TEMA 1: NÚMEROS REALES 1.1 Numeros racionales Ejemplo:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 1: NÚMEROS REALES 1.1 Numeros racionales Ejemplo:"

Transcripción

1 TEMA : NÚMEROS REALES. Numeros racionales Ejemplo: 4... Entonces puedo expresar el "" de infinitas formas, siendo su fracción generatriz la que es irreducible. En nuestro caso Otro ejemplo de número racional es Siendo en este caso la fracción generatriz 8 Volvemos al.0 que es un número decimal exacto pues la división es exacta, es decir el resto es cero. Volvemos al 0.85 que es un número decimal exacto pues la división es exacta, es decir el 8 resto es cero. Cojemos. que es un número decimal periodico puro pues la tiene un bloque de cifras que se repite indefinidamente a continucacion de si mismo justo después de la coma. Cojemos que es un número decimal periodico mixto pues hay cifras entre 4 la coma y el bloque de cifras que se repite indefinidamente a continucacion de si mismo. De igual forma hemos de ser capaces de transformar un número decimal en una fracción. Vamos a hacerlo para un número decimal exacto: Vamos a hacerlo para un número decimal periódico puro: Llamamos N Multiplicamos N por 00, pues tiene dos cifras de periodo: 00N Es decir, hemos obtenido otro número decimal periódico puro con el mism periodo que el dado. Esto hace que cuando restemos el mayor del menor, me desaparezcan los periodos: 00N N lo que nos da 99N N Vamos a hacerlo para un número decimal periódico mixto: Tenemos dos cifras de anteperiodo (5) y una cifra de periodo. Llamamos N.5... Multiplicamos N por 00, pues tiene dos cifras de anteperiodo: 00N 5... También multiplicamos N por 000 pues tenemos dos cifras de anteperiodo y una de periodo. 000N 5... Es decir, hemos obtenido dos números decimales periódicos puros con el mismo periodo. Esto hace que cuando restemos el mayor del menor, me desaparezcan los periodos: 000N N N 00N N 84 Asi, al restar en columna nos da 900N 84 N Tareas 0-09-: todos los ejercicios de la página 0. Números irracionales. Números reales. Ejemplos de números irracionales

2 Da ejemplos de números que sean irracionales: a) es un número irracional pues tiene infinitas cifras decimales sin En general todas las raíces no exactas son números irracionales. b) es un número irracional pues tiene infinitas cifras decimales sin c) es un número irracional pues tiene infinitas cifras decimales sin d) es un número irracional pues tiene infinitas cifras decimales sin e) es un número irracional pues tiene infinitas cifras decimales sin f) es un número irracional pues tiene infinitas cifras decimales sin Ejemplo de valores absolutos. Calcula el valor absoluto de los siguientes números: a) pues o b) pues 0 Comprueba la verdad de las propiedades del valor absoluto: a) Los ejemplos del apartado anterior confirman que el valor absoluto de un número no nulo es mayor que cero. b) Por otro lado tenemos que: Entonces podemos concluir que: c) 8 8 Por otro lado tenemos que: 4 Entonces podemos concluir que: Tareas 0-09-: todos los ejercicios de la página.. Representación de números reales Tareas para casa: -09- todos los ejercicios de la página..4 Aproximaciones de un número real. Errores. Ejemplos de redondeo de números irracionales: Redondea a los siguientes ordenes: a) a las décimas:. b) a las milésimas:.4 c) a las cienmilésimas:. 459 d) a las diezmilésimas:. 46 Ejemplos de errores cometidos al redondear un número irracional: Calcula los errores cometidos en cada uno de los redondeos del apartado anterior: a) a las décimas: E En este caso la aproximación ha sido por defecto pues b) a las milésimas: E En este caso la aproximación ha sido por exceso pues

3 Vamos a calcular a partir de los errores absolutos obtenidos anteriormente los correspondientes errores relativos.. a) a las décimas: E r b) a las milésimas: E r El error relativo es mayor en las décimas. Tareas para casa: -09- todos los ejercicios de la página..5 Suma y producto de números reales Tareas para casa: todos los ejercicios de la página 4..6 Potencias de números reales Ejemplo de las propiedades de las potencias Aplica las propiedades de las potencias en las siguientes expresiones: a) 5 5 b) c) Tareas para casa: todos los ejercicios de la página 5.. Radicales Ejemplo Realiza las siguientes operaciones: a) Tareas para casa: todos los ejercicios de la página..8 Intervalos y entornos Ejemplos de entornos e intervalos, junto con su representación Define y representa los siguientes conjuntos numéricos: a),4 x R/x 4 serían todos los números reales tales que x es menor que 4. Es un semirrecta. b) 0, x R/x 0 serían todos los números reales tales que x es mayor o igual que -0 Es un semirrecta. c) 5, No es nada pues el extremo inferior ha de ser más pequeño que el superior. d), x R/ x serían todos los números reales tales que x es mayor que - pero más pequeño que. Es un intervalo abierto e) 5,6 x R/5 x 6 serían todos los números reales comprendidos entre 5 y 6 incluyendo a estos. Es un intervalo cerrado. f) E,0.5 x R/ 0.5 x 0.5 x R/.5 x.5.5,.5

4 Es el entorno abierto de centro - y radio 0.5 g) E4,0.5 x R/4 0.5 x x R/.5 x 4.5.5,4,5 Es el entorno cerrado de centro 4 y radio 0.5 Tareas todos los ejercicios de la página 8 Tareas todos los ejercicios de la página 9 Ejercicios finales del Tema Di si los siguientes números son naturales, enteros, racionales o reales: a) 8 4 es un número natural, por lo tanto es entero, es racional y por último es real. b) es un número entero, es racional y por último es real. c) es un número decimal exacto por lo tanto es una fracción, es decir, es un número racional y por último es real. d) es un número decimal exacto por lo tanto es una fracción, es decir, 5 es un número racional y por último es real. e) 9 es un número natural, por lo tanto es entero, es racional y por último es real. f) 4 es un número irracional pues la 4 no es una raiz exacta. Por lo tanto sólo es real Tareas para casa -09:, 4 Halla un número fraccionario comprendido entre y Buscamos fracciones equivalentes a las dadas que no tengan numeradores consecutivos. Elegimos el 4 porque me apetece: Ya tenemos dos fracciones que no tienen numeradores consecutivos. Una solución sería: Tareas para casa -09:5, 6, 8 Calcula de forma exacta el resultado de: Tenemos que encontrar la fracción generatriz de todos los números decimales periódicos que aparecen. a) b) c) d) Por lo tanto: Tareas -09-: 9 NOTA: Fracción generatriz de un decimal exacto: en el numerador se escribe el número decimal sin 4

5 coma y, en el denominador, la unidad seguida de tantos ceros como cifras decimales tenga. Fracción generatriz de un decimal periódico puro: en el numerador se escribe el número sin coma hasta el final del periodo y se le resta la parte entera; en el denominador se ponen tantos nueves como cifras tenga el periodo. Fracción generatriz de un decimal periódico mixto: en el numerador se escribe el número sin coma hasta el final del periodo y se le resta la parte entera y el anteperiodo; en el denominador se ponen tantos nueves como cifras tenga el periodo y tantos ceros como cifras tenga el anteperiodo. 40 Desarrolla el valor absoluto de las siguientes expresiones omitiendo los valores absolutos. a) x 4 x Sabemos que x x if x 0 x if x 0 x 4 x x 4 x if x 4 0 x 4 x if x 4 0 x 4 if x 4 x 4 x if x 4 x 4 if x 4 x 4 if x 4 x 4 if x x 4 if x Tareas 8-09-: el resto de los ejercicios del 40, 4 4 Representa los siguientes números reales. e) 5 Buscamos cuadrados que al sumarlos me de Entonces 5 Aplicando el Teorema de Pitágoras, 5 será la hipotenusa de un triángulo rectángulo de cuyos catetos miden y. Tareas 8-09-: el resto de los ejercicios del 4, Escribe aproximaciones por exceso y por defecto con tres cifras decimales de los siguientes números. b) Otra forma de hacerlo sería: 4 Utilizando la calculadora tenemos que: por exceso por defecto Tareas 8-09-: el resto de los ejercicios del 45, 46, 4, 48, Calcula los errores absoluto y relativo que se cometen al tomar.9 como valor de. E E r Tareas 0-0-: 50, 5, 5, 5, Calcula con tres decimales mediante aproximaciones sucesivas. 5

6 Tomo el redondeo de con dos cifras decimales: Tomo el redondeo de con una cifra decimal: aproximaciones de aproximaciones de Halla las siguientes multiplicaciones y divisiones con radicales: d) x x x x x x 4 x x 4 x x x x x 4 x 9 4 x 5 x 5 Tareas 0-0-: todos los ejercicios que faltan del 56 5 Halla las siguientes sumas y restas de radicales: d) Tareas 0-0-: todos los ejercicios que faltan del 5 58 Simplifica el valor de las siguientes expresiones. h) 4 Aplicamos el cuadrado de la diferencia: a b a ab b Tareas 0-0-: todos los ejercicios que faltan del Simplifica las siguientes expresiones: b) Se puede hacer aplicando: el cuadrado de la diferencia suma por diferencia: a ba b a b Vamos a intentarlo de otra manera: Sacaremos factor común,

7 Tareas 0-0-: todos los ejercicios que faltan del Racionaliza los denominadores de las siguientes expresiones f) Tareas 0-0-: todos los ejercicios que faltan del Dados los intervalos A,4 y B,6, calcula: a) A B,6 La unión se define como los elementos que pertenecen a A o a B. Es decir, los que están en A o en B. b) A B,4 La intersección se define como los elementos que pertenecen a A y a B. Es decir, los elementos que están a la vez en A y en B. Tareas 0-0-: 6,6 64 Expresa en forma de intervalo y de entorno los siguientes conjuntos de números reales: d) x x Aqui tenemos el conjunto x R/ x x R/ x x R/ x E,, Tareas 04-0-: todos los ejercicios que faltan del Escribe en notación científica los siguientes números: f) Tareas 04-0-: todos los ejercicios que faltan del Halla los siguientes productos y cocientes dando el resultado en notación científica. d) Tareas 04-0-: todos los ejercicios que faltan del 66, 6, 69, 0 68 Una habitación con forma de ortoedro de base cuadrada y altura la mitad del lado de la base se pinto en tres días. Se pintaron las cuatro paredes y el techo. En el primer día se pintó la tercera parte de la superficie; en el segundo, la mitad de lo que quedada, y en el tercero los 5 m que faltaban para acabar el trabajo. a) Calcula la superficie total de la habitación y la superficie que se hizo cada día. Llamamos x al lado de la base cuadrada. Por lo tanto, la altura del ortoedro será x. En total pintamos cuatro paredes iguales y el techo (que coincide con la base). La superficie de una de las paredes es: x x x La superficie del techo es: x x x La superficie total será: 4 x x 4 x x x x x el primer día se pintó la tercera parte de la superficie: x x

8 el segundo, la mitad de lo que quedada: x x el tercero los 5 m que faltaban para acabar el trabajo (x x x x : 5 x x 5 La solución es que la base vale 5 Entonces la superficie total será: x 5 45 m Cada día se pintaron: 5 m pues todos los días se pintó la misma superficie. b) Calcula las medidas de cada una de las paredes y el volumen con la precisión adecuada. Las paredes tienen de longitudes 5 m y 5 m por lo que la superficie es: 5m Elvolumenesáreadelabaseporlaaltura: m Como trabajamos en el mundo real vamos a tomar m medida de la base. Por lo tanto el volumen será: m Tareas 05-0-:,, 6,, 8, 80, 8, 8, Una empresa elabora latas de conserva con forma cilíndrica de dimensiones 5 cm de radi de la base y 0 cm de altura. Tras un estudio de mercado, decide cambiar la forma de las latas: serán ortoedros de base cuadrada y de altura el doble del lado de la base. Cuáles serán las dimensiones de la nueva forma si la capacidad debe de ser la misma? Establece la solución con la aproximación que consideres oportuna. Volumen de la lata: área de la basealtura cm Volumen del tetrabrik: área de la basealtura x x x (ortoedro) Como los volúmenes han de ser iguales: 50 x x cm Asi trabajaremos en mm. Las dimensiones serán 9.cm para el lado de la base y 8.4 paralaalturadelalata. 4 Una empresa A cobra por el alquiler de una furgoneta 80 euros diarios. Otra empresa B cobra por el mismo alquiler 60 euros al día. Pero a esta cantidad se le deben añadir 00 euros independientemente del tiempo que se contrate. A partir de cuántos días es más económica la segunda empresa? Escribe la solución en forma de desigualdad y de intervalo. fijo diario total x días empresa A x empresa B x Igualamos: 80x 00 60x, Solution is: 0 80x if 0 x 0 Alquiler de la furgoneta 00 60x if 0 x 80x if x 0, x if x 0, 8

TEMA 1: NÚMEROS REALES

TEMA 1: NÚMEROS REALES . Numeros racionales Ejemplo: TEMA : NÚMEROS REALES 4.............................................. Entonces puedo expresar el "" de infinitas formas, siendo su fracción generatriz la que es irreducible.

Más detalles

PREPARACIÓN CONTROL TEMA 1 4ºESO

PREPARACIÓN CONTROL TEMA 1 4ºESO 1. (1,5 puntos). Efectúa las operaciones siguientes, expresando el resultado en forma de fracción irreducible: a) 4 2 4 8 13 : 5 3 5 7 14 4 2 b) 3 8 1 2 2 4 : 1 1 1 2 3 2 3 5 2. (1,5 puntos). Realiza las

Más detalles

16/11/2015. Tema 1º Números reales 1.0) Conceptos previos. 1.1) Fracciones. Números racionales. 1.2) Operaciones con números racionales.

16/11/2015. Tema 1º Números reales 1.0) Conceptos previos. 1.1) Fracciones. Números racionales. 1.2) Operaciones con números racionales. Irracionales (I) 16/11/01 1.) Operaciones con números racionales. 1.) Expresiones fraccionarias y decimal de un número racional. Irracional 1.) Representación de números racionales 1.10) Intervalos y semirrectas.

Más detalles

1 Calcula la forma fraccionaria o decimal (identificando cada una de sus partes), según corresponda de:

1 Calcula la forma fraccionaria o decimal (identificando cada una de sus partes), según corresponda de: . NUMEROS REALES Calcula la forma fraccionaria o decimal (identificando cada una de sus partes), según corresponda de:,.. 8 0,... 0 Parte entera, anteperiodo, periodo 00 Parte entera, anteperiodo, periodo

Más detalles

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 }

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 } LOS NÚMEROS REALES TEMA 1 IDEAS SOBRE CONJUNTOS Partiremos de la idea natural de conjunto y del conocimiento de si un elemento pertenece (* ) o no pertenece (* ) a un conjunto. Los conjuntos se pueden

Más detalles

TEMA 3: LAS FRACCIONES

TEMA 3: LAS FRACCIONES . Fracciones equivalentes TEMA : LAS FRACCIONES Determina si los siguientes pares de fracciones son equivalentes:. y 0 Calculamos como los productos son iguales, si son fracciones equivalentes. 0. 0 y

Más detalles

EJERCICIOS PROPUESTOS b) 2 20 x 8 x 5

EJERCICIOS PROPUESTOS b) 2 20 x 8 x 5 EJERCICIOS PROPUESTOS 1.1 Halla el valor de x para que las siguientes fracciones sean equivalentes. a) 1 x 4 b) x 8 a) 1 4 x x 4 b) x 8 x 8 1. Expresa estas fracciones con el mismo denominador. a), 1 1

Más detalles

TEMA 1 LOS NÚMEROS REALES

TEMA 1 LOS NÚMEROS REALES TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES.-LA RECTA REAL Los NÚMEROS RACIONALES: Se caracterizan porque pueden expresarse: En forma de fracción, es decir, como cociente b a de dos números enteros:

Más detalles

TEMA 1 LOS NÚMEROS REALES

TEMA 1 LOS NÚMEROS REALES TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES.-LA RECTA REAL Los NÚMEROS RACIONALES: Se caracterizan porque pueden expresarse: En forma de fracción, es decir, como cociente b a de dos números enteros:

Más detalles

Página 3. Página 4. Página 5

Página 3. Página 4. Página 5 Soluciones de las actividades Página 3. El menor de los conjuntos al que pertenecen estos números son: a) Entero b) Entero c) Racional d) Natural e) Racional. Cualquier fracción irreducible puede expresarse

Más detalles

E J E R C I C I O S P R O P U E S T O S. Indica, sin realizar la división, el tipo de expresión decimal de estos números.

E J E R C I C I O S P R O P U E S T O S. Indica, sin realizar la división, el tipo de expresión decimal de estos números. NÚMEROS REALES E J E R C I C I O S P R O P U E S T O S. Indica, sin realizar la división, el tipo de expresión decimal de estos números. a) b) 9 6 c) 7 d) 7 7 0 a) Periódico mixto c) 7 Periódico mixto

Más detalles

TEMA 3: NÚMEROS REALES

TEMA 3: NÚMEROS REALES . Intervalos y semirrectas TEMA : NÚMEROS REALES Ejemplo Dados los siguientes intervalos y semirrectas, exprésalos en forma de conjunto y represéntalos sobre la recta real:. El intervalo abierto de extremos

Más detalles

Los números decimales ilimitados no periódicos se llaman números irracionales, que designaremos

Los números decimales ilimitados no periódicos se llaman números irracionales, que designaremos Unidad Didáctica NÚMEROS REALES. NÚMEROS IRRACIONALES: CARACTERIZACIÓN. En el tema correspondiente a números racionales hemos visto que estos números tienen una característica esencial: su expresión decimal

Más detalles

NÚMEROS 1º E.S.O. NÚMEROS DECIMALES ÓRDENES DE UNIDADES DECIMALES NÚMEROS DECIMALES. 1 U = 10 d = 100 c = 1000 m =...

NÚMEROS 1º E.S.O. NÚMEROS DECIMALES ÓRDENES DE UNIDADES DECIMALES NÚMEROS DECIMALES. 1 U = 10 d = 100 c = 1000 m =... NÚMEROS DECIMALES NÚMEROS DECIMALES 1º E.S.O. NÚMEROS DECIMALES ÓRDENES DE UNIDADES DECIMALES Los números decimales se componen de dos partes separadas por una coma. La parte entera, formada por las cifras

Más detalles

TEMA 1 CONJUNTOS NUMÉRICOS

TEMA 1 CONJUNTOS NUMÉRICOS TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones

Más detalles

Prueba de evaluación. Nombre: Apellidos: Curso: Fecha: Calificación: Sean los números racionales representados por las fracciones,,, y.

Prueba de evaluación. Nombre: Apellidos: Curso: Fecha: Calificación: Sean los números racionales representados por las fracciones,,, y. Números racionales Prueba de evaluación Nombre: Apellidos: Curso: Fecha: Calificación: Sean los números racionales representados por las fracciones,,, y. Ordénalos 0 0 de menor a mayor y escribe sus fracciones

Más detalles

Una fracción decimal tiene por denominador la unidad. Número decimal. Es aquel que se puede expresar mediante una fracción

Una fracción decimal tiene por denominador la unidad. Número decimal. Es aquel que se puede expresar mediante una fracción Fracción decimal Una fracción decimal tiene por denominador la unidad seguida de ceros. Número decimal decimal. Es aquel que se puede expresar mediante una fracción Consta de dos partes: entera y decimal.

Más detalles

IES CUADERNO Nº 3 NOMBRE: FECHA: / / Números decimales

IES CUADERNO Nº 3 NOMBRE: FECHA: / / Números decimales Números decimales Contenidos 1. Números decimales Elementos de un número decimal Redondeo y truncamiento de un decimal 2. Operaciones con decimales Suma de números decimales Resta de números decimales

Más detalles

NÚMEROS REALES. a de dos números enteros: a, y b Z con b 0. Con un número entero o con una expresión decimal exacta o no exacta y periódica.

NÚMEROS REALES. a de dos números enteros: a, y b Z con b 0. Con un número entero o con una expresión decimal exacta o no exacta y periódica. NÚMEROS REALES NÚMEROS RACIONALES: Se caracterizan porque pueden expresarse: En forma de fracción, es decir, como cociente b a de dos números enteros: a, y b Z con b 0 Con un número entero o con una expresión

Más detalles

Ejercicios Tema 1. a) b) c) d) e) f) Ejercicio 6. Escribe en forma de intervalo y representa:

Ejercicios Tema 1. a) b) c) d) e) f) Ejercicio 6. Escribe en forma de intervalo y representa: Ejercicios Tema 1 Números Reales Ejercicio 1. Clasifica los siguientes números en el lugar que conjunto que corresponde: a) b) c) Ejercicio 2. Clasifica los siguientes números: Ejercicio 3. a) Cuáles de

Más detalles

TEMA 2. FRACCIONES Y NÚMEROS DECIMALES

TEMA 2. FRACCIONES Y NÚMEROS DECIMALES TEMA 2. FRACCIONES Y NÚMEROS DECIMALES ÍNDICE 1. Operaciones con fracciones 2. Operaciones con números decimales 3. Fracciones y números decimales 4. Fracción generatriz Tema 2. Fracciones y números decimales

Más detalles

1Soluciones a las actividades de cada epígrafe PÁGINA 20

1Soluciones a las actividades de cada epígrafe PÁGINA 20 Soluciones a las actividades de cada epígrafe PÁGINA 0 RACIONALES Q ENTEROS Z NO RACIONALES 8,, 8,, NATURALES N ENTEROS NEGATIVOS FRACCIONARIOS (racionales no enteros) 8 0, 7,,, 8, 8,, 7 8 8,9;,8; ) 7

Más detalles

b) Expresa como fracción aquellos que sea posible. c) Cuáles son irracionales? a) No pueden expresarse como cociente: 3; 3π y 2 5.

b) Expresa como fracción aquellos que sea posible. c) Cuáles son irracionales? a) No pueden expresarse como cociente: 3; 3π y 2 5. PÁGINA 9 Entrénate 1 a) Cuáles de los siguientes números no pueden expresarse como cociente de dos números enteros? 2; 1,7; ; 4, 2; ),75; ) π; 2 5 b) Expresa como fracción aquellos que sea posible. c)

Más detalles

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales. Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos

Más detalles

Introducción histórica. Números irracionales

Introducción histórica. Números irracionales Introducción histórica A finales del siglo V a.c., la Escuela de Pitágoras descubrió que no existían dos números naturales m y n, cuyo cociente sea igual a la proporción entre el lado de un cuadrado y

Más detalles

Bloque 1. Aritmética y Álgebra

Bloque 1. Aritmética y Álgebra Bloque 1. Aritmética y Álgebra 3. Los números racionales 1. Los números racionales o fraccionarios Fracción es una o varias partes iguales en que dividimos la unidad. Las fracciones representan siempre

Más detalles

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales 1. Los números reales 2. Operaciones con números enteros y racionales 3. decimales 4. Potencias de exponente entero 5. Radicales 6. Notación científica y unidades de medida 7. Errores Índice del libro

Más detalles

CONJUNTO DE LOS NÚMEROS REALES

CONJUNTO DE LOS NÚMEROS REALES NÚMEROS REALES 1. EL CONJUNTO DE LOS NÚMEROS REALES Al conjunto de todos los números que se pueden expresar mediante fracciones se le llama conjunto de los números racionales y se representa por Q. Tanto

Más detalles

1º BACHILLERATO - MATEMÁTICAS CCSS - TEMA 1 NÚMEROS REALES

1º BACHILLERATO - MATEMÁTICAS CCSS - TEMA 1 NÚMEROS REALES 1º BACHILLERATO - MATEMÁTICAS CCSS - TEMA 1 NÚMEROS REALES ˆ PÁGINA 4, EJERCICIO 68 Una habitación con forma de ortoedro de base cuadrada y altura la mitad del lado de la base se pintó en tres días. Se

Más detalles

Conjunto de Números Racionales.

Conjunto de Números Racionales. Conjunto de Números Racionales. El conjunto de los números racionales está formado por: el conjunto de los números enteros (-2, -1, 0, 1, 2, ) y los números fraccionarios y se representan con una Q. Números

Más detalles

Intervalos abiertos, cerrados, semiabiertos y semicerrados.

Intervalos abiertos, cerrados, semiabiertos y semicerrados. 008 _ 04-000.qxd 9//08 9:06 Página 69 Números reales INTRODUCCIÓN En la unidad anterior se estudiaron los números racionales o fraccionarios y se aprendió a compararlos, operar con ellos y utilizarlos

Más detalles

Números reales ACTIVIDADES

Números reales ACTIVIDADES ACTIVIDADES No pueden representar el mismo número racional, puesto que si una fracción tiene un término negativo, el cociente es negativo; y si sus dos términos son positivos, el cociente es positivo.

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Valor de cada cifra en función de la posición que ocupa. Expresión polinómica de un número.

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Valor de cada cifra en función de la posición que ocupa. Expresión polinómica de un número. 8966 _ 049-008.qxd /6/08 09: Página 49 Números reales INTRODUCCIÓN Los conceptos que se estudian en esta unidad ya han sido tratados en cursos anteriores. A pesar de ello, es importante volverlos a repasar,

Más detalles

Matemática 2 Módulo 1

Matemática 2 Módulo 1 Matemática Módulo Contenidos: Números reales. Repaso de racionales. Decimales periódicos, puros y mixtos. Irracionales. Operaciones con radicales. Racionalización. Actividades de inicio, desarrollo y cierre.

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 7 PRACTICA Aproximación y errores Expresa con un número adecuado de cifras significativas: a) Audiencia de un programa de televisión: 07 9 espectadores. b) Tamaño de un virus: 0,007 mm. c)

Más detalles

UNIDAD 6 AULA 360. Números decimales

UNIDAD 6 AULA 360. Números decimales UNIDAD 6 Números decimales 1. Números decimales. Ordenación y representación 2. Tipos de números decimales 3. Conversión de decimal a fracción 4. Operaciones con números decimales 1. Números decimales

Más detalles

1Soluciones a las actividades de cada epígrafe PÁGINA 20

1Soluciones a las actividades de cada epígrafe PÁGINA 20 Soluciones a las actividades de cada epígrafe PÁGINA 0 RACIONALES Q ENTEROS Z NO RACIONALES 8,, 8,, NATURALES N ENTEROS NEGATIVOS FRACCIONARIOS (racionales no enteros) 8 0,,,, 8, 8,, 8 8,;,8; ) ; 8 ; Pág.

Más detalles

Números reales ACTIVIDADES

Números reales ACTIVIDADES ACTIVIDADES No pueden representar el mismo número racional, puesto que si una fracción tiene un término negativo, el cociente es negativo; y si sus dos términos son positivos, el cociente es positivo.

Más detalles

NUMEROS REALES. Recordemos

NUMEROS REALES. Recordemos NUMEROS REALES Recordemos El conjunto de los números racionales está constituido por los números enteros y los números fraccionarios. Por tanto, cualquier número que pueda expresarse en forma de fracción

Más detalles

TEMA 1: NÚMEROS REALES

TEMA 1: NÚMEROS REALES TEMA 1: NÚMEROS REALES 1. INTRODUCCIÓN El conjunto formado por los números racionales e irracionales es el conjunto de los números reales, se designa por Con los números reales podemos realizar todas las

Más detalles

EJERCICIOS REFUERZO MATEMÁTICAS 3 ESO 1º TRIMESTRE

EJERCICIOS REFUERZO MATEMÁTICAS 3 ESO 1º TRIMESTRE EJERCICIOS REFUERZO MATEMÁTICAS ESO º TRIMESTRE NÚMEROS RACIONALES º. Amplifica las siguientes fracciones para que todas tengan denominador º. Cuál de las siguientes fracciones es una fracción amplificada

Más detalles

1Soluciones a los ejercicios y problemas PÁGINA 36

1Soluciones a los ejercicios y problemas PÁGINA 36 PÁGINA 6 Pág. P RACTICA Números reales a) Cuáles de los siguientes números no pueden expresarse como cociente de dos números enteros? ;,7; ;, ; ),7; ) π; b)expresa como fracción aquellos que sea posible.

Más detalles

1.1. Los conjuntos numéricos

1.1. Los conjuntos numéricos Capítulo NÚMEROS.. Los conjuntos numéricos Usted conoce los números desde su más tierna infancia cuando aprendió a contar. Recuerde que los campos numéricos son los siguientes: Los números naturales N

Más detalles

FRACCIONES. Las partes que tomamos ( 3 ó 5 ) se llaman numerador y las partes en que dividimos el queso ( 8 ) denominador.

FRACCIONES. Las partes que tomamos ( 3 ó 5 ) se llaman numerador y las partes en que dividimos el queso ( 8 ) denominador. FRACCIONES Una fracción, en general, es la expresión de una cantidad dividida por otra, y una fracción propia representa las partes que tomamos de un todo. El ejemplo clásico es el de un queso que partimos

Más detalles

TEMA 2. Números racionales. Teoría. Matemáticas

TEMA 2. Números racionales. Teoría. Matemáticas 1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden

Más detalles

UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico.

UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. UNIDAD 1. NÚMEROS. (Página 22 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. Clasificación de los números Números naturales son aquellos que utilizamos para contar. N = 0,1,2,,,5,6, Números

Más detalles

OBJETIVO 1 RECONOCER LAS FORMAS DE REPRESENTACIÓN QUE TIENE UNA FRACCIÓN NOMBRE: CURSO: FECHA: Representación en la recta numérica.

OBJETIVO 1 RECONOCER LAS FORMAS DE REPRESENTACIÓN QUE TIENE UNA FRACCIÓN NOMBRE: CURSO: FECHA: Representación en la recta numérica. OBJETIVO RECONOCER LAS ORMAS DE REPRESENTACIÓN QUE TIENE UNA RACCIÓN NOMBRE: CURSO: ECHA: RACCIONES Una fracción está compuesta por un numerador y un denominador. Denominador " Partes en que se divide

Más detalles

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL Mate 3041 Profa. Milena R. Salcedo Villanueva 1 FRACCIONES Una fracción tiene dos términos: numerador y denominador Denominador indica las veces que se divide

Más detalles

NÚMEROS DECIMALES PROFESOR: RAFAEL NÚÑEZ NOGALES

NÚMEROS DECIMALES PROFESOR: RAFAEL NÚÑEZ NOGALES NÚMEROS DECIMALES 1 y 2.- ÓRDENES Y DECIMALES. FRACCIONES Y DECIMALES (A) Lectura de números decimales 241,58 241 unidades y 58 centésimas 3,007 3 unidades y 7 milésimas 4005,6 4005 unidades y 6 décimas

Más detalles

TEMA 1: NÚMEROS REALES

TEMA 1: NÚMEROS REALES TEMA 1: NÚMEROS REALES 3º ESO Matemáticas Apuntes para trabajo del alumnos en el aula. 1. Fracciones. Números racionales Si se multiplican o dividen el numerador y el denominador de una fracción por un

Más detalles

Matemáticas B 4º E.S.O. Tema 1 Los números Reales 1. conjunto de todos ellos se les designa con la letra Q.

Matemáticas B 4º E.S.O. Tema 1 Los números Reales 1. conjunto de todos ellos se les designa con la letra Q. Matemáticas B º E.S.O. Tema 1 Los números Reales 1 TEMA 1 LOS NÚMEROS REALES 1.1 CLASIFICACIÓN DE LOS NÚMEROS REALES º 1.1.1 TIPOS DE NÚMEROS º Los números naturales son : 1, 2,,..., 10, 11,..., 102, 10,....

Más detalles

TEMA 3 NÚMEROS DECIMALES

TEMA 3 NÚMEROS DECIMALES TEMA 3 NÚMEROS DECIMALES Criterios De Evaluación de la Unidad 1. Identificar el significado de número decimal. 2. Ordenar y representar números decimales. 3. Pasar correctamente de fracción a decimal y

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

TEMA 3. NÚMEROS RACIONALES.

TEMA 3. NÚMEROS RACIONALES. TEMA 3. NÚMEROS RACIONALES. Concepto de fracción Una fracción es el cociente de dos números enteros a y b, que representamos de la siguiente forma: b denominador, indica el número de partes en que se ha

Más detalles

Números fraccionarios y decimales

Números fraccionarios y decimales Unidad didáctica Números fraccionarios y decimales 1.- Las fracciones. a Una fracción es un número racional, escrito en la forma, tal que b 0 y representa una parte b de un total. El denominador (el número

Más detalles

4 ; 3. d) 2 y 5 3. a) 2,2 b) c) 2,24 d) 2,236 e) 2,23607

4 ; 3. d) 2 y 5 3. a) 2,2 b) c) 2,24 d) 2,236 e) 2,23607 EL NÚMERO REAL.- LOS NÚMEROS IRRACIONALES. NÚMEROS REALES - Indicar a qué conjuntos ( Ν, Ζ, Q, R ) pertenecen los siguientes números: -2 ; ; -4/ 5; 6/ 4; 4 ; 25 ; Ν ; 6/ 4 Ζ -2 ; 25 Q -4/ 5 ; 6 ; 4 ; 8

Más detalles

LOS NÚMEROS RACIONALES

LOS NÚMEROS RACIONALES LOS NÚMEROS RACIONALES OBJETIVOS: Utilizar y clasificar los distintos conjuntos numéricos en sus diversas formas de expresión, tanto en las ciencias exactas como en las ciencias sociales y en el ámbito

Más detalles

2 entre dos números racionales distintos es siempre posible encontrar el que está entre ambos.

2 entre dos números racionales distintos es siempre posible encontrar el que está entre ambos. LICEO DE APLICACIÓN DPTO. DE MATEMÁTICA º Medio UNIDAD Nùmeros GUIA DE EJERCICIOS Nº Contenidos Números racionales Aprendizajes esperados - Determinan relación de orden con números racionales - Expresan

Más detalles

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS UNIDAD 1: NÚMEROS RACIONALES Distinguir las distintas interpretaciones de una fracción. Reconocer fracciones equivalentes. Amplificar fracciones. Simplificar fracciones hasta obtener la fracción irreducible.

Más detalles

Contenidos. Objetivos. 1. Los números reales Números irracionales Números reales Aproximaciones Representación gráfica Valor absoluto Intervalos

Contenidos. Objetivos. 1. Los números reales Números irracionales Números reales Aproximaciones Representación gráfica Valor absoluto Intervalos CUADERNO Nº NOMBRE: FECHA: / / Los números reales Contenidos. Los números reales Números irracionales Números reales Aproximaciones Representación gráfica Valor absoluto Intervalos. Radicales Forma exponencial

Más detalles

Los números reales. 1. Números racionales e irracionales

Los números reales. 1. Números racionales e irracionales Los números reales. Números racionales e irracionales Calcula mentalmente el área de un cuadrado de cm de lado. Expresa de forma exacta el lado, x, de un cuadrado de cm de área. P I E N S A Y C A L C U

Más detalles

o Una aproximación lo es por defecto cuando resulta que es menor que el valor exacto al que sustituye y por exceso cuando es mayor.

o Una aproximación lo es por defecto cuando resulta que es menor que el valor exacto al que sustituye y por exceso cuando es mayor. Números reales 1 Al trabajar con cantidades, en la vida real y en la mayoría de las aplicaciones prácticas, se utilizan estimaciones y aproximaciones. Sería absurdo decir que la capacidad de un pantano

Más detalles

Números Reales. 87 ejercicios para practicar con soluciones. 1 Ordena de menor a mayor las siguientes fracciones: y

Números Reales. 87 ejercicios para practicar con soluciones. 1 Ordena de menor a mayor las siguientes fracciones: y Números Reales. 8 ejercicios para practicar con soluciones Ordena de menor a mayor las siguientes fracciones: y 8 Reducimos a común denominador: 0 80 0 00 0 y 0 0 0 0 0 0 8 0 El orden de las fracciones,

Más detalles

Tema 4. Los números reales.

Tema 4. Los números reales. Tema 4. Los números reales. Números irracionales. En el tema anterior, has visto que los números racionales pueden escribirse en forma decimal, produciendo siempre un decimal exacto o periódico. También

Más detalles

Primer Parcial. Día 18 de noviembre. 18:30-20:30. Aula 3 Números Decimales

Primer Parcial. Día 18 de noviembre. 18:30-20:30. Aula 3 Números Decimales Primer Parcial. Día 8 de noviembre. 8:30-20:30. Aula 3 Números Decimales Esquema Notación decimal Relación fracción-expresión decimal Números decimales Operaciones con números decimales Forma de representar

Más detalles

TEMA 2. Números racionales. Teoría. Matemáticas

TEMA 2. Números racionales. Teoría. Matemáticas 1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden

Más detalles

ACTIVIDADES INICIALES. 23 f) 1 h) 5 3. a) 2 (3 2 6) (10 3) (5 2 3) 2 (3 12) 7 (5 6) 2 ( 9) 7 ( 1) EJERCICIOS PROPUESTOS. b) 2.

ACTIVIDADES INICIALES. 23 f) 1 h) 5 3. a) 2 (3 2 6) (10 3) (5 2 3) 2 (3 12) 7 (5 6) 2 ( 9) 7 ( 1) EJERCICIOS PROPUESTOS. b) 2. Solucionario Números reales ACTIVIDADES INICIALES.I. Indica a qué conjuntos numéricos pertenecen los números siguientes. a) c), e) g) b) d) f) h) a) Z c) Q e) Q g) Q b) R d) R f) N h) Q.II Realiza las

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

NÚMEROS RACIONALES. Evaluación A. Ten en cuenta. Recuerda. Recuerda

NÚMEROS RACIONALES. Evaluación A. Ten en cuenta. Recuerda. Recuerda NÚMEROS RACIONALES Evaluación A 1. Ordena de menor a mayor estas fracciones: 1 2, 9 20, 18 25, 3 5 Para ordenar fracciones, expresamos la solución mediante las fracciones iniciales, no las equivalentes

Más detalles

Tema 1: Números reales.

Tema 1: Números reales. Tema 1: Números reales. REALES se utilizan para Medir magnitudes se obtienen Cantidades todos son Números Errores vienen afectadas de errores clases se representan Recta real decimales Redondeos Truncamiento

Más detalles

Soluciones a las actividades

Soluciones a las actividades Soluciones a las actividades BLOQUE I Aritmética. Los números reales. Potencias, radicales y logaritmos Los números reales. Números racionales e irracionales Calcula mentalmente el área de un cuadrado

Más detalles

2 Números racionales

2 Números racionales 008 _ 0-000.qxd 9//08 9:06 Página Números racionales INTRODUCCIÓN Los conceptos que se estudian en esta unidad ya han sido tratados en cursos anteriores. A pesar de ello, es importante volverlos a repasar,

Más detalles

1Soluciones a los ejercicios y problemas

1Soluciones a los ejercicios y problemas PÁGINA 8 Pág. 8 0 Divide y simplifica. a) 7 : b) : c) : 6 a) 7 : = 7 : = 9 b) : = : = = c) : = : = = 6 6 7 Reduce a índice común y efectúa. a) 6 b) : 6 c) 0 : 0 d) ( ) : ( ) 6 6 a) = b) = 0 6 0 8 78 6

Más detalles

Tema 1.- Los números reales

Tema 1.- Los números reales Tema 1.- Los números reales Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se puede expresar en forma de fracción. El número irracional

Más detalles

Tema 3: Números racionales

Tema 3: Números racionales Tema 3: Números racionales SELECCIÓN DE EJERCICIOS RESUELTOS EJERCICIOS DEL CAPÍTULO 4 (Fracciones y números racionales positivos) (Pág. 9) 22. Al examen de junio de matemáticas se presentan 3 de cada

Más detalles

1. NUMEROS REALES a. Los Números Reales

1. NUMEROS REALES a. Los Números Reales 1. NUMEROS REALES a. Los Números Reales Los números reales comprenden todo el campo de números que utilizamos en las matemáticas, a excepción de los números complejos que veremos en capítulos superiores.

Más detalles

IES Juan García Valdemora NÚMEROS REALES Departamento de Matemáticas NÚMEROS REALES

IES Juan García Valdemora NÚMEROS REALES Departamento de Matemáticas NÚMEROS REALES NÚMEROS REALES. NÚMEROS RACIONALES Desde la aparición de las sociedades humanas los números desempeñan un papel fundamental para ordenar y contar los elementos de un conjunto. Así surgen, en primer lugar,

Más detalles

Concepto de fracción. Unidad fraccionaria. Concepto de fracción. Representación de fracciones

Concepto de fracción. Unidad fraccionaria. Concepto de fracción. Representación de fracciones Unidad fraccionaria Concepto de fracción La unidad fraccionaria es cada una de las partes que se obtienen al dividir la unidad en n partes iguales. Concepto de fracción Una fracción es el cociente de dos

Más detalles

El número real MATEMÁTICAS I 1 APROXIMACIÓN DECIMAL DE UN NÚMERO REAL

El número real MATEMÁTICAS I 1 APROXIMACIÓN DECIMAL DE UN NÚMERO REAL El número real MATEMÁTICAS I 1 1. APROXIMACIONES APROXIMACIÓN DECIMAL DE UN NÚMERO REAL Al expresar un número real con muchas o infinitas cifras decimales, utilizamos expresiones decimales aproximadas,

Más detalles

NÚMEROS DECIMALES. Expresión decimal de los números racionales

NÚMEROS DECIMALES. Expresión decimal de los números racionales NÚMEROS DECIMALES Expresión decimal de los números racionales Decimales exactos y periódicos La expresión decimal de una fracción se obtiene dividiendo el numerador entre el denominador. Para la fracción

Más detalles

Trabajo de Matemáticas AMPLIACIÓN 3º ESO

Trabajo de Matemáticas AMPLIACIÓN 3º ESO Trabajo de Matemáticas AMPLIACIÓN º ESO ACTIVIDADES DE AMPLIACIÓN TEMA : NÚMEROS FRACCIONARIOS O RACIONALES Problema nº Un grifo tarda en llenar un depósito horas y otro tarda en llenar el mismo depósito

Más detalles

Num eros Racionales. Clase # 1. Universidad Andrés Bello. Junio 2014

Num eros Racionales. Clase # 1. Universidad Andrés Bello. Junio 2014 UniV(>r.:ild-td Andr ::i Bello Num'eros Rac1onai(>S Numéros Racionales Clase # 1 Junio 2014 Conjunto de los números naturales N Definición Son los números desde el 1 al infinito positivo. N = {1, 2,

Más detalles

AULA MATEMÁTICA - ACTIVIDADES DE AMPLIACIÓN NÚMEROS DECIMALES

AULA MATEMÁTICA - ACTIVIDADES DE AMPLIACIÓN NÚMEROS DECIMALES AULA MATEMÁTICA - ACTIVIDADES DE AMPLIACIÓN Abel Martín NÚMEROS DECIMALES Lee los siguientes números y escríbelos con letra: 00 (a) 7.2 (b) 7.2 (c) 7.23 (d) 7.234 (e) 7.2345 (f) 7.23453 (g) 8.0523 (a)

Más detalles

NÚMEROS DECIMALES y NÚMEROS RACIONALES.

NÚMEROS DECIMALES y NÚMEROS RACIONALES. NÚMEROS DECIMALES y NÚMEROS RACIONALES. RECORDAR: Llamamos: 0' décima, 0' 0 centésima, 0' 00 milésima, 0 00 000 0' 000 diezmilésima,... 0000 limitados decimales exactos 0,5 Tipos de decimales decimales

Más detalles

TEMA 3: NÚMEROS DECIMALES

TEMA 3: NÚMEROS DECIMALES TEMA 3: NÚMEROS DECIMALES 1. NÚMEROS DECIMALES Para expresar cantidades comprendidas entre dos números enteros, utilizamos los números decimales. Los números decimales se componen de dos partes separadas

Más detalles

Fracciones numéricas enteras

Fracciones numéricas enteras Números racionales Fracciones numéricas enteras En matemáticas, una fracción numérica entera expresa la división de un número entero en partes iguales. Una fracción numérica consta de dos términos: El

Más detalles

EL CONJUNTO DE LOS NUMEROS RACIONALES

EL CONJUNTO DE LOS NUMEROS RACIONALES «Cuando me preguntan para qué puede servir una educación Matemática en el colegio a una persona que en su oficio no necesitará ningún conocimiento científico, una de mis respuestas es que la ciencia permite

Más detalles

Dos fracciones son equivalentes cuando expresan la misma porción de la unidad. = 4: 8 = 0,5

Dos fracciones son equivalentes cuando expresan la misma porción de la unidad. = 4: 8 = 0,5 TEMA FRACCIONES. FRACCIONES EQUIVALENTES Dos fracciones son equivalentes cuando expresan la misma porción de la unidad. 8 Dos fracciones equivalentes tienen el mismo valor numérico. = : = 0, = : 8 = 0,

Más detalles

EJERCICIOS DE NÚMEROS REALES

EJERCICIOS DE NÚMEROS REALES EJERCICIOS DE NÚMEROS REALES 1. Clasifica los siguientes números en racionales o irracionales: 3/5, 0 75, 7, -4, 632, 0 141441114 2. Escribe tres números irracionales que estén dados por raíces y tres

Más detalles

TEMA 1: NÚMEROS REALES EJERCICIOS

TEMA 1: NÚMEROS REALES EJERCICIOS TEMA : NÚMEROS REALES EJERCICIOS Ejercicios libro: pág. 8: ; pág. : (expresar fracciones como decimales y clasificarlos). Ordenar de menor a mayor los siguientes números, pasándolos previamente a común

Más detalles

MATEMÁTICAS Cuaderno de ejercicios NÚMEROS REALES

MATEMÁTICAS Cuaderno de ejercicios NÚMEROS REALES MATEMÁTICAS Cuaderno de ejercicios NÚMEROS REALES 1.* Relacionad cada número con su fracción equivalente. a) 0,625 b) c) 3 d) 0,4203821 e) 2.* Indicad si estas parejas están constituidas o no por fracciones

Más detalles

Lección 1: Números reales

Lección 1: Números reales GUÍA DE MATEMÁTICAS III Lección 1: Números reales Los números irracionales En los grados anteriores estudiamos distintas clases de números: Vimos en primer lugar: los naturales, que son aquellos que sirven

Más detalles

Soluciones a las actividades

Soluciones a las actividades Soluciones a las actividades BLOQUE I Aritmética y álgebra. Los números reales. Álgebra Los números reales. Números racionales e irracionales Piensa y calcula Calcula mentalmente el volumen de un cubo

Más detalles

a) Da una aproximación (con un número entero de metros) para las medidas del largo y del ancho del campo.

a) Da una aproximación (con un número entero de metros) para las medidas del largo y del ancho del campo. Modelos de EXAMEN Ejercicio nº 1.- Nos dicen que la medida de un campo de forma rectangular es de 45,236 m de largo por 38,54 m de ancho. Sin embargo, no estamos seguros de que las cifras decimales dadas

Más detalles

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación.

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. NÚMEROS REALES Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. Un conjunto es una colección bien definida

Más detalles

Representación de números en la recta real. Intervalos

Representación de números en la recta real. Intervalos Representación de números en la recta real. Intervalos I. Los números reales En matemáticas los números reales se componen de dos grandes grupos: los números racionales (Q) y los irracionales (I). A su

Más detalles

Números reales. Objetivos. Antes de empezar.

Números reales. Objetivos. Antes de empezar. 1 Números reales Objetivos En esta quincena aprenderás a: Clasificar los números reales en racionales e irracionales. Aproximar números con decimales hasta un orden dado. Calcular la cota de error de una

Más detalles

REPASO DE Nºs REALES y RADICALES

REPASO DE Nºs REALES y RADICALES REPASO DE Nºs REALES y RADICALES 1º.- Introducción. Números Reales. Números Naturales Los números naturales son el 0, 1,,,. Hay infinitos naturales, es decir, podemos encontrar un natural tan grande como

Más detalles

TEMA Nº 1. Conjuntos numéricos

TEMA Nº 1. Conjuntos numéricos TEMA Nº 1 Conjuntos numéricos Aprendizajes esperados: Utilizar y clasificar los distintos conjuntos numéricos en sus diversas formas de expresión, tanto en las ciencias exactas como en las ciencias sociales

Más detalles

RELACIÓN EJERCICIOS NÚMEROS RACIONALES Y REALES 4º B CURSO 2010-11

RELACIÓN EJERCICIOS NÚMEROS RACIONALES Y REALES 4º B CURSO 2010-11 RELACIÓN EJERCICIOS NÚMEROS RACIONALES Y REALES º B CURSO 00- Expresa las siguientes fracciones en forma decimal e indica de qué tipo es dicho cociente / /0 0/ / Entero, Decimal exacto 0 0, Periódico puro,

Más detalles