Tamaño: px
Comenzar la demostración a partir de la página:

Download ""

Transcripción

1 FACULTAD DE INGENIERÍA UNAM PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro

2 T E M A S DEL CURSO. Análisis Estadístico de datos muestrales.. Fundamentos de la Teoría de la probabilidad. 3. Variables aleatorias. 4. Modelos probabilísticos comunes. 5. Variables aleatorias conuntas. 6. Distribuciones muestrales.

3 3. Variables aleatorias. CONTENIDO TEMA 3 Obetivo: El alumno conocerá el concepto de variable aleatoria y podrá analizar el comportamiento probabilista de la variable, a través de su distribución y sus características numéricas. 3. Concepto de variable aleatoria como abstracción de un evento aleatorio. 3. Variable aleatoria discreta: función de probabilidad sus propiedades y su representación gráfica. Función de distribución acumulativa, sus propiedades y su representación gráfica. 3.3 Variable aleatoria continua: función de densidad de probabilidad sus propiedades y su representación gráfica. Función de distribución acumulativa, sus propiedades y su representación gráfica. 3.4 Valor esperado o media de la variable aleatoria discreta y de la continua. Valor esperado como operador matemático y sus propiedades. Momentos con respecto al origen y a la media. 3.4 Parámetros de las distribuciones de las variables aleatorias. Medidas de tendencia central, de dispersión y de asimetría.

4 INTRODUCCIÓN A LA PROBABILIDAD VARIABLES ALEATORIAS

5 VARIABLE * VARIABLE: Ad.. que varia o puede variar. f. Mat.. Magnitud que puede tener un valor cualquiera de los comprendidos en un conunto. Número que resulta de una medida u operación. VARIABLE CONTINUA: La que consta de unidades o partes que no están separadas unas de otras, como la longitud de una línea, el área de una superficie, el volumen de un sólido, la cabida de un vaso, etc. VARIABLE DISCRETA: La que consta de unidades o partes separadas unas de otras, como los árboles de un monte, los soldados de un eército, los granos de una espiga, etc. * Real Academia de la Lengua Española

6 VARIABLE DETERMINÍSTICA Variable: f. Mat. Magnitud que puede tener un valor de los comprendidos en un conunto, pero predecible con eactitud. Variable Determinística: Continua Discreta

7 VARIABLE ALEATORIA Variable Aleatoria: f. Mat.. Magnitud cuyos valores están determinados por las leyes de probabilidad, como los puntos resultantes de la tirada de un dado. Variable Aleatoria: Continua Discreta Algunos valores de una variable aleatoria pueden ser mas probables que otros, lo que da origen al concepto de distribución de probabilidad bilid d de una VA.

8 VARIABLE ALEATORIA Una VA es una función sobre el espacio de los posibles resultados eventos de un eperimento aleatorio, Por eemplo: a Al arroar una moneda y observar el lado que queda hacia arriba: { águila, 0sol} b Alimentar de la misma manera a 0 animales y obervar su peso después de 30 días c arroar dos dados y anotar la suma de los puntos que caen hacia arriba. d el voltae de salida de 50 eliminadores de baterías. Algunos valores de una variable aleatoria pueden ser mas probables que otros, lo que da origen al concepto de distribución de probabilidad bilid d de una VA.

9 DISTRIBUCIÓN DE PROBABILIDAD DE UNA VARIABLE ALEATORIA Eemplo: Caso de una VA discreta: Y Y Y +Y Y Y Y +Y 4 5 Eperimento: Arroar dos dados y observar la VA : la suma de los puntos de las caras que quedan hacia arriba Las formas en que puede ocurrir cada uno de los valores que toma la VA se muestran en la tabla Observemos que hay posibilidad en 36 de que, mientras que hay posibilidades en 36 de que

10 DISTRIBUCIÓN DE PROBABILIDAD DE UNA VARIABLE ALEATORIA Las probabilidades para cada valor de la VA se muestran en la tabla. En este eemplo la tabla representa la función de distribución de probabilidad fdp de la VA. P /36 3 /36 4 3/36 5 4/36 6 5/36 7 6/36 8 5/36 9 4/36 0 3/36 /36 Representación gráfica de la función de distribución de probabilidad de la VA P P /36

11 DISTRIBUCIÓN DE PROBABILIDAD DE UNA VARIABLE ALEATORIA Distribución de probabilidad de una VA : f P En nuestro eemplo de la suma de dos dados: f3 P 3 ; f3 /36 Propiedades de la distribución de probabilidad de una variable aleatoria discreta también conocida como función masa de probabilidad, fmp : a f 0 Para toda que pertencece a b f

12 DISTRIBUCIÓN DE PROBABILIDAD ACUMULATIVA DE UNA VARIABLE ALEATORIA DISCRETA Las probabilidades acumuladas para cada valor de la VA se muestran en la siguiente tabla que representa la función de distribución acumulativa FDA de la VA. P P< /36 3 3/36 4 6/36 5 0/36 6 5/36 7 /36 8 6/ / / F P i i 35/36 36/36 Esta es una función escalón, hay un salto en cada valor de y es plana entre ellos. En nuestro eemplo: F3 P < <3 ; F3 /36 + /36 3/36

13 DISTRIBUCIÓN DE PROBABILIDAD ACUMULATIVA DE UNA VARIABLE ALEATORIA DISCRETA F P i i La FDA es una función no decreciente de con las siguientes propiedades.. 0 F. 3. F P i F > - F i Además, si pertenece al conunto de los números enteros: 4. P F F 5. P i F F i i consultar: Canavos, Prob. y Estad., Aplicaciones y Métodos., Mc Graw Hill., pag. 56

14 DISTRIBUCIÓN DE PROBABILIDAD DE UNA VARIABLE ALEATORIA Caso de una VA continua Eperimento: observar la VA : el tiempo que dura una lámpara hasta que se funde. La probabilidad de que una lámpara dure de 0 a,000 horas es más alta que la probabilidad de que dure de,000 a,000 horas; es decir, que a medida que transcurre el tiempo, la probabilidad de que continúe en operación disminuye; este comportamiento se puede representar mediante una curva eponencial de la forma: λ f 0 fdp f λe 0 λ 0 cualquier otro caso

15 DISTRIBUCIÓN DE PROBABILIDAD DE UNA VARIABLE ALEATORIA Caso de una VA continua Propiedades de la distribución de probabilidad de una variable aleatoria continua también conocida como función de densidad de probabilidad, fdp :.. f 0, fd 3. Pa b b fd a

16 DISTRIBUCIÓN DE PROBABILIDAD ACUMULATIVA DE UNA VARIABLE ALEATORIA CONTINUA Caso de una VA continua Eperimento: observar la VA : el tiempo que dura una lámpara hasta que se funde. F La probabilidad de que una lámpara dure al menos horas se obtiene mediante la función de distribución acumulativa FDA. fdp FDA f λe 0 λ 0 cualquier otro caso 0 λ FDA e 0 F 0 cualquier otro caso F P f t dt

17 DISTRIBUCIÓN DE PROBABILIDAD ACUMULATIVA DE UNA VARIABLE ALEATORIA CONTINUA Caso de una VA continua F P f t dt La FDA es una función no decreciente de con las siguientes características.. F. F 3. Pa < 0 + < b df 4. f d además: P f t dt 0 Fb Fa y: P P < f t dt F

18 VALOR ESPERADO DE UNA VARIABLE ALEATORIA O ESPERANZA MATEMÁTICA Valor esperado de una variable aleatoria : E [ ] P f d ; ; si si es discreta es continua Valor esperado de una función g de una variable aleatoria : E [ g ] g P g f d ; ; si es discreta si es continua

19 PROPIEDADES DEL VALOR ESPERADO COMO OPERADOR MATEMÁTICO Si es una variable aleatoria con distribución de probabilidad f; a, b y c son constantes y g y h son funciones de, entonces:. E [ c] c. E [ a + b] ae[ ] + b 3. E [ g + h ] E [ g ] + E [ h ]

20 MOMENTOS DE UNA VARIABLE ALEATORIA El momento de orden respecto al origen de una variable aleatoria se define como: P ; si es discreta. i i [ ] i E f d ; si es continua. El momento de orden respecto a la media de una variable aleatoria se define como: E[ K ] i i P i f d ; si es discreta. ; si es continua.

21 MEDIA, VARIANZA Y DESVIACIÓN ESTÁNDAR DE UNA VA Vl Valor esperado o media de una variable ibl aleatoria i P i ; si es discreta. E[ ] i f d ; si es continua. σ Varianza de una variable aleatoria E[ ] i P i i f d ; si es discreta. ; si es continua. Desviación estándar σ σ

22 MOMENTOS DE UNA VARIABLE ALEATORIA MOMENTOS DE UNA VARIABLE ALEATORIA Los momentos de orden Los momentos de orden respecto a la media respecto a la media pueden epresarse en pueden epresarse en Los momentos de orden Los momentos de orden respecto a la media respecto a la media pueden epresarse en pueden epresarse en función de los momentos función de los momentos respecto al origen respecto al origen mediante la relación: mediante la relación: 0,,,... ; 0 Eemplo: Eemplo: Para segundo momento respecto a la media varianza Para segundo momento respecto a la media varianza y : que Notar y 0 ] [ ] [ ] [ E E E σ

23 MOMENTOS DE UNA VARIABLE ALEATORIA Con un procedimiento análogo al anterior encontramos que: Para Para aa

24 PROPIEDADES DE LA VARIANZA COMO OPERADOR MATEMÁTICO Si es una variable aleatoria con distribución de probabilidad f ; a, b y c son constantes, entonces: V [ c]. ] 0. V [ a + b ] a V [ ] Además, si Y es una variable aleatoria con distribución de probabilidad f Y y,, y se cumple que y Y son INDEPENDIENTES entonces: 3. V [ + Y ] V [ ] + V [ Y ]

25 DESIGUALDAD DE CHEBYSHEV Teorema: Si es una variable aleatoria con distribución de probabilidad f con media varianza σ ;y es una constante positiva, entonces: P σ Formas alternativas, a veces útiles, de la desigualdad de Chebyshev son: P < σ P σ < < + σ y La desigualdad proporciona una probabilidad límite de que la variable aleatoria esté a lo más a desviaciones estándar de la media sin que sea necesario conocer la distribución de probabilidad de, aunque se considera un resultado débil, ya que si se conoce con precisión f se pueden obtener meores resultados.

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patrca Valdez y Alfaro renev@unam.m Versón revsada: uno 08 T E M A S DEL CURSO. Análss Estadístco de datos muestrales.. Fundamentos de la

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@unam.mx Versión revisada: junio 2018 DEFINICIONES INTRODUCTORIAS PROBABILIDAD Y ESTADÍSTICA Y TIPOS DE VARIABLES

Más detalles

Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números

Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números IV. Variables Aleatorias Continuas y sus Distribuciones de Probabilidad 1 Variable Aleatoria Continua Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo

Más detalles

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación

Más detalles

UNIDAD 4: DISTRIBUCIÓN DE PROBABILIDAD

UNIDAD 4: DISTRIBUCIÓN DE PROBABILIDAD UNIDAD 4: DISTRIBUCIÓN DE PROBABILIDAD La Distribución de Probabilidad (DP) es la relación que se da entre los diferentes eventos de un espacio muestral y sus respectivas probabilidades de ocurrencia.

Más detalles

Variables aleatorias continuas y Teorema Central del Limite

Variables aleatorias continuas y Teorema Central del Limite Variables aleatorias continuas y Teorema Central del Limite FaMAF 17 de marzo, 2015 Variables aleatorias continuas Definición Una variable aleatoria X se dice (absolutamente continua) si existe f : R R

Más detalles

Algunas distribuciones teóricas continuas

Algunas distribuciones teóricas continuas Algunas distribuciones teóricas continuas Dr. Pastore, Juan Ignacio Profesor Adjunto. Algunas Distribuciones Estadísticas Teóricas Distribución Continuas: a) Distribución Uniforme b) Distribución de Exponencial

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA

ANALISIS DE FRECUENCIA EN HIDROLOGIA ANALISIS DE FRECUENCIA EN HIDROLOGIA Luis F. Carvajal Julián D. Rojo Universidad Nacional de Colombia Facultad de Minas Escuela de Geociencias y Medio Ambiente Introducción 1. Los eventos hidrológicos

Más detalles

3. Variables aleatorias

3. Variables aleatorias 3. Variables aleatorias Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 3. Variables aleatorias Curso 2009-2010 1 / 33 Contenidos 1 Variables aleatorias y su distribución

Más detalles

1 3 a) g(x) es una función de densidad. b) g(x) no es una función densidad, puesto que no es continua. c) g(x) es una función de distribución.

1 3 a) g(x) es una función de densidad. b) g(x) no es una función densidad, puesto que no es continua. c) g(x) es una función de distribución. VARIABLES ALEATORIAS 1 Sea F() la función de distribución de una variable aleatoria, entonces: a) F() es una función continua b) F ()=f() es continua c) F() es continua por la derecha La función de distribución

Más detalles

UNIDAD 4: PROBABILIDAD

UNIDAD 4: PROBABILIDAD UNIDAD 4: PROBABILIDAD La probabilidad se corresponde con la Frecuencia relativa. Es decir cuantas veces aparece un dato respecto del total de datos. Establece la probabilidad de que una variable tome

Más detalles

Variables aleatorias continuas, TCL y Esperanza Condicional

Variables aleatorias continuas, TCL y Esperanza Condicional Variables aleatorias continuas, TCL y Esperanza Condicional FaMAF 17 de marzo, 2011 1 / 37 Poisson P(λ) Número de éxitos en una cantidad grande de ensayos independientes Rango: {0, 1, 2,... } = {0} N Función

Más detalles

Estadística Aplicada

Estadística Aplicada Estadística Aplicada Distribuciones de Probabilidad Variables aleatorias Toman un valor numérico para cada resultado de un espacio muestral Discretas. Sus valores posibles constituyen un conjunto discreto.

Más detalles

TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES. Variable aleatoria (Real)

TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES. Variable aleatoria (Real) TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES Grado Ing Telemática (UC3M) Teoría de la Comunicación Variable Aleatoria / 26 Variable aleatoria (Real) Función que asigna un valor

Más detalles

10/04/2015. Ángel Serrano Sánchez de León

10/04/2015. Ángel Serrano Sánchez de León 0/04/05 Ángel Serrano Sánchez de León 0/04/05 Índice Distribuciones discretas de probabilidad Discreta uniforme Binomial De Poisson Distribuciones continuas de probabilidad Continua uniforme Normal o gaussiana

Más detalles

Unidad 3. Probabilidad

Unidad 3. Probabilidad Unidad 3. Probabilidad Javier Santibáñez 17 de agosto de 2018 1. Introducción Definición 1. La probabilidad es una medida subjetiva del grado de creencia que se tiene acerca de que algo desconocido sea

Más detalles

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 4.5 Semana 4.5 Optativa Prácticas Semanas 72.0

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 4.5 Semana 4.5 Optativa Prácticas Semanas 72.0 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTADES DE ECONOMÍA E INGENIERÍA LICENCIATURA EN ECONOMÍA Y NEGOCIOS PROGRAMA DE ESTUDIO Probabilidad y Estadística P84 /P74 /P94 09 Asignatura Clave Semestre

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@unam.mx T E M A S DEL CURSO 1. Análisis Estadístico de datos muestrales. 2. Fundamentos de la Teoría de la

Más detalles

Disponible en el sitio OCW de la Universidad Nacional de Córdoba.

Disponible en el sitio OCW de la Universidad Nacional de Córdoba. OCW - UNC OpenCourseWare I UNC Curso: Estadística I U 4. Variables Aleatorias Autora: Rosanna Casini Cómo citar el material: Disponible en el sitio OCW de la Universidad Nacional de Córdoba. Casini, Rosanna

Más detalles

Distribución de Probabilidad

Distribución de Probabilidad Distribución de Probabilidad Variables continuas Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Distribuciones de probabilidad continuas

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Nombre de la asignatura : Probabilidad. Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : ACB-9312

Nombre de la asignatura : Probabilidad. Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : ACB-9312 1. D A T O S D E L A A S I G N A T U R A Nombre de la asignatura : Probabilidad Carrera : Ingeniería en Sistemas Computacionales Clave de la asignatura : ACB-9312 Horas teoría-horas práctica-créditos :

Más detalles

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s).

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). VARIABLE ALEATORIA Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). X : S S s s X () s X(s) Rx Rx es el recorrido

Más detalles

VARIABLES ALEATORIAS DISCRETAS

VARIABLES ALEATORIAS DISCRETAS VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:

Más detalles

2. VARIABLE ALEATORIA. Estadística I Dr. Francisco Rabadán Pérez

2. VARIABLE ALEATORIA. Estadística I Dr. Francisco Rabadán Pérez 2. VARIABLE ALEATORIA Estadística I Dr. Francisco Rabadán Pérez Índice 1. Variable Aleatoria 2. Función de Distribución 3. Variable Aleatoria Discreta 4. Variable Aleatoria Continua 5. Esperanza Matemática

Más detalles

Variables aleatorias unidimensionales

Variables aleatorias unidimensionales Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen

Más detalles

TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18

TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 2.1. Concepto de variable aleatoria. Tipos de variables aleatorias: discretas y continuas. 2.2. Variables aleatorias discretas. Diagrama de

Más detalles

Carrera: Ingeniería Civil CIM 0531

Carrera: Ingeniería Civil CIM 0531 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Probabilidad y Estadística Ingeniería Civil CIM 0531 3 2 8 2.- HISTORIA DEL PROGRAMA

Más detalles

Estadística /Química 2004

Estadística /Química 2004 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLAN LICENCIATURA EN: QUÍMICA. NOMBRE DE LA ASIGNATURA: ESTADÍSTICA. ÓRGANO INTERNO QUE COORDINA EL PROGRAMA DE LA ASIGNATURA:

Más detalles

Programa de Asignatura ESTADISTICA I

Programa de Asignatura ESTADISTICA I Programa de Asignatura ESTADISTICA I A. Antecedentes Generales 1. Unidad Académica FACULTAD DE ECONOMÍA Y NEGOCIOS 2. Carrera INGENIERÍA COMERCIAL 3. Código EME221 4. Número de clases por 2 Módulos semana

Más detalles

Unidad 1: Espacio de Probabilidad

Unidad 1: Espacio de Probabilidad Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar

Más detalles

Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad

Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Indice 1) Sucesos aleatorios. Espacio muestral. 2) Operaciones con sucesos. 3) Enfoques de la Probabilidad.

Más detalles

Unidad 3. Probabilidad. Javier Santibáñez (IIMAS, UNAM) Inferencia Estadística Semestre / 22

Unidad 3. Probabilidad. Javier Santibáñez (IIMAS, UNAM) Inferencia Estadística Semestre / 22 Unidad 3. Probabilidad Javier Santibáñez (IIMAS, UNAM) Inferencia Estadística Semestre 2018-1 1 / 22 Espacios de probabilidad El modelo matemático para estudiar la probabilidad se conoce como espacio de

Más detalles

Teoría Estadística Elemental I Teoría (resumida) del 2 do Tema

Teoría Estadística Elemental I Teoría (resumida) del 2 do Tema Teoría Estadística Elemental I Teoría (resumida) del 2 do Tema Raúl Jiménez Universidad Carlos III de Madrid Noviembre 2011 Consideremos el lanzamiento de un dado, Ω = {1, 2, 3, 4, 5, 6}, y supongamos

Más detalles

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice

Más detalles

Tema 3. VARIABLES ALEATORIAS.

Tema 3. VARIABLES ALEATORIAS. 3..- Introducción. Tema 3. VARIABLES ALEATORIAS. Objetivo: Encontrar modelos matemáticos para el trabajo con probabilidad de sucesos. En particular, se quiere trabajar con funciones reales de variable

Más detalles

Transformaciones y esperanza

Transformaciones y esperanza Capítulo 3 Transformaciones y esperanza 3.1. Introducción Por lo general estamos en condiciones de modelar un fenómeno en términos de una variable aleatoria X cuya función de distribución acumulada es

Más detalles

Nombre de la materia. Departamento. Academia

Nombre de la materia. Departamento. Academia Probabilidad Ciencias Aplicadas de la Información Ciencias Básicas Nombre de la materia Departamento Academia Clave Horas-teoría Horas-práctica Horas-AI Total-horas Créditos I4862 60 20-80 9 Nivel Carrera

Más detalles

Por: Dra. Victoria Serrano

Por: Dra. Victoria Serrano Por: Dra. Victoria Serrano Una variable aleatoria es una función que asigna un número real X ζ a cada resultado ζ en el espacio muestral S de un experimento aleatorio S X ζ = x ζ x línea real S X Una moneda

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Estudios Superiores Aragón Ingeniería Mecánica Programa de Asignatura

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Estudios Superiores Aragón Ingeniería Mecánica Programa de Asignatura UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Estudios Superiores Aragón Ingeniería Mecánica Programa de Asignatura NOMBRE DE LA ASIGNATURA: PROBABILIDAD Y ESTADÍSTICA PLAN 2007 Tipo de asignatura:

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Estadística y Probabilidad

Estadística y Probabilidad La universidad Católica de Loja Estadística y Probabilidad ESCUELA DE ELECTRÓNICA Y TELECOMUNICACIONES Paralelo C Nombre: Milner Estalin Cumbicus Jiménez. Docente a Cargo: Ing. Patricio Puchaicela. Ensayo

Más detalles

Estadística LTA - Principios de estadística 2017

Estadística LTA - Principios de estadística 2017 Estadística Probabilidad Experimento: Desde el punto de vista de probabilidades será "cualquier acto que pueda repetirse en igualdad de condiciones". Ej. Arrojar una vez un dado. Espacio Muestral: Es el

Más detalles

Distribución de Probabilidad

Distribución de Probabilidad Distribución de Probabilidad Variables discretas Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Modelos probabilísticos Un modelo es una

Más detalles

Requisitos Matemáticos. Clase 01. Profesor: Carlos R. Pitta. ICPM050, Econometría. Universidad Austral de Chile Escuela de Ingeniería Comercial

Requisitos Matemáticos. Clase 01. Profesor: Carlos R. Pitta. ICPM050, Econometría. Universidad Austral de Chile Escuela de Ingeniería Comercial Universidad Austral de Chile Escuela de Ingeniería Comercial ICPM050, Econometría Clase 01 Requisitos Matemáticos Profesor: Carlos R. Pitta Econometría, Prof. Carlos R. Pitta, Universidad Austral de Chile.

Más detalles

FORMATO CONTENIDO DE CURSO O SÍLABO

FORMATO CONTENIDO DE CURSO O SÍLABO 1. INFORMACIÓN GENERAL DEL CURSO Facultad Ingeniería Fecha de Actualización Programa Ingeniería química Semestre VI Nombre Estadística Código 22302 Prerrequisitos 22147 Créditos 3 Nivel de Formación Área

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD VARIABLE ALEATORIA Una variable x valuada numéricamente varía o cambia, dependiendo del resultado particular del experimento que se mida. Por ejemplo, suponga que se tira

Más detalles

Variables aleatorias

Variables aleatorias Capítulo 5 Variables aleatorias 5.1. Introducción Normalmente, los resultados posibles (espacio muestral E) de un experimento aleatorio no son valores numéricos. Por ejemplo, si el experimento consiste

Más detalles

VARIABLES ALEATORIAS Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLES ALEATORIAS Y FUNCIÓN DE DISTRIBUCIÓN VARIABLES ALEATORIAS Y FUNCIÓN DE DISTRIBUCIÓN BIBLIOGRAFIA Walpole, Ronal E., Myres, Raymond H., Myres, Sharon L.: Probabilidad y Estadística para Ingenieros. McGraw Hill-Interamericana. Canavos G. Probabilidad

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 4 Variables aleatorias Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir las características de las variables aleatorias discretas y continuas.

Más detalles

4. CONCEPTOS BASICOS DE PROBABILIDAD

4. CONCEPTOS BASICOS DE PROBABILIDAD 4. CONCEPTOS BASICOS DE PROBABILIDAD 4.1 Introducción La probabilidad y la estadística son, sin duda, las ramas de las Matemáticas que están en mayor auge en este siglo, y tienen una tremenda aplicabilidad

Más detalles

T1. Distribuciones de probabilidad discretas

T1. Distribuciones de probabilidad discretas Estadística T1. Distribuciones de probabilidad discretas Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir de

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

PROBABILIDAD. 4 horas a la semana 8 créditos Semestre variable según la carrera

PROBABILIDAD. 4 horas a la semana 8 créditos Semestre variable según la carrera PROBABILIDAD 4 horas a la semana 8 créditos Semestre variable según la carrera Objetivo del curso: Aplicar los conceptos y la metodología básica de la teoría de la probabilidad para analizar algunos fenómenos

Más detalles

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Estadística. Programa de Estadística

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Estadística. Programa de Estadística Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Estadística Profesor: MSc. Julio Rito Vargas Avilés. Programa de Estadística Estudiantes: FAREM-Carazo Quien tiene un libro y no lo lee,

Más detalles

Teorema de Bayes(6) Nos interesan las probabilidades a posteriori o probabilidades originales de las partes p i :

Teorema de Bayes(6) Nos interesan las probabilidades a posteriori o probabilidades originales de las partes p i : Teorema de Bayes(5) 75 Gráficamente, tenemos un suceso A en un espacio muestral particionado. Conocemos las probabilidades a priori o probabilidades de las partes sabiendo que ocurrió A: Teorema de Bayes(6)

Más detalles

Variables aleatorias: El caso continuo. Random variables: The continuous case. Rincón de la Bioestadística

Variables aleatorias: El caso continuo. Random variables: The continuous case. Rincón de la Bioestadística Variables aleatorias: El caso continuo Gabriel Cavada Ch. 1 1 División de Bioestadística, Escuela de Salud Pública, Universidad de Chile. Random variables: The continuous case E l tratamiento de una variable

Más detalles

Tema 4: Variables Aleatorias

Tema 4: Variables Aleatorias Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto

Más detalles

Grupo 23 Semestre Segundo examen parcial

Grupo 23 Semestre Segundo examen parcial Probabilidad Grupo 23 Semestre 2015-2 Segundo examen parcial La tabla siguiente presenta 20 postulados, algunos de los cuales son verdaderos y otros son falsos. Analiza detenidamente cada postulado y elige

Más detalles

Tema 4: VARIABLES ALEATORIAS BIDIMENSIONALES

Tema 4: VARIABLES ALEATORIAS BIDIMENSIONALES Tema 4: VAIABLES ALEATOIAS BIDIMENSIONALES 1 Concepto de variable aleatoria bidimensional Sea Ω el espacio muestral de un experimento aleatorio. Definimos variable aleatoria bidimensional, como una aplicación

Más detalles

Sumario Prólogo Unidad didáctica 1. Introducción a la estadística. Conceptos preliminares Objetivos de la Unidad...

Sumario Prólogo Unidad didáctica 1. Introducción a la estadística. Conceptos preliminares Objetivos de la Unidad... ÍNDICE SISTEMÁTICO PÁGINA Sumario... 5 Prólogo... 7 Unidad didáctica 1. Introducción a la estadística. Conceptos preliminares... 9 Objetivos de la Unidad... 11 1. Población y muestra... 12 2. Parámetro

Más detalles

TEMA 2.- VARIABLES ALEATORIAS

TEMA 2.- VARIABLES ALEATORIAS TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 16/17 2.1. Concepto de variable aleatoria. Tipos de variables aleatorias. 2.2. Variables aleatorias discretas. Diagrama de barras. 2.3. Función de

Más detalles

Capítulo 5: Probabilidad e inferencia

Capítulo 5: Probabilidad e inferencia Capítulo 5: Probabilidad e inferencia estadística (Fundamentos Matemáticos de la Biotecnología) Departamento de Matemáticas Universidad de Murcia Contenidos Principios de la probabilidad Conceptos básicos

Más detalles

Carrera: Ingeniería Civil Participantes Comité de Evaluación Curricular de Institutos Tecnológicos

Carrera: Ingeniería Civil Participantes Comité de Evaluación Curricular de Institutos Tecnológicos 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Probabilidad y Estadística Ingeniería Civil Clave de la asignatura: Horas teoría-horas práctica-créditos 3-2-8 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

Repaso de Estadística

Repaso de Estadística Teoría de la Comunicación I.T.T. Sonido e Imagen 25 de febrero de 2008 Indice Teoría de la probabilidad 1 Teoría de la probabilidad 2 3 4 Espacio de probabilidad: (Ω, B, P) Espacio muestral (Ω) Espacio

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Definición de una V.A.C. Definición de una V.A.C.

Más detalles

Tema 4: VECTORES ALEATORIOS

Tema 4: VECTORES ALEATORIOS Tema 4: VECTOES ALEATOIOS 1 Concepto de variable aleatoria bidimensional Sea Ω el espacio muestral de un experimento aleatorio. Definimos variable aleatoria bidimensional, como una aplicación ( ):Ω tal

Más detalles

PROGRAMA DE ASIGNATURA. CARÁCTER: Obligatoria CARRERA: Licenciatura en Ciencias de la Computación Profesorado en Física Profesorado en Matemática

PROGRAMA DE ASIGNATURA. CARÁCTER: Obligatoria CARRERA: Licenciatura en Ciencias de la Computación Profesorado en Física Profesorado en Matemática PROGRAMA DE ASIGNATURA ASIGNATURA: Probabilidad y Estadística Introducción a la Probabilidad y Estadísitica AÑO: 2012 CARÁCTER: Obligatoria CARRERA: Licenciatura en Ciencias de la Computación Profesorado

Más detalles

Estadística Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri

Estadística Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri Estadística 2011 Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri Clase 1 1. Las Definiciones de Probabilidad 2. Variables Aleatorias 3. Función de Densidad

Más detalles

UNIVERSIDAD DE GUADALAJARA PROGRAMA DE ASIGNATURA MT150

UNIVERSIDAD DE GUADALAJARA PROGRAMA DE ASIGNATURA MT150 UNIVERSIDAD DE GUADALAJARA PROGRAMA DE ASIGNATURA NOMBRE DE MATERIA ELEMENTOS DE PROBABILIDAD Y ESTADISTICA CÓDIGO DE MATERIA DEPARTAMENTO ÁREA DE FORMACIÓN MT150 CIENCIAS BIOLOGICAS BÁSICA COMÚN CENTRO

Más detalles

Distribuciones de Probabilidad

Distribuciones de Probabilidad Distribuciones de Probabilidad Variables Aleatorias Ahora se introducirá el concepto de variable aleatoria y luego se introducirán las distribuciones de probabilidad discretas más comunes en la práctica

Más detalles

Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Generación de Variables Aleatorias UCR ECCI CI-453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción Las variables aleatorias se representan por medio de distribuciones

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 4 horas a la semana 8 créditos Semestre variable según la carrera Objetivo del curso: Analizar y resolver problemas de naturaleza aleatoria en la ingeniería, aplicando conceptos

Más detalles

UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA FACULTAD DE CIENCIAS PROGRAMA DE MATEMÁTICAS PLAN DE ESTUDIOS

UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA FACULTAD DE CIENCIAS PROGRAMA DE MATEMÁTICAS PLAN DE ESTUDIOS UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA FACULTAD DE CIENCIAS PROGRAMA DE MATEMÁTICAS PLAN DE ESTUDIOS ASIGNATURA : ESTADÍSTICA GENERAL CÓDIGO : 8105201 SEMESTRE : VI CRÉDITOS : 4 FECHA DE ULTIMA

Más detalles

Ejercicio 1. Ejercicio 2

Ejercicio 1. Ejercicio 2 Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función

Más detalles

INGENIERO EN COMPUTACIÓN DISTRIBUCIONES DE PROBABILIDAD CONTINUA ELABORÓ: M. EN C. LUIS ENRIQUE KU MOO FECHA: AGOSTO DE 2017

INGENIERO EN COMPUTACIÓN DISTRIBUCIONES DE PROBABILIDAD CONTINUA ELABORÓ: M. EN C. LUIS ENRIQUE KU MOO FECHA: AGOSTO DE 2017 UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO INGENIERO EN COMPUTACIÓN DISTRIBUCIONES DE PROBABILIDAD CONTINUA ELABORÓ: M. EN C. LUIS ENRIQUE KU MOO FECHA: AGOSTO DE 2017

Más detalles

Distribuciones discretas. Distribución binomial

Distribuciones discretas. Distribución binomial Variables aleatorias discretas y continuas Se llama variable aleatoria a toda función definida en el espacio muestral de un experimento aleatorio que asocia a cada elemento del espacio un número real.

Más detalles

4 VARIABLES ALEATORIAS DISCRETAS

4 VARIABLES ALEATORIAS DISCRETAS VARIABLES ALEATORIAS DISCRETAS Una ruleta está dividida en cuatro sectores de 90º de los que dos opuestos por el vértice son Azules, y los otros dos son uno Blanco y el otro Rojo. Conderemos el experimento

Más detalles

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADÍSTICA

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADÍSTICA UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADÍSTICA NIVEL: LICENCIATURA CRÉDITOS: 9 CLAVE: ICAD24.500919 HORAS TEORÍA: 4.5 SEMESTRE: CUARTO HORAS PRÁCTICA: 0 REQUISITOS:

Más detalles

Probabilidad. Carrera: IFM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.

Probabilidad. Carrera: IFM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad Licenciatura en Informática IFM - 0429 3-2-8 2.- HISTORIA DEL PROGRAMA

Más detalles

Repaso de conceptos de álgebra lineal

Repaso de conceptos de álgebra lineal MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso

Más detalles

TEMA 3. VARIABLES ALEATORIAS.

TEMA 3. VARIABLES ALEATORIAS. TEMA 3. VARIABLES ALEATORIAS. Objetivo: El alumno conocerá el concepto de variable aleatoria y podrá analizar el concepto probabilista de la variable a través de su distribución y sus características numéricas.

Más detalles

Probabilidad. Carrera: ACM Estadística Aplicada. Estadística 1. Estudio del Trabajo 1. Análisis de Datos Experimentales.

Probabilidad. Carrera: ACM Estadística Aplicada. Estadística 1. Estudio del Trabajo 1. Análisis de Datos Experimentales. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad Ingeniería en Industrias Alimentarias ACM-9312 4-0-8 2.- UBICACIÓN

Más detalles

Unidad IV: Distribuciones muestrales

Unidad IV: Distribuciones muestrales Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia

Más detalles

Presentación. FaMAF. 10 de marzo, 2015

Presentación. FaMAF. 10 de marzo, 2015 Presentación FaMAF 10 de marzo, 2015 Bibliografía 1. Sheldon M. Ross, Modelos y Simulación, Prentice Hall, 2da. edición, (1999). 2. Sheldon M. Ross, Simulation, Academic Press, 4rd. edition, 2006. 3. Averill

Más detalles

Variables Aleatorias y Distribución de Probabilidades

Variables Aleatorias y Distribución de Probabilidades Variables Aleatorias y Distribución de Probabilidades Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 27 de mayo de 2011 Tabla de Contenidos Variables

Más detalles

Experimento de lanzar 3 monedas al aire. Denominando por (C) a Cara y (X) a Cruz, el espacio muestral será: Ω={CCC,CCX,CXC,XCC,CXX,XCX,XXC,XXX}

Experimento de lanzar 3 monedas al aire. Denominando por (C) a Cara y (X) a Cruz, el espacio muestral será: Ω={CCC,CCX,CXC,XCC,CXX,XCX,XXC,XXX} 1 Tema 3 : Variable Aleatoria Unidimensional 3.1. Concepto de variable aleatoria Se llama variable aleatoria (v.a.) a toda aplicación que asocia a cada elemento del espacio muestral (Ω) de un experimento,

Más detalles

9 APROXIMACIONES DE LA BINOMIAL

9 APROXIMACIONES DE LA BINOMIAL 9 APROXIMACIONES DE LA BINOMIAL 1 Una variable aleatoria sigue una distribución binomial B(n = 1000; p = 0,003). Mediante la aproximación por una distribución de POISSON, calcular P(X = 2), P(X 3) y P(X

Más detalles

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas ESTADÍSTICA. Ingeniería Informática TEORÍA

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas ESTADÍSTICA. Ingeniería Informática TEORÍA Universidad Nacional del Litoral Facultad de Ingeniería Ciencias Hídricas ESTADÍSTICA Ingeniería Inormática TEORÍA Mg.Ing. Susana Vanlesberg Proesor Titular UNIDAD 2 Variables Aleatorias Estadística -

Más detalles

Estadística aplicada al Periodismo

Estadística aplicada al Periodismo Estadística aplicada al Periodismo Temario de la asignatura Introducción. Análisis de datos univariantes. Análisis de datos bivariantes. Series temporales y números índice. Probabilidad y Modelos probabilísticos.

Más detalles

PROGRAMA DE ESTUDIO. - Nombre de la asignatura : ESTADISTICA I. - Pre requisitos : Matemática III

PROGRAMA DE ESTUDIO. - Nombre de la asignatura : ESTADISTICA I. - Pre requisitos : Matemática III PROGRAMA DE ESTUDIO A. Antecedentes Generales - Nombre de la asignatura : ESTADISTICA I - Código : EME 221 - Carácter de la asignatura (obligatoria / electiva) : Obligatoria - Pre requisitos : Matemática

Más detalles

Tema 3: VARIABLES ALEATORIAS

Tema 3: VARIABLES ALEATORIAS Tema 3: VARIABLES ALEATORIAS Introducción En el tema anterior hemos modelizado el comportamiento de los experimentos aleatorios. Los resultados de un experimento aleatorio pueden ser de cualquier naturaleza,

Más detalles