelo. Ejercicio. Clificción áxi: puntos. Dds ls trices, ) (,5 puntos) Hllr los vlores de pr los que existe l triz invers. ) ( punto) Hllr l triz pr 6. c) (,5 puntos) Resolver l ecución tricil X pr 6.

Más detalles

open green road Guía Matemática ECUACIONES DE SEGUNDO GRADO profesor: Nicolás Melgarejo .cl

open green road Guía Matemática ECUACIONES DE SEGUNDO GRADO profesor: Nicolás Melgarejo .cl Guí Mtemátic ECUACIONES DE SEGUNDO GRADO profesor: Nicolás Melgrejo.cl 1. Ecución de segundo grdo Es un iguldd donde l vrible incógnit está l cudrdo, l cul puede tener soluciones diferentes, 1 solución

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA DEPARTAMENTO DE MATEMÁTICAS Ecuaciones Diferenciales [Guia]

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA DEPARTAMENTO DE MATEMÁTICAS Ecuaciones Diferenciales [Guia] UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA DEPARTAMENTO DE MATEMÁTICAS Ecucio Difrcil [Gui] E l hoj d orcio or l úmro d rgu, l drrollo qu juifiqu u ru, u ru co i crrd u rcágulo lugo u

Más detalles

X obtener las relaciones que deben

X obtener las relaciones que deben odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint

Más detalles

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre )

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre ) Dds ls mtrices: ) Hllr A. b) Hllr l mtri invers de B. c) En el cso prticulr de k=, hll B. (PAU Septiembre 4-5) ) A = = A = = = O A 4 = A A= O A = O ; lo mismo A 5, A 6 por tnto A = b) B = = ; Es un mtri

Más detalles

operacional de Laplace (F5.3)

operacional de Laplace (F5.3) 9.4.8 Már d Enyo n Vulo MÁSTER DE ENSAYOS EN VUELO Y CERTIFICACIÓN N DE AERONAVES Curo 8/9 El méodo m oprcionl d Lplc F5. Már d Enyo n Vulo L rnormd d Lplc 9.4.8 Y L y y d { } Már d Enyo n Vulo L rnormd

Más detalles

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A IES Mditrráno d Málg Solución Junio Jun rlos lonso Ginontti OPIÓN - undo l ño 8 Bthovn scrib su Primr Sinoní su dd s di vcs mor qu l dl jovncito Frn Schubrt Ps l timpo s Schubrt quin compon su célbr Sinoní

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE GALICIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE GALICIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ Mnguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE GLICI SEPTIEMRE - (RESUELTOS por ntonio Mnguino) MTEMÁTICS II Timpo máimo: hors minutos El lumno db rspondr solmnt los jrcicios d un d ls opcions

Más detalles

[ ] ( ) ( ) [ ] [ ] [ ] [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2. Opción A 4 A. u 4

[ ] ( ) ( ) [ ] [ ] [ ] [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2. Opción A 4 A. u 4 IES Mditáno d Málg Solución Sptim 7 Jun Clo lono Ginontti Opción..- S qu l gáic d l unción () c l qu pc n l diujo - - - - - - - - ) Dtmin l unción [ punto] ) Clcul l á d l unción omd [ punto] [ ] [ ] [

Más detalles

(4, 3, 1) (iii) Defina estrategia débilmente dominada. Qué estrategias están débilmente

(4, 3, 1) (iii) Defina estrategia débilmente dominada. Qué estrategias están débilmente . Conidere el iguiente juego en form norml: (4,, ) (,, ) (, β, ) (, 6, ) (0,, 4) (, 4, ) (i) efin etrtegi. Repreente el juego en form norml. (ii) efin equilirio de N. Oteng lo equilirio de N. (iii) efin

Más detalles

INTEGRALES DEFINIDAS. APLICACIONES

INTEGRALES DEFINIDAS. APLICACIONES INTEGRLES DEINIDS. PLICCIONES. Ingrl dfinid. Propidds. unción ingrl. Torm fundmnl dl cálculo ingrl. Rgl d Brrow 5. Torm dl vlor mdio. Ár ncrrd jo un curv y l j. Ár ncrrd por dos curvs. INTEGRLES DEINIDS.

Más detalles

Índice General. Disposiciones iniciales y definiciones generales

Índice General. Disposiciones iniciales y definiciones generales Índice General Int r o d u c c i ó n... xxvii CAPÍTULO I Disposiciones iniciales y definiciones generales Dis p o s i c i o n e s iniciales y de f i n i c i o n e s ge n e r a l e s... 1 Capítulo II Trato

Más detalles

METODO DEL ESPACIO DE ESTADO

METODO DEL ESPACIO DE ESTADO Fcltd de Ingenierí Bioingenierí Control de Proceo METODO DEL ESPACIO DE ESTADO ESTADO: El etdo de n item dinámico e el conjnto má eqeño de vrile denomind vrile de etdo tl qe el conocimiento de e vrile

Más detalles

= = = 13.7 = 12.8 = = (Regla de la cadena)

= = = 13.7 = 12.8 = = (Regla de la cadena) i f(z), l derivd dey de f(x) con repecto e define como 2. h donde AZ. derivd tmbién e deign por (x). El proceo eguido pr hllr e llm diferencición. AZ En iguiente on funcione de b, c, contnte [con retriccione

Más detalles

INTEGRALES Curso , 2 tal que f(c) = k? ), para algún punto [a, b].

INTEGRALES Curso , 2 tal que f(c) = k? ), para algún punto [a, b]. INTEGRALES Curso 9-.- ) Enuncir el Teorem del vlor medio integrl y dr un interpretción del mismo. Cundo f(), cómo puede interpretrse geométricmente? cos si [-, ] ) Se f () = 4 + sen si (, ] ) Hllr I =

Más detalles

â 68 d, ºt l d l, l br d n nz l pl nt l pl t x t h t h n l r d l r, t d d r t d, pl n t d j t d n n v. H n n rr d l j n d t br l r. l nd, D. D n l, d

â 68 d, ºt l d l, l br d n nz l pl nt l pl t x t h t h n l r d l r, t d d r t d, pl n t d j t d n n v. H n n rr d l j n d t br l r. l nd, D. D n l, d NF R d l n d p l p r l r n d n l d l. l r. F Pr d nt d l n p l d d Bn n r. N v br d 8. l nfr r pt n d p l nt p r l n d d n d l n p l d d d B n r, p r l pl n t n d n l p rr l rv d d l l tr, t l l b rt d

Más detalles

1 sen. f Solución: 3 ; 1. sen. 2 sen. f Solución: ; Solución: CONTINUIDAD Y DERIVABILIDAD

1 sen. f Solución: 3 ; 1. sen. 2 sen. f Solución: ; Solución: CONTINUIDAD Y DERIVABILIDAD Frnndo Frnádz-Rmos Mrín º.- Clcul l continuidd d ls guints uncions. ) 8 7 ) 8 6 c) d) sn ) º.- Dtrminr l vlor d los prámtros d ls uncions pr qu sn continus n todo ) sn Solución: ) Solución: c) cos sn sn

Más detalles

Titulación de ácido fuerte-base fuerte

Titulación de ácido fuerte-base fuerte Químic Anlític (9123) urv de titulcción y cp. buffer SUBTEMA 3 1 Titulción de ácido fuertebe fuerte En olución cuo, lo ácido y l be fuerte e encuentrn totlmente diocido. Por lo tnto, el ph lo lrgo de l

Más detalles

TEMA 3: ECUACIONES ECUACIONES DE 2º GRADO Las ecuaciones de 2º grado son de la forma ax 2 +bx+c=0 y su solución es:

TEMA 3: ECUACIONES ECUACIONES DE 2º GRADO Las ecuaciones de 2º grado son de la forma ax 2 +bx+c=0 y su solución es: TEMA : ECUACIONES ECUACIONES DE º GRADO Ls ecuciones de º grdo son de l form +b+c=0 y su solución es: b b 4c Cundo b=o o c=0 son incomplets y se resuelven de l siguiente form. Cso b=0, por ejemplo: 6 7=0

Más detalles

Movimiento oscilatorio Movimiento armónico simple (MAS) Cinemática

Movimiento oscilatorio Movimiento armónico simple (MAS) Cinemática Moviiento ociltorio Moviiento rónico iple (MAS) Cineátic IES L Mgdlen. Avilé. Aturi Se dice que un prtícul ocil cundo tiene un oviiento de vivén repecto de u poición de equilibrio, de for tl que el oviiento

Más detalles

G R A D O E N : A D M I N I S T R A C I Ó N Y D I R E C C I Ó N D E E M P R E S A S. C U R S O A C A D É M I C O

G R A D O E N : A D M I N I S T R A C I Ó N Y D I R E C C I Ó N D E E M P R E S A S. C U R S O A C A D É M I C O S E B A S T I Á N R O D R Í G U E Z G O N Z Á L E Z. G R A D O E N : A D M I N I S T R A C I Ó N Y D I R E C C I Ó N D E E M P R E S A S. C U R S O A C A D É M I C O 2 0 1 6-2 0 1 7 T R A B A J O F I N

Más detalles

RESPUESTA TEMPORAL: PULSOS CONFORMADOS (Dominio del tiempo y Dominio de Laplace)

RESPUESTA TEMPORAL: PULSOS CONFORMADOS (Dominio del tiempo y Dominio de Laplace) ádr d Torí d ircio pn d Plo onormdo nrodcción RESPEST TEMPORL: PLSOS ONFORMDOS Dominio dl impo y Dominio d Lplc S mpln con ñl priódic o d orm pcil, l q dcomponn n ncion clón, rmp y dplzmino mporl Dominio

Más detalles

Función exponencial y logarítmica:

Función exponencial y logarítmica: MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)

Más detalles

Tarea 11. Integral Impropia

Tarea 11. Integral Impropia Tr Intgrl Imroi Ers con l límit corrsondint cd un d ls siguints intgrls Mustr un dibujo qu indiqu l ár qu s clculrí (si ist) con l intgrl rsctiv, no clculs l intgrl d ; b) d ; c) d ; d) / cot( ) d En los

Más detalles

TALLER PRACTICO. Indica que variables s o n c u a l i t a t i v a s y c u a l e s c u a n t i t a t i v a s :

TALLER PRACTICO. Indica que variables s o n c u a l i t a t i v a s y c u a l e s c u a n t i t a t i v a s : TALLER PRACTICO Indica que variables s o n c u a l i t a t i v a s y c u a l e s c u a n t i t a t i v a s : 1 C o m i d a F a v o r i t a. 2 P r o f e s i ó n q u e t e g u s t a. 3 N ú m e r o d e g

Más detalles

T E X T O D E L M A N U A L D E H T M L, W E B M A E S T R O, P O R F R A N C I S C O A R O C E N A

T E X T O D E L M A N U A L D E H T M L, W E B M A E S T R O, P O R F R A N C I S C O A R O C E N A T E X T O D E L M A N U A L D E H T M L, W E B M A E S T R O, P O R F R A N C I S C O A R O C E N A Q U E S E E N C U E N T R A E N I N T E R N E T E N : h t t p : / / w w w. l a n d e r. e s / w e b m

Más detalles

Tema 8: Teorema de Rouché-Frobenius

Tema 8: Teorema de Rouché-Frobenius www.selectividd-cgrnd.co Te : Teore de Rouché-Froenius Se lln ecuciones lineles ls ecuciones en ls que ls incógnits precen tods con grdo ; no están elevds ningun potenci ni jo ningún rdicl ni ultiplicds

Más detalles

ESTUDIO DE SISTEMAS { } = . Resuélvelo cuando m = Discute según los valores de m, el sistema. Solución:

ESTUDIO DE SISTEMAS { } = . Resuélvelo cuando m = Discute según los valores de m, el sistema. Solución: STUDIO D SISTS. Discute según los vlores de, el siste. Resuélvelo cundo. l siste se define edinte ls trices: tri de coeficientes tri plid l estudio de sistes se puede hcer de dos fors diferentes: - por

Más detalles

Introducción y Aritmética Flotante Semana del 24 al 28 de septiembre de 2018

Introducción y Aritmética Flotante Semana del 24 al 28 de septiembre de 2018 Introducción y Aritmética Flotante Semana del 24 al 28 de septiembre de 2018 Coordinador Académico del Laboratorio: Profesor Jaime Figueroa Nieto (jaime.figueroa@usm.cl) Ayudante Coordinador y de Software:

Más detalles

ACTIVIDADES FINALES EJERCICIOS. trino grau fernández. x lím. lím. lím. lím. sen x 1. x 1. lím x 0 sen x x. lím. x lím. sen x. x arcsen x lím 11.

ACTIVIDADES FINALES EJERCICIOS. trino grau fernández. x lím. lím. lím. lím. sen x 1. x 1. lím x 0 sen x x. lím. x lím. sen x. x arcsen x lím 11. L Í M I T E S th ls ACTIVIDADES FINALES EJERCICIOS Ln tg sn sn [ ( )] 5 sn 6 cotg 7 sn sn 8 9 sn rcsn sn b sn sn cotg 5 sn cos 6 sn 7 n 8 Ln 9 Ln trino gru frnándz th ls 5 Clculr pr qu s cumpl: π Ln tg

Más detalles

Anexo 1 Características de las haciendas en la Sierra de Alcara,z a mediados del siglo XVIII (Catastro de Ensenada)

Anexo 1 Características de las haciendas en la Sierra de Alcara,z a mediados del siglo XVIII (Catastro de Ensenada) Aéndice Anexo 1 Características de las haciendas en la Sierra de Alcara,z a mediados del siglo XVIII (Catastro de Ensenada) Ŝ o o N r r N V 7 M N rn Ŝ.. n,. 5 v1 M o0 M v M N M N r N j 7 N M N V N 00

Más detalles

Unidad 2 : Ecuaciones Diferenciales Lineales de Orden Superior

Unidad 2 : Ecuaciones Diferenciales Lineales de Orden Superior Unidad : Euaions Difrnials Linals d Ordn Surior Ta.a : Método d Cofiints Indtrinados En sta sión studiaros uno d los dos étodos ara rsolvr EDL No- Hooénas d ordn aor o iual a dos. Ezaros on las EDLNH d

Más detalles

UNIVERSIDAD DE LA RIOJA JUNIO lim

UNIVERSIDAD DE LA RIOJA JUNIO lim IES Mditrráno d Málg Emn Junio d Jun Crlos lonso Ginontti UNIVERSIDD DE L RIOJ JUNIO El lumno contstrá los jrcicios d un d ls dos propusts ( o ) qu s l ofrcn. Nunc dbrá contstr jrcicios d un propust jrcicios

Más detalles

Tema 2. Sistemas conservativos

Tema 2. Sistemas conservativos Te. Sistes conservtivos Prier prte: Dináic de l prtícul en un rect studios el oviiento de un prtícul puntul de s lo lrgo de un rect bjo l cción del potencil V (. L fuerz que ctú sobre l prtícul es F =

Más detalles

A C T I N O M IC O S I S Ó r g a n o : M u c o s a b u c a l T é c n i ca : H / E M i c r o s c o p í a: L o s c o r t e s h i s t o l ó g i c oms u e

A C T I N O M IC O S I S Ó r g a n o : M u c o s a b u c a l T é c n i ca : H / E M i c r o s c o p í a: L o s c o r t e s h i s t o l ó g i c oms u e T R A B A J O P R Á C T I C O N º 4 I N F L A M A C I Ó N E S P E C Í F I C A. P A T O L O G Í A R E G I O N A L P r e -r e q u i s i t o s : H i s t o l o g ída e l t e j i d oc o n e c t i v o( c é l

Más detalles

Ecuaciones de segundo Grado

Ecuaciones de segundo Grado Ecuciones de segundo Grdo Frcso y éxito El frcso tiene mil excuss, el éxito no requiere explicción. Cd vez que no logrmos lgo siempre tenemos un mgnífic disculp; el mediocre busc instintivmente un justificción

Más detalles

l ij l'; 1r" 1râ I 't i 4-1.} ,ffi,h) 4,i4 r z l,9 11,{ .Jn 1,{ 'l 'l J, J,t J,t 1,a -5^ l.{ l,{' ''' l. I, I fié \bi a j d i' .iq I '11 .J.f 3,?

l ij l'; 1r 1râ I 't i 4-1.} ,ffi,h) 4,i4 r z l,9 11,{ .Jn 1,{ 'l 'l J, J,t J,t 1,a -5^ l.{ l,{' ''' l. I, I fié \bi a j d i' .iq I '11 .J.f 3,? ,' ḻ.) r Ë'.' -f,.-.. =(-,, '; -'..f - ' -. -^ 0 '..'.., ḷ C. c).,' C., c. C!.c.' - ạ - C. ( rô -, '.r,.,. ',, - v ) - '.. ) r, -) '_ r Ë )'.., ^,' à ',, ' ',.' ( ) ' ',' r r ) - r c c,', ḷ,' s ) c, -

Más detalles

Exponentes. Expresiones algebraicas. x c. Algunos ejemplos de expresiones algebraicas son:

Exponentes. Expresiones algebraicas. x c. Algunos ejemplos de expresiones algebraicas son: Versión. Eponentes Epresioneslgebrics Por:SndrElvirPérezMárquez Epresiónlgebric:Esuncobincióndevribles, núeros, letrs síbolos que pueden estr conectdos consignosopertivos:+,-,,/,entreotros. Algunosejeplosdeepresioneslgebricsson:

Más detalles

Propuesto en el libro Problemas de Física. J. Ruiz Vázquez. Científicas

Propuesto en el libro Problemas de Física. J. Ruiz Vázquez. Científicas POBLEMAS VAIADOS -08.-Cundo un poirón choc de frene con un elecrón e niquiln bo y, coo reuldo, e obienen do foone dirigido en enido conrrio. Si l energí cinéic de cd prícul e de MeV, deerinr l longiud

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

Vamos a estudiar la existencia de soluciones, nº de soluciones y cómo calcular las soluciones de un sistema lineal.

Vamos a estudiar la existencia de soluciones, nº de soluciones y cómo calcular las soluciones de un sistema lineal. Te 3 Sistes de ecuciones lineles. 3. Sistes lineles notciones triciles y vectoriles. 3. Teore de Rouché-Froenius. Sistes lineles hoogéneos. 3.3 Resolución de sistes de ecuciones. 3.4 Discusión de sistes

Más detalles

Movimiento oscilatorio Movimiento armónico simple (MAS) Cinemática

Movimiento oscilatorio Movimiento armónico simple (MAS) Cinemática Moiiento ociltorio Moiiento rónico iple (MAS) Cineátic IES L Mgdlen. Ailé. Aturi Se dice que un prtícul ocil cundo tiene un oiiento de ién repecto de u poición de equilibrio, de for tl que el oiiento e

Más detalles

M t e K s ó i m ca H. P l B v a t a k s y

M t e K s ó i m ca H. P l B v a t a k s y Kó M 1 ( M K ) 1890,, [ í Bk.. H ] C (),.. M, é). x ( ú,,, C,,, (Có).., G.. ó Mz, : í ú, H', á é. í Rw, Rw F ú j ó, í: ó, á í ó ñ, j. á í ó j í Ojá xñ ñ. H. í,,., j ó B, ú, D, z ó w j : í j. á ó,,. á í,.

Más detalles

CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES

CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES Colgio Mtr Slvtoris CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES Ejrcicio nº.- Estudi l continuidd y l drivilidd d l guint unción: ) < < Continuidd: - Si y ) s continu, pus stá ormd por uncions continus. -

Más detalles

Magnitudes proporcionales I

Magnitudes proporcionales I Mgnitudes proporcionles I Mgnitud: Es todo quello que puede ser medido. Mgnitudes proporcionles: Dos mgnitudes son proporcionles si son dependientes entre sí, es decir, si un de ells vrí, l otr tmbién

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2013 Juan Carlos Alonso Gianonatti OPCIÓN A. se pide

IES Mediterráneo de Málaga Solución Septiembre 2013 Juan Carlos Alonso Gianonatti OPCIÓN A. se pide IES Mditáno d Málg Solución Sptimb Jun los lonso Ginontti Ejcicio.- liicción máim puntos Dd l unción: 7 s pid ( 7 puntos Hll ls síntots d dich gic OPIÓN b ( 7 puntos Dtmin los intlos d cciminto dcciminto

Más detalles

PRIMER CONGRESO LATINOAMERICANO DE AGENCIAS DE DESARROLLO LOCALCa rm e n d e Vib o ra l An tio q u ia -Co lo m b ia

PRIMER CONGRESO LATINOAMERICANO DE AGENCIAS DE DESARROLLO LOCALCa rm e n d e Vib o ra l An tio q u ia -Co lo m b ia PRIMER CONGRESO LATINOAMERICANO DE AGENCIAS DE DESARROLLO LOCALCa rm e n d e Vib o ra l An tio q u ia -Co lo m b ia 2 8 y 2 9 d e m a yo d e l 2 0 0 9 Pa ís u n ita rio. Niv e le s d e Go b ie rn o : N

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: EDISON MEJÍA MONSALVE.

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: EDISON MEJÍA MONSALVE. INSTITUCION EDUCATIVA LA RESENTACION NOMBRE ALUMNA: AREA : ASIGNATURA: DOCENTE: TIO DE GUIA: MATEMATICAS MATEMATICAS EDISON MEJÍA MONSALVE. CONCETUAL - EJERCITACION ERIODO GRADO 8 A/B N FECHA Enero / 0

Más detalles

Formulario de matemáticas

Formulario de matemáticas Forlro tát lgr- Sgo (+) (+) = + (-) (-) = + (+) (-) = - (-) (+) = - (+) / (+) = + (-) / (-) = + (+) / (-) = - (-) / (+) = - Fro Proto otl ftorzó ( ) ( ) ( ) ( ) ( ) ()() ()( ) ( )( ) ()( ) L lo ot rl log

Más detalles

José Antonio Galindo. CANTIGAS DE SANTA MARÍA de Alfonso X "el Sabio" 4 Cantigas Armonizadas para Coro mixto "a capella" SATB

José Antonio Galindo. CANTIGAS DE SANTA MARÍA de Alfonso X el Sabio 4 Cantigas Armonizadas para Coro mixto a capella SATB é Antni Glin ANIGA DE ANA MARÍA d Aln X "l i" 4 ng Amnizd xt " cll" A ROA DA ROA ANA MARÍA, RELA DO DÍA O QUE OLA IRGEN LEIXA AN GRAN ODER Ducin md 3' +1'15 (4') +2'45", 2'40" Edición i dl Aut Mdid, 2011

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn TE trices TRICES. DEFINICIÓN. Un mtriz de m fils n columns es un serie ordend de m n números ij, i,,...m; j,,...n, dispuestos en fils columns, tl como se indic continución:... n... n............ m m m...

Más detalles

Ejercicios de optimización

Ejercicios de optimización Ejercicios de optimizción 1. Entre todos los triángulos isósceles de perímetro 0, cuál es el de áre máxim? Función mximizr: A yh Relcionr vribles: Estudimos l función: h h y x h x y x y 0 x 0y 0 y 0 0y

Más detalles

SOLUCIONES DE LIMITES

SOLUCIONES DE LIMITES SOLUCIONES DE LIMITES.. Ln Sustituyndo por obtnmos: INDETERMINADO Ln Como s trt d un indtrminción d tipo L Hopitl, plicmos dich rgl: Ln Ln Rsolvmos prt l it Ln INDETERMINACIÓN d tipo L Hopitl otr vz: 6Ln

Más detalles

UNIDAD 6 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 6 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Guix Mtátis II UNIDD DETERMINNTES.. DETERMINNTE DE ORDEN UNO. D un triz ur orn uno sri o in, oo l núro rl:. DETERMINNTE DE ORDEN DOS. D un triz ur orn os oo l núro rl: Ejplos:, s in l rinnt,

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Myo de 2015 Operciones Básics con Frcciones Número

Más detalles

VIGA AS Fll olun n ot S oiinn n it 45º fon o un "X" n l t l olun qu u no tá tini o uo ltl. Tbién u un u it ionl lo l lo l olun ot. t tio fll í ui. Fiu

VIGA AS Fll olun n ot S oiinn n it 45º fon o un X n l t l olun qu u no tá tini o uo ltl. Tbién u un u it ionl lo l lo l olun ot. t tio fll í ui. Fiu CO OLUMNAS TIPO D OA VALUAR Colun ñ y it Dniintto l onto y xoiión l o fuz zo on l núlo tuio DSCRIPC CCION D DAÑ ÑO t tio n olun initivo un flt tibo. n olun uho á io qu q n uo qu l to inifi onto h ufio

Más detalles

P a u l C e l a n ( A n t e m í )

P a u l C e l a n ( A n t e m í ) P A L O M A N A V A R E S D e d i c a t o r i a s P a l o m a N a v a r e s : L a m a n o q u e p a s a s t e p o r t u s o j o s... P i l a r R i b a l A n t e m i r o d i l l a r e l a m p a g u e a

Más detalles

IV Concurso Cristalización en la Escuela Zona Noroeste Sede-Principado de Asturias

IV Concurso Cristalización en la Escuela Zona Noroeste Sede-Principado de Asturias IV Concurso Cristalización en la Escuela Zona Noroeste Sede-Principado de Asturias BASES 0) Los centros participantes en el Concurso se han inscrito voluntariamente y aceptado las normas de participación.

Más detalles

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS Ejecicio nº.- Repeent lo punto iguiente: A(, 5, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto iguiente: A(,, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto

Más detalles

LA TRANSFORMADA DE LAPLACE

LA TRANSFORMADA DE LAPLACE LA RANSFORMADA DE LAPLACE (pun crio por Dr. Mnul Prgd). INRODUCCIÓN Enr l rnformcion má uul qu oprn con funcion f(x) cumplindo condicion dcud n I[,b, pr obnr or funcion n I, án por jmplo : L oprción D

Más detalles

OPCIÓN A Problema A.1. En el espacio se dan las rectas. 3 : z. x r y. Obtener razonadamente:

OPCIÓN A Problema A.1. En el espacio se dan las rectas. 3 : z. x r y. Obtener razonadamente: OPCIÓN Proble.. En el espcio se dn ls rects : r : α s Obtener rondente: El vlor de α pr el que ls rects r s están contenids en un plno. puntos b L ecución del plno que contiene ls rects r s pr el vlor

Más detalles

LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1

LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bch 1 LÍMITES, CONTINUIDAD, ASÍNTOTAS LÍMITE DE UNA FUNCIÓN 11.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de un función en un punto f () l Se lee: El

Más detalles

0 x+2y=1. x+(a+4)y+(a+1)z=0 -(a+2)y +(a 2 +3a+2)z=a+4. a+1 a 2 +3a ± ±2

0 x+2y=1. x+(a+4)y+(a+1)z=0 -(a+2)y +(a 2 +3a+2)z=a+4. a+1 a 2 +3a ± ±2 JUNIO DE 8. PROBLEMA A. Estudi el siguiente sistem de ecuciones lineles dependiente del prámetro rel resuélvelo en los csos en que es comptible: x+ x+(+4)+(+)z (+) +( +3+)z+4 (3 PUNTOS) Aplicmos el método

Más detalles

TALLER 2 SEGUNDA LEY DE NEWTON

TALLER 2 SEGUNDA LEY DE NEWTON TALLER SEGUNDA LEY DE NEWTON A. En un experienci de lbortorio se hló un crro dináico, con un fuerz F ejercid por un bnd de cucho estird ciert longitud. Luego se duplicó l fuerz, después se triplicó y finlente

Más detalles

BTA : GANADO MENOR - PISCICULTURA. C o n t e n i d o.

BTA : GANADO MENOR - PISCICULTURA. C o n t e n i d o. C o m p e t e n c i a s e s p e c í f i c a s : R e c o n o c e r l a i m p o r t a n c i a d e l a p r o d u c c i ó n d e p e c e s e n l a a l i m e n t a c i ó n h u m a n a y s u a p o r t e e n l

Más detalles