Práctica 7. La transformada de Laplace

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Práctica 7. La transformada de Laplace"

Transcripción

1 Práctica 7. La tranformada de Laplace En la primera parte de eta práctica e motrará cómo calcular la tranformada de Laplace y la tranformada invera de Laplace de ditinta funcione utilizando Mathematica. En la egunda parte e aplicarán eta tranofrmada para reolver ecuacione diferenciale y daremo condicione de exitencia de la tranformada de Laplace.. Tranformada de Laplace 2. Tranformada invera de Laplace 3. Tranformada de Laplace de alguna funcione elementale 4. Reolución de ecuacione diferenciale 5. Teorema de exitencia de la tranformada de Laplace 6. Ejercicio. Tranformada de Laplace Se define la tranformada de Laplace de una función como L[f(t)]=F()=Ÿ 0 e -t fhtl t, donde la integral impropia e entiende como u valor principal, L[f(t)]= lím Ÿ M M Ø+ 0 e -t fhtl t, cuando exite. La función de Mathematica que calcula la tranformada de Laplace e: LaplaceTranform[función[variable],variable,variable2], que calcula la tranformada de Laplace de "función" y la exprea como una función de "variable2" LaplaceTranform@f@tD, t, D De eta forma podemo ecribir: LaplaceTranform@Exp@a td, t, D a + Mathematica conoce la propiedade de la tranformada de Laplace:

2 2 Pr7MatII.nb H LLaplaceTranform@c a@td + d b@td, t, DH linealidad L c LaplaceTranform@a@tD, t, D + d LaplaceTranform@b@tD, t, D H 2 LLaplaceTranform@Integrate@h@uD, 8u, 0, t<d, t, D H tranformada de una integral L LaplaceTranform@h@tD, t, D H 3 LLaplaceTranform@f'@tD, t, DH tranformada de una derivada primera L f@0d + LaplaceTranform@f@tD, t, D H 4 LLaplaceTranform@f''@tD, t, DH tranformada de una derivada egunda L f@0d + 2 LaplaceTranform@f@tD, t, D H 5 LD@LaplaceTranform@f@tD, t, D, DH derivada primera de una tranformada L LaplaceTranform@t f@td, t, D H 6 LD@LaplaceTranform@f@tD, t, D, 8, 2<D H derivada egunda de una tranformada L LaplaceTranformAt 2 f@td, t, E H 7 LLaplaceTranformA a t f@td, t, EH Teorema del deplazamiento L LaplaceTranform@f@tD, t, a + D Vamo a comprobar el teorema del valor inicial y el teorema del valor final para la función f (t) = t - 2 Limit@ LaplaceTranform@t 2, t, D, InfinityD Limit@t 2, t 0D H El Teorema del valor inicial no dice que eto límite on iguale L 2 2

3 Pr7MatII.nb 3 Limit@ LaplaceTranform@t 2, t, D, 0D Limit@t 2, t InfinityD H El teorema del valor final no dice que eto límite on iguale L Por ejemplo : LaplaceTranform@3 t +2 t^2, t, D LaplaceTranform@t, t, D 2 LaplaceTranform@t^2, t, D 2 3 Se puede obtener la tranformada de Laplace de funcione dicontinua, con dicontinuidade de alto, ya que ete tipo de funcione e pueden exprear en término de la función pao de Heaviide: H(t)= i t 0, H(t)=0 i t<0, que en Mathematica e llama la función UnitStep[t] y también HeaviideTheta[t]. Plot@UnitStep@tD, 8t, 4, 4<, AxeOrigin 80, <, Axe 8Fale, True<D

4 4 Pr7MatII.nb t, D Si queremo obtener la tranformada de Laplace de g (t) = - i t < 4, f (t) = i t >= 4, podemo exprear la función como: g(t)=-(-h(t-4))+h(t-4)=-+2h(t-4). Ahora definimo: g@t_d := +2 UnitStep@t 4D Plot@g@tD, 8t,, 8<D Su tranformada de Laplace e : LaplaceTranform@f@tD, t, D Tranformada invera de Laplace La tranformada invera de Laplace de una función, F HL, e L HLD = f HtL, tal que L@f HtLD = F HL La tranformada invera de Laplace en Mathematica e calcula mediante el comando : InvereLaplaceTranform[F[],, t] Por ejemplo, InvereLaplaceTranform@6êH +2L^4,, td 2t t 3

5 Pr7MatII.nb 5 LaplaceTranformA 2t t 3, t, E 6 H2 +L 4 A vece Mathematica no da una olución en término de exponenciale compleja. En eto cao con el comando ExpToTrig[expreión]//Simplify, podemo coneguir una expreión in número complejo. inv = InvereLaplaceTranform@êH^ L,, td 4 H 2 Lt IH2 L + H2+ L 4 t M ExpToTrig@invD êê Simplify H2Co@2tD Sin@2tDL HCoh@tD Sinh@tDL 2 3. Tranformada de Laplace de alguna funcione elementale H L LaplaceTranform@, t, D H 2 L LaplaceTranform@t, t, D 2 H 2 L LaplaceTranform@t^n, t, D n Gamma@ +ndh La función Gamma en el entero n+ e igual a n! L H 3 L LaplaceTranformA a t, t, E a +

6 6 Pr7MatII.nb H 4 L LaplaceTranformA a I t, t, E a+ ComplexExpand B a+ F a a a H 5 L LaplaceTranformA a I t, t, E a+ ComplexExpand B a+ F a a a H 6 L LaplaceTranform@Co@a td, t, D a H 7 L LaplaceTranform@Sin@a td, t, D a a H 8 L LaplaceTranform@Coh@a td, t, D a H 9 L LaplaceTranform@Sinh@a td, t, D a a 2 2

7 Pr7MatII.nb 7 4. Reolución de ecuacione diferenciale Conideremo el problema y' - 4 y = 4 t, y H0L = 0, utilizando la tranformada de Laplace. Realizaremo lo mimo pao que eguiríamo i lo reolviéemo a mano. pao = LaplaceTranform@y'@tD 4 y@td Exp@4 td, t, D 4LaplaceTranform@y@tD, t, D +LaplaceTranform@y@tD, t, D y@0d 4 + pao2 = pao ê. y@0d 0 4LaplaceTranform@y@tD, t, D +LaplaceTranform@y@tD, t, D 4 + pao3 = Solve@pao2, LaplaceTranform@y@tD, t, DD ::LaplaceTranform@y@tD, t, D H 4 +L 2>> pao3@@,, 2DD H 4 +L 2 ol = InvereLaplaceTranform@%,, td 4t t Ahora vamo a reolver una ecuación en la que interviene una función dicontinua : Conideremo la ecuación y'' + 9 y = f (t) con la condicione iniciale y (0) = y' (0) = 0, donde f(t)=0 i t<, f(t)= i t 2 y f(t)=0 i t>2. La función f (t) e exprea como f (t) = H (t - ) - H (t - 2) p = LaplaceTranform@y''@tD 9 y@td UnitStep@t D UnitStep@t 2D, t, D 9 LaplaceTranform@y@tD, t, D + 2 LaplaceTranform@y@tD, t, D y@0d 2 +

8 8 Pr7MatII.nb p2 = p ê. 8y@0D > 0, y'@0d 0< 9LaplaceTranform@y@tD, t, D + 2 LaplaceTranform@y@tD, t, D 2 + p3 = Solve@p2, t, DD ::LaplaceTranform@y@tD, t, D 2 H + L >> I M p3@@,, 2DD 2 H + L I M InvereLaplaceTranform@%,, td 8 3H2+tL J I 6 3t M 2 HeaviideTheta@ 2 +td + 3 I 3 3t M 2 HeaviideTheta@ +tdn FullSimplify@%D H H +Coh@6 3tDLHeaviideTheta@ 2 +td +H +Coh@3 3tDLHeaviideTheta@ +tdl 9 5. Teorema de exitencia de la tranformada de Laplace Diremo que una función f e de orden exponencial a cuando t tiende a infinito, i exiten una contante a, k,t poitiva, tale que: f( t) < k at, para todo t> T Si una función verifica la condición para un cierto a, también la verificará b > a. Al valor a má pequeño que verifica eta expreión, e le llama abcia de convergencia de f. Teorema: Dada una función f (t), 0 t <, i atiface : ) La retricción de f a cada intervalo finito e continua a trozo, 2) f e de orden exponencial a 0, entonce la tranformada de Laplace F() exite para todo, = a + bi, tal que a> a 0. A la funcione que cumplen ) y 2) del teorema anterior e le llama funcione admiible. A continuación vamo a analizar alguno ejemplo en lo que la funcione no cumplen con ) o 2) del teorema. al Conideremo la función f HtL = t5

9 Pr7MatII.nb 9 f@t_d := Exp@t^5D Limit@Exp@ a td f@td, t InfinityD ComplexInfinity La función no e de orden exponencial, ya que el ímite etudiado no reulta finito para ningún valor de a. Eta función verifica ) Plot@f@tD, 8t, 0, 2.5<D 3.5 µ µ µ µ µ 0 6. µ µ b) Conideremo la función f (t) = co (/t) f@t_d := Co@êtD Limit@Exp@ a td f@td, t +InfinityD LimitB at CoB F, t F t Vamo a motrar el reultado del límite a modo de tabla, en un entorno del punto t = 0 con el fin de determinar la cota inferior del límite : Table@Limit@Exp@ a td f@td, t +InfinityD, 8a, 5, 5<D 8,,,,,, 0, 0, 0, 0, 0< Laabciadeconvergenciae α 0 =0, peronocumplel, ya que en cero hay una dicontinuidad.

10 0 Pr7MatII.nb 8t, 0, 0.<D Ejercicio. Buca qué e una función eccionalmente regular. E f (t) = co (/t) eccionalmente regular? 2. Buca un teorema que relacione la condicione de eccionalmente regular y de orden exponencial con la exitencia de la tranformada de Laplace. 3. Reuelve la ecuación diferencial y'' - 2 y' + y = t 3 + t, con la condicione iniciale : y H0L = 0, y' H0L = 0, utilizando la tranformada de Laplace 4. Reuelve la ecuación diferencial y'' - 3 y' - y = - t + t 2, con la condicione iniciale : y H0L = 0, y' H0L = 0 5. Reuelve la ecuación diferencial y''' - 3 y'' + 3 y' - y = t 2 t, con la condicione iniciale : y H0L = 0, y' H0L = 0, y'' H0L = 0 6. Encuentra la tranformada de Laplace de la iguiente funcione : al t t 2 + 2, bm t 3 at + en HbtL, cm t 2 co HtL, dm coh H3 tl + 2 t 6. Encuentra la tranformada invera de Laplace de la iguiente funcione : al 5 6, b 3 I 2 + M 4, c 2 I 2 + M I 2 + M 4 7. Buca para qué irve el comando Apart[]. 8. Mediante un comando de Mathematica decompón la fracción H - 5L H + 2L en

11 Pr7MatII.nb fraccione imple. Utiliza la decompoición para hallar la tranformada de Laplace. Bibliografía è Práctica de Ampliación de Matemática para la ingeniería aeronáutica. B. García, D. Ginetar y C. Santamaría. UPV. è Práctica de ecuaione diferenciale con Mathematica. Aplicacione. Ángel Balaguer Beer. UPV. è Ecuacione diferenciale con el Mathematica. C. Coll, D. Ginetar, A. Herrero, P. Jiménez, J. Peña, A. Ramírez, E. Sánchez. UPV.

MATEMÁTICAS ESPECIALES II PRÁCTICA 7 La transformada de Laplace.

MATEMÁTICAS ESPECIALES II PRÁCTICA 7 La transformada de Laplace. MATEMÁTICAS ESPECIALES II - 28 PRÁCTICA 7 La tranformada de Laplace. Se dice que una función f(t) e de orden exponencial α cuando t i exiten contante M > y T > tale que f(t) < Me αt para todo t > T. Sea

Más detalles

Apuntes Transformada de Laplace

Apuntes Transformada de Laplace Univeridad écnica Federico Santa María Departamento de Matemática Campu Santiago MA3 ICIPEV Apunte ranformada de Laplace Definición de la ranformada de Laplace Vivian Aranda Núñez Verónica Gruenerg Stern

Más detalles

Transformada de Laplace

Transformada de Laplace Tranformada de Laplace 1. Introducción Puede decire que lo método cláico para la reolución de problema de valore en la frontera en la Fíica Matemática e derivan del trabajo precuror de Fourier. Una nueva

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-118-1-M-2-12-2017 CURSO: SEMESTRE: Curo de vacacione Diciembre 2017 CÓDIGO DEL CURSO: 118 TIPO DE EXAMEN:

Más detalles

LA TRANSFORMADA DE LAPLACE.

LA TRANSFORMADA DE LAPLACE. TEMA N o 5 LA TRANSFORMADA DE LAPLACE. DEFINICIÓN Sea f (t) una función continua en un intervalo [; ) y uponemo que f atiface cierta condicione. Entonce la integral L ff (t)g = F () = Z e t f (t) dt e

Más detalles

Ejemplos básicos Transformada de Laplace

Ejemplos básicos Transformada de Laplace Ejemplo báico Tranformada de Laplace Genaro Luna Carreto 1 05 de Noviembre 2018, 6pm. 1 Profeor de la Benemérita Univeridad Autónoma de Puebla, México. Ecuacione diferenciale Problema 1. Reuelve la iguiente

Más detalles

Nº de actividad Contenido 1 Calcular la transformada de Laplace, usando calculadora

Nº de actividad Contenido 1 Calcular la transformada de Laplace, usando calculadora Univeridad Diego Portale Primer Semetre 007 Facultad de Ingeniería Intituto de Ciencia Báica Aignatura: Ecuacione Diferenciale Laboratorio Nº 7 Definición de tranformada de Laplace Propiedad de la tranformada

Más detalles

AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial Boletín n o 4

AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial Boletín n o 4 AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Indutrial. Epecialidad en Electrónica Indutrial Boletín n o. Hallar la tranformada de Laplace de cada una de la iguiente funcione: a) n Ch n + Sh n) b) en c)

Más detalles

Transformada de Laplace

Transformada de Laplace Tranformada de Laplace Prof. André Roldán Aranda amroldan ugr.e http : electronica.ugr.e amroldan 5 03 2009 Etudio de la tranformada de Laplace para u uo en el cálculo de la eñale de alida de circuito

Más detalles

MA26A, Auxiliar 5, 26 de Abril, 2007

MA26A, Auxiliar 5, 26 de Abril, 2007 MA26A, Auxiliar 5, 26 de Abril, 27 Profeor Cátedra: Raúl Manaevich Profeor Auxiliar : Alfredo Núnez. Tranformada de Laplace... Sea f : [, ) R función continua a trozo y de orden exponencial. Demuetre que

Más detalles

Transformadas de Laplace Funciones de Transferencia

Transformadas de Laplace Funciones de Transferencia Tranformada de aplace Funcione de Tranferencia 1.-Introducción. 2.-Tranformada de aplace. 3.-Tranformada Invera de aplace. 4.-Análii de Circuito en el dominio de aplace. 4.1.-Circuito Tranformado. 4.2.-Aplicación

Más detalles

Tema 2. Descripción externa de sistemas

Tema 2. Descripción externa de sistemas de Sitema y Automática Tema. Decripción externa de itema Automática º Curo del Grado en Ingeniería en Tecnología Indutrial de Sitema y Automática Contenido Tema.- Decripción externa de itema:.1. Introducción.

Más detalles

IE TEC. Total de Puntos: 71 Puntos obtenidos: Porcentaje: Nota:

IE TEC. Total de Puntos: 71 Puntos obtenidos: Porcentaje: Nota: IE TEC Nombre: Intituto Tecnológico de Cota Rica Ecuela de Ingeniería Electrónica EL-70 Modelo de Sitema Profeore: Dr. Pablo Alvarado Moya, Ing. Gabriela Ortiz León, M.Sc. I Semetre, 007 Examen de Suficiencia

Más detalles

6 La transformada de Laplace

6 La transformada de Laplace CAPÍTULO 6 La tranformada de Laplace 6. efinición de la tranformada de Laplace 6.. efinición y primera obervacione En la gran mayoría de lo itema de interé para la fíica y la ingeniería e poible (al meno

Más detalles

Propiedades de la Transformada de Laplace

Propiedades de la Transformada de Laplace Propiedade de la Tranformada de Laplace W. Colmenare Univeridad Simón Bolívar, Departamento de Proceo y Sitema Reumen En eto apunte demotramo alguna de la propiedade de la tranformada de Laplace y hacemo

Más detalles

1. Breves Apuntes de la Transformada de Laplace

1. Breves Apuntes de la Transformada de Laplace Ingeniería de Sitema. Breve Apunte de la Tranformada de Laplace Nota: Eto apunte tomado de diferente bibliografía y apunte de clae, no utituyen la diapoitiva ni la explicación del profeor, ino que complementan

Más detalles

Métodos Matemáticos de la Física 2 Transformaciones Integrales

Métodos Matemáticos de la Física 2 Transformaciones Integrales Método Matemático de la Fíica 2 Tranformacione Integrale L. A. Núñez * Centro de Atrofíica Teórica, Departamento de Fíica, Facultad de Ciencia, Univeridad de Lo Ande, Mérida 5, Venezuela y Centro Nacional

Más detalles

La transformada de Laplace

La transformada de Laplace GUIA 7 La tranformada de Laplace. Concepto de la tranformada de Laplace Definición. Una función u(t) definida en t < tiene tranformada de Laplace i exite un real a > tal que la integral e t u(t) dt converge

Más detalles

348 Ecuaciones diferenciales. t si t < 1I 0 si t > 2: R Interruptor

348 Ecuaciones diferenciales. t si t < 1I 0 si t > 2: R Interruptor 348 Ecuacione diferenciale Ejemplo 6..3 Calcular la corriente en un circuito en erie LC cuyo componente on: una reitor de, un inductor de, un capacitor de F y una fuente de voltaje que uminitra (en voltio):

Más detalles

Universidad Diego Portales Facultad de Ingeniería Instituto de Ciencias Básicas

Universidad Diego Portales Facultad de Ingeniería Instituto de Ciencias Básicas Univeridad Diego Portale Facultad de Ingeniería Intituto de Ciencia Báica Ecuacione Diferenciale er Semetre 6 Guia de ejercicio: Tranformada de Laplace Ejercicio : Calcule la iguiente tranformada de Laplace.

Más detalles

Aplicaciones de las derivadas

Aplicaciones de las derivadas Aplicacione de la derivada 1. Crecimiento y decrecimiento de una función 2. Determinación de extremo relativo 3. Optimización de funcione 4. Concavidad o curvatura de una función 5. Punto de inflexión

Más detalles

1. Transformada de Laplace

1. Transformada de Laplace 1. Tranformada de Laplace Sea f : [, ) R, decimo que f e continua a trozo (continua por tramo) en [, ), i en cualquier intervalo [a, b] [, ) hay a lo má un número finito de punto de dicontinuidade t 1,...,

Más detalles

Exámen de Teoría de Números

Exámen de Teoría de Números Exámen de Teoría de Número de enero de 06 Hacer 5 de lo 6 roblema La untuación e obre 0 unto Problema a) 0,5 unto) Hallar d06) y φ06) b) 0,5 unto) Se uede ecribir 06 como uma de do cuadrado erfecto? Y

Más detalles

SR(s)=R(s) + E(s) C(s)

SR(s)=R(s) + E(s) C(s) TEMA: EO EN ÉGIMEN PEMANENTE Un apecto importante a tener en cuenta e el comportamiento de un itema ante divera entrada en régimen permanente. En cualquier itema fíico de control exite un error inherente,

Más detalles

Práctica demostrativa Nº 1 Funciones y series en variable compleja

Práctica demostrativa Nº 1 Funciones y series en variable compleja Práctica Demotrativa con Matlab 207 Práctica demotrativa Nº Funcione erie en variable compleja Obtener el valor de la iguiente funcione en un punto dado, z 0, a) evaluando la función en el punto, b) calculando

Más detalles

Procesamiento Digital de Señales Octubre 2012

Procesamiento Digital de Señales Octubre 2012 Proceaiento Digital de Señale Octubre 0 Método de ntitranforación PROCESMIENTO DIGITL DE SEÑLES Tranforada Z - (Parte II) Hay tre étodo de antitranforación, o Tranforación Z Invera para obtener la función

Más detalles

Líneas geodésicas Angel Montesdeoca

Líneas geodésicas Angel Montesdeoca Línea geodéica Angel Montedeoca Lune 12 de Mayo del 2008 1 ara que do uperficie e corten bajo un ángulo contante, e neceario y uficiente que la curva interección tenga la mima torión geodéica relativa

Más detalles

Análisis de sistemas con variables de estado. Alfaomega. Material Web. Laplace: teoría y práctica 2. Aplicaciones de la transformada de Laplace 13

Análisis de sistemas con variables de estado. Alfaomega. Material Web. Laplace: teoría y práctica 2. Aplicaciones de la transformada de Laplace 13 8 Capítulo Análii de itema con variable de etado Material Web Laplace: teoría y práctica 2 Aplicacione de la tranformada de Laplace 3 2 Análii de itema con variable de etado 8.. 8. Laplace: teoría y práctica

Más detalles

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE Por cálculo integral sabemos que cuando vamos a determinar una integral impropia de la forma,su desarrollo se obtiene realizando un cambio de variable en el límite superior de

Más detalles

Series de Fourier y Transformada de Fourier

Series de Fourier y Transformada de Fourier 2.5.-Series de Fourier.nb 174 Series de Fourier y Transformada de Fourier Series de Fourier Función Escalón Unidad La función escalón unidad, UnitStep[x] se define igual a la unidad cuando x es mayor que

Más detalles

# La capacidad mínima del condensador de filtro que garantice que el valor de la tensión de rizado está por debajo del máximo admisible.

# La capacidad mínima del condensador de filtro que garantice que el valor de la tensión de rizado está por debajo del máximo admisible. Cálculo del condenador de filtro El problema de cálculo del condenador de filtro en cualquiera de lo rectificadore etudiado e, en definitiva, una problema de teoría de circuito cuya reolución emplea cálculo

Más detalles

Anexo 1.1 Modelación Matemática de

Anexo 1.1 Modelación Matemática de ELC-3303 Teoría de Control Anexo. Modelación Matemática de Sitema Fíico Prof. Francico M. Gonzalez-Longatt fglongatt@ieee.org http://www.giaelec.org/fglongatt/tic.html Modelación de Sitema Fíico Francico

Más detalles

Primer Examen Parcial 17/4/2003

Primer Examen Parcial 17/4/2003 MR990. Control de Proceo Indutriale Salvador Macía Hernández 7730 Primer Examen Parcial 7/4/003 PRIMER INCISO Sea el itema hidráulico/eléctrico iguiente: R q R q L Ct C Generador de voltaje vt () kq()

Más detalles

ESTABILIDAD DE SISTEMAS REALIMENTADOS CRITERIO DE ESTABILIDAD DE NYQUIST

ESTABILIDAD DE SISTEMAS REALIMENTADOS CRITERIO DE ESTABILIDAD DE NYQUIST ESTABILIDAD DE SISTEMAS REALIMENTADOS CRITERIO DE ESTABILIDAD DE NYQUIST Condición de etabilidad: G( ) N( ) D( ) p n a 1 b 1 p1 n1...... a b p1 n1 a b n p p n z z... z N () 1 2 p G( ) p n D( ) p p... p

Más detalles

Valores especiales de la función zeta

Valores especiales de la función zeta Valore epeciale de la función zeta Alexey Behenov cadadr@gmail.com de Marzo de 7 La función zeta de Riemann Definición. La función zeta de Riemann etá definida por la erie infinita ζ := n n = + + 3 + 4

Más detalles

CAPITULO 8. LA TRANSFORMADA DE LAPLACE La transformada de Laplace

CAPITULO 8. LA TRANSFORMADA DE LAPLACE La transformada de Laplace CAPITULO 8. LA TRANSFORMADA DE LAPLACE 8.1. La transformada de Laplace Definición 1.Sea f (t) una función definida para t 0. Se define la transformada de Laplace de f (t) de la forma, - s es un parámetro

Más detalles

3.11 Intervalos de confianza basados en una población con distribución normal pero con muestras pequeñas

3.11 Intervalos de confianza basados en una población con distribución normal pero con muestras pequeñas 3. Intervalo de confianza baado en una población con ditribución normal pero con muetra pequeña Cuando n < 30 no e poible uar el teorema central del límite habría que hacer una upoición epecífica acerca

Más detalles

Transformada de Laplace

Transformada de Laplace 2 Tranformada de Laplace En ete capítulo e etudia el método de la tranformada de Laplace para la reolución de ecuacione diferenciale lineale de coeficiente contante. Eta ecuacione on la que aparecen en

Más detalles

CI_UII Más ejercicios de Transformada de Laplace y Transformada inversa de Laplace 511

CI_UII Más ejercicios de Transformada de Laplace y Transformada inversa de Laplace 511 CI_UII Má ejercicio de Tranformada de aplace y Tranformada invera de aplace 5 Apéndice CI_UIII Má ejercicio de Tranformada de aplace y Tranformada invera de aplace Ejemplo de la Sección.6, propiedade de

Más detalles

Ejemplo DII.1 Resolver el sistema formado por dx x y dt = + y dy. dx =, para. Transformando ambas ecuaciones (1) (2)

Ejemplo DII.1 Resolver el sistema formado por dx x y dt = + y dy. dx =, para. Transformando ambas ecuaciones (1) (2) traformada de Laplace 5 Apéndice DII_UIV Má Ejercicio de Solución de un itema de ecuacione diferenciale lineale con condicione iniciale por medio de la traformada de Laplace. (ecc. 4.) [4] Ejemplo DII.

Más detalles

Ecuaciones diferenciales con aplicaciones de modelado

Ecuaciones diferenciales con aplicaciones de modelado Ecuacione diferenciale con aplicacione de modelado Problema de valor inicial A menudo uno e interea por reolver una ecuación diferencial ujeta a condicione precrita, que on la condicione que e imponen

Más detalles

. 1. La función de transferencia de una planta es:

. 1. La función de transferencia de una planta es: Univeridad de Navarra Nafarroako Unibertitatea Ecuela Superior de Ingeniero Ingeniarien Goi Mailako Ekola ASIGNATURA GAIA Ingeniería de Control I 4º CURSO URTSOA NOMBRE IZENA FECHA DATA 9 de enero de 3

Más detalles

Nº de actividad Contenido 1 Uso de la función de Heaviside en ecuaciones diferenciales

Nº de actividad Contenido 1 Uso de la función de Heaviside en ecuaciones diferenciales Univeridad Diego Porale Primer Semere 007 Faculad de Ingeniería Iniuo de Ciencia Báica Aignaura: Ecuacione Diferenciale Laboraorio Nº 8 Reolución de ecuacione diferenciale uando ranformada de Laplace Aplicacione

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-8-2-M-2-2-27 CURSO: SEMESTRE: Curo de vacacione Diciembre 27 CÓDIGO DEL CURSO: 8 TIPO DE EXAMEN: Primer Parcial

Más detalles

Lista de ejercicios # 2. Uso de series de potencias y de Frobenius

Lista de ejercicios # 2. Uso de series de potencias y de Frobenius UNIVERSIDAD DE COSTA RICA FCULTAD DE CIENCIAS MA-15 Ecuaciones Diferenciales ESCUELA DE MATEMÁTICA I Ciclo del 217 Lista de ejercicios # 2 Uso de series de potencias y de Frobenius Uso de series alrededor

Más detalles

Ejercicio de Física de 2BAT, M.A.S. 2007

Ejercicio de Física de 2BAT, M.A.S. 2007 Ejercicio de Fíica de BA, M.A.S. 7 P.- Una partícula lleva el movimiento dado por la expreión: x en t P.- a) Calcula lo parámetro: Amplitud, periodo, frecuencia, pulación y fae inicial. Comparamo la ecuación

Más detalles

COLEGIO LA PROVIDENCIA

COLEGIO LA PROVIDENCIA COLEGIO LA PROVIDENCIA Hna de la Providencia y de la Inmaculada Concepción 2013 ALLER MOVIMIENO CIRCULAR UNIFORME DOCENE: Edier Saavedra Urrego Grado: décimo fecha: 16/04/2013 Realice un reumen de la lectura

Más detalles

Series de Fourier y Transformada de Fourier

Series de Fourier y Transformada de Fourier .5.- Fourier.nb 74 Series de Fourier y Transformada de Fourier Series de Fourier Función Escalón Unidad La función escalón unidad, UnitStep[x] se define igual a la unidad cuando x es mayor que 0, e igual

Más detalles

AUTÓMATAS Y SISTEMAS DE CONTROL

AUTÓMATAS Y SISTEMAS DE CONTROL º NGENERÍA TELECOMUNCACÓN 2º TT SSTEMAS ELECTRÓNCOS 2º TT SSTEMAS DE TELECOMUNCACÓN AUTÓMATAS Y SSTEMAS DE CONTROL PROBLEMAS DE SSTEMAS PARTE 2: ERRORES EN REG. PERMANENTE LUGAR DE LAS RACES DSEÑO REGULADORES

Más detalles

Universidad de Chile Facultad de Ciencias Departamento de Física. Métodos de la Física Matemática II

Universidad de Chile Facultad de Ciencias Departamento de Física. Métodos de la Física Matemática II Univeridad de Chile Facultad de Ciencia Departamento de Fíica Método de la Fíica Matemática II Prueba Profeor: Joé Rogan Solución Ayudante: Julio Yáñez.. Conidere la ecuación de Laplace bidimenional en

Más detalles

Sumas de divisores. Lola Thompson. 17 de Agosto de Oberlin College. Sumas de divisores. Lola Thompson. Introducción. Interlude.

Sumas de divisores. Lola Thompson. 17 de Agosto de Oberlin College. Sumas de divisores. Lola Thompson. Introducción. Interlude. Suma de diviore Thompon de Suma de diviore Thompon Oberlin College 17 de Agoto de 2018 1 / 74 Thompon Suma de diviore La función (n) Suma de diviore Thompon Número perfecto Número amigo Iteracione de de

Más detalles

{ } { } { 3,3} 0 E) = es: 25, 27 2, 15 , = 15 son dos números. + = es: = + es: + + =, es: 2, 3 C){ 1, 5}

{ } { } { 3,3} 0 E) = es: 25, 27 2, 15 , = 15 son dos números. + = es: = + es: + + =, es: 2, 3 C){ 1, 5} Seión Unidad VII Ecuacione y deigualdade. C. Ecuacione cuadrática. = B).- La olución de la ecuación por factorización e: D) { } { } =.- La olución de la ecuación por depeje e: { } B) { } D) { } { } =.-

Más detalles

El núcleo y sus radiaciones Clase 15 Curso 2011 Página 1. Departamento de Física Fac. Ciencias Exactas - UNLP. Paridad

El núcleo y sus radiaciones Clase 15 Curso 2011 Página 1. Departamento de Física Fac. Ciencias Exactas - UNLP. Paridad Paridad Curo 0 Página Eta propiedad nuclear etá aociada a la paridad de la función de onda nuclear. La paridad de un itema ailado e una contante de movimiento y no puede cambiare por un proceo interno.

Más detalles

PRÁCTICA 2.- Límites y continuidad de funciones

PRÁCTICA 2.- Límites y continuidad de funciones PRÁCTICA 2.- Límites y continuidad de funciones. Límite de funciones reales de una variable real La orden que permite realizar el cálculo del límite de una función f() cuando tiende hacia a es Limit. La

Más detalles

Realizabilidad de Precompensadores en Sistemas Lineales Multivariables

Realizabilidad de Precompensadores en Sistemas Lineales Multivariables Congreo Anual 2 de la Aociación de México de Control Automático. Puerto Vallarta, Jalico, México. Realizabilidad de Precompenadore en Sitema Lineale Multivariable E. Catañeda, J. Ruiz-León CINVESTAV-IPN,

Más detalles

PROBLEMA Nº1. Z 3 =80 Z 2 =20 Z 1 =40 O 2

PROBLEMA Nº1. Z 3 =80 Z 2 =20 Z 1 =40 O 2 PROLEM Nº1. El mecanimo de la figura e compone de un diferencial que tranmite el movimiento a un tren de engranaje epicicloidal mediante un tornillo in fin. El brazo de ete tren de engranaje e el elabón

Más detalles

Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte

Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte chritianq@uninorte.edu.co Departamento de Ingeniería Eléctrica y Electrónica Univeridad del Norte El problema má importante de lo itema de control lineal tiene que ver con la etabilidad. Un itema de control

Más detalles

La transformada de Laplace

La transformada de Laplace Capítulo 5 La transformada de Laplace 5.. Funciones continuas a trozos. Función de Heaviside Definición 5. Dados R, con. Diremos que :[ ] C es una función continuaatrozos Existe una partición del intervalo

Más detalles

Series de Fourier. Nombre y Apellidos: Grupo: Función Escalón Unidad. Ejercicios

Series de Fourier. Nombre y Apellidos: Grupo: Función Escalón Unidad. Ejercicios practica7.nb 41 Nombre y Apellidos: Grupo: Series de Fourier El objetivo de esta práctica es el desarrollo de funciones en serie de Fourier, en sus formas trigonométrica (senos y cosenos) y exponencial.

Más detalles

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE SISTEMAS DE CONTROL DISCRETO PRÁCTICA N 3

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE SISTEMAS DE CONTROL DISCRETO PRÁCTICA N 3 FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE SISTEMAS DE CONTROL DISCRETO 1. TEMA PRÁCTICA N 3 EQUIVALENTES DISCRETOS 2. OBJETIVOS 2.1. Analizar

Más detalles

Riesgo Moral Dinámico con Agentes cuyas Preferencias tienen un Punto de Referencia

Riesgo Moral Dinámico con Agentes cuyas Preferencias tienen un Punto de Referencia Riego Moral Dinámico con Agente cuya Preferencia tienen un Punto de Referencia Alejandro Jofré * Sofía Moroni ** Andrea Repetto *** July, 2008 Reumen Hay coniderable evidencia empírica que indica que la

Más detalles

2.- Tabla de transformadas de Laplace (funciones más usuales) 3.- Propiedades de la transformada de Laplace.

2.- Tabla de transformadas de Laplace (funciones más usuales) 3.- Propiedades de la transformada de Laplace. TEMA 4: INTRODUCCIÓN A LA TRANSFORMADA DE LAPLACE 1.- La transformada de Laplace de una función. Definición. 2.- Tabla de transformadas de Laplace (funciones más usuales) 3.- Propiedades de la transformada

Más detalles

Soluciones del examen departamental de Física I. Tipo A

Soluciones del examen departamental de Física I. Tipo A Solucione del examen departamental de Fíica I. Tipo A Tomá Rocha Rinza 8 de noviembre de 006 1. Si e toma como poitiva la dirección del eje y hacia arriba y como la caída libre e un movimiento uniformemente

Más detalles

UNIVERSIDAD DE SEVILLA

UNIVERSIDAD DE SEVILLA UNIVERSIDAD DE SEVILLA Ecuela Técnica Superior de Ingeniería Informática PRÁCTICA 4: MUESTREO DE SEÑALES Y DIGITALIZACIÓN Tecnología Báica de la Comunicacione (Ingeniería Técnica Informática de Sitema

Más detalles

Ejercicios y Talleres. puedes enviarlos a

Ejercicios y Talleres. puedes enviarlos a Ejercicio y Tallere puede enviarlo a klaedematematicayma@gmail.com CÁLCULO DE TRANSFORMADAS DE LAPLACE OBJETIVO Calcular tranformada de Laplace por definición utilizando Maple. Ing. Ocar Retrepo EJEMPLO

Más detalles

IES Fernando de Herrera Curso 2016 / 17 Tercer trimestre Observación evaluable escrita nº 1 2º Bach CT NOMBRE:

IES Fernando de Herrera Curso 2016 / 17 Tercer trimestre Observación evaluable escrita nº 1 2º Bach CT NOMBRE: IES Fernando de Herrera Curo 16 / 17 Tercer trimetre Obervación evaluable ecrita nº 1 º Bach CT NOMBRE: Intruccione: 1) Todo lo folio deben tener el nombre y etar numerado en la parte uperior. ) Toda la

Más detalles

6. Cinética química [ ] 1 ( ) ACTIVIDADES (pág. 145) Para t = 0 s y t = 4 s: mol L. (Cl) = 35,45 u V = 200 ml. Datos: m(nacl) = 3,0 g A r

6. Cinética química [ ] 1 ( ) ACTIVIDADES (pág. 145) Para t = 0 s y t = 4 s: mol L. (Cl) = 35,45 u V = 200 ml. Datos: m(nacl) = 3,0 g A r 6. Cinética química ACTIVIDADS (pág. 45) Dato: m(nacl) 0 g A r (Cl) 545 u V 00 m A r (Na) 99 u Calculamo: M r (NaCl) A r (Cl) A r (Na) M r (NaCl) 545 u 99 u 5844 u M g NaCl m diolucion NaCl g NaCl 000

Más detalles

Función Longitud de Arco

Función Longitud de Arco Función Longitud de Arco Si al extremo final de la curva Lt = t f t dt e deja variable entonce el límite uperior de la a integral depende del parámetro t y e tiene que la longitud de arco de una curva

Más detalles

λ = a/c, µ = bc ad, α = c 2, β = cd y, u y = v x Funciones conjugadas u(x, y) y v(x, y) si cumplen Ec. Cauchy-Riemann. Función armónica: 2 u(x, y)

λ = a/c, µ = bc ad, α = c 2, β = cd y, u y = v x Funciones conjugadas u(x, y) y v(x, y) si cumplen Ec. Cauchy-Riemann. Función armónica: 2 u(x, y) Formulario EL-470 Modelo de Sitema Ecuela de Ingeniería Electrónica Intituto Tecnológico de Cota Rica Prof.: Dr. Pablo Alvarado Moya M α n = αm+ α en(a ± B) = en(a) co(b) ± co(a) en(b) co (A) = ( + co(a))

Más detalles

SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34

SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34 SECO 2014-II Félix Monaterio-Huelin y Álvaro Gutiérre 6 de maro de 2014 Índice Índice 33 Índice de Figura 33 Índice de Tabla 34 12.Muetreador ideal y relación entre y 35 13.Muetreo de Sitema en erie 38

Más detalles

SEMESTRE TIPO 1 DURACIÓN MÁXIMA 2.0 HORAS 5 DE JUNIO DE NOMBRE Apellido paterno Apellido materno Nombre (s) Grupo

SEMESTRE TIPO 1 DURACIÓN MÁXIMA 2.0 HORAS 5 DE JUNIO DE NOMBRE Apellido paterno Apellido materno Nombre (s) Grupo UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE ECUACIONES DIFERENCIALES SEGUNDO EXAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

! y teniendo en cuenta que el movimiento se reduce a una dimensión

! y teniendo en cuenta que el movimiento se reduce a una dimensión Examen de Fíica-1, 1 Ingeniería Química Examen final Septiembre de 2011 Problema (Do punto por problema) Problema 1 (Primer parcial): Una lancha de maa m navega en un lago con velocidad En el intante t

Más detalles

La Matriz de Transición

La Matriz de Transición Caítulo La Matriz de Tranición. Reueta natural de un itema E la reueta que deende olamente de la condicione iniciale, e obtiene cuando la entrada al itema u (t) e hace igual a cero, analíticamente viene

Más detalles

TOPOLOGÍA. Ejemplo 1: IR con la topología de Sorgenfrey no es conexo. Basta escribir la separación

TOPOLOGÍA. Ejemplo 1: IR con la topología de Sorgenfrey no es conexo. Basta escribir la separación Qué e un conexo? A no er que uemo la ortografía del noroete, la notación debiera er autoexplicativa: conexo ignifica de una pieza, conectado, no eparado. Ha habido varia definicione matemática de ete concepto

Más detalles

Ingeniería de Control I - Examen 1.II.2001

Ingeniería de Control I - Examen 1.II.2001 ESCUELA SUPERIOR DE INGENIEROS UNIVERSIDAD DE NAVARRA INGENIARIEN GOI MAILAKO ESKOLA NAFARROAKO UNIBERTSITATEA Ingeniería de Control I - Examen.II. Nombre y apellido: Nº de carnet: Se parte de la planta

Más detalles

6 La transformada de Laplace

6 La transformada de Laplace CAPÍTULO 6 L trnformd de Lplce 6.4.3 Segund propiedd de trlción Et propiedd permitirá reolver ecucione diferencile donde prezcn funcione dicontinu. Pr entenderl e conveniente introducir un función con

Más detalles

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE REFUERZO

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE REFUERZO ENUNCIADOS Pág. 1 CARACTERÍSTICAS DEL MOVIMIENTO 1 Si e recorre un epacio de 32 m a lo largo de una recta, cómo e puede indicar que el movimiento e ha realizado hacia la derecha o hacia la izquierda? 2

Más detalles

es el que corresponde a una velocidad de oscilación positiva, calculamos dicha velocidad y aplicamos de nuevo las condiciones iniciales:

es el que corresponde a una velocidad de oscilación positiva, calculamos dicha velocidad y aplicamos de nuevo las condiciones iniciales: CURSO BACH Pregunta 8 PAU Una onda armónica tranveral e propaga por un medio elático a lo largo del eje X (entido poitivo), produciendo un deplazamiento en la partícula del medio a lo largo del eje Y.

Más detalles

TEMA I: LA TRANSFORMADA DE LAPLACE

TEMA I: LA TRANSFORMADA DE LAPLACE TEMA I: LA TRANSFORMADA DE LAPLACE. Introducción En el dearrollo del tema eguiremo la iguiente etrategia: en primer lugar definiremo la Tranformada de Laplace y trabajaremo con ella como una herramienta

Más detalles

TRIGONOMETRÍA Y GEOMETRÍA ANALÍTICA

TRIGONOMETRÍA Y GEOMETRÍA ANALÍTICA Nombre Apellido: TRIGONOMETRÍA Y GEOMETRÍA ANALÍTICA Ejercicio 1º [,00 punto] Una perona e encuentra en la ventana de u apartamento que etá ituada a 8 metro del uelo oberva el edificio de enfrente. La

Más detalles

MEDIDAS DE DISPERSION

MEDIDAS DE DISPERSION MEDIDAS DE DISPERSION Un promedio puede er engañoo a meno que ea identicado y vaya acompañado por otra información que informe la deviacione de lo dato repecto a la medida de tendencia central eleccionada.

Más detalles

TRIEDRO DE FRENET. γ(t) 3 T(t)

TRIEDRO DE FRENET. γ(t) 3 T(t) TRIEDRO DE FRENET Matemática II Sea Γ R 3 una curva y ean γ : I = [a,b] R 3, γ(t = (x(t,y(t,z(t una parametrización regular y α : I = [a,b ] R 3 u parametrización repecto el parámetro arco. A partir de

Más detalles

INGENIERIA DE SISTEMAS Y AUTOMATICA Calcular las antitransformadas de Laplace de las siguientes funciones: - +

INGENIERIA DE SISTEMAS Y AUTOMATICA Calcular las antitransformadas de Laplace de las siguientes funciones: - + . Concepto báico.. Calcular la antitranformada de Laplace de la iguiente funcione: a) b) c) F ( ) F ( ) F ( ) ( ) 3 ( ) 3 ( )( 6 34).. Encontrar la función de tranferencia M()Y()/X() mediante la implificación

Más detalles

1. Definiciones. 1.1 Rendimiento. Evaluación del Rendimiento de Algoritmos Paralelos

1. Definiciones. 1.1 Rendimiento. Evaluación del Rendimiento de Algoritmos Paralelos Para poder evaluar el deempeño de un itema de computación y aí poder compararlo repecto a otro neceitamo definir y medir u rendimiento. Pero, Qué queremo decir con rendimiento?, En bae a qué parámetro

Más detalles

Transformada de Laplace

Transformada de Laplace Capítulo 3 Tranformada de Laplace Problema 3 Calcular la tranformada de Laplace de la función caracterítica del intervalo [a,b], χ [a,b] t i t [a,b], χ [a,b] t i t [a,b] Calculamo directamente la tranformada,

Más detalles

Ecuaciones diferenciales de orden superior.

Ecuaciones diferenciales de orden superior. 535 Análii matemático para Ingeniería M MOLERO; A SALVADOR; T MENARGUEZ; L GARMENDIA CAPÍTULO 9 Ecuacione diferenciale de orden uperior Tranformada de Laplace El objetivo de ete capítulo e introducir la

Más detalles

Aplicando la Transformada de Laplace a Redes Eléctricas

Aplicando la Transformada de Laplace a Redes Eléctricas Aplicando la Tranformada de Laplace a Rede Eléctrica J.I. Huircán Univeridad de La Frontera April 5, 006 Abtract Se aplica la Tranformada de Laplace a ditinta rede eléctrica, primero excitacione báica

Más detalles

Transformada de Laplace

Transformada de Laplace Transformada de Laplace Definición: La Transformada de Laplace Dada una función f (t) definida para toda t 0, la transformada de Laplace de f es la función F definida como sigue: { f } 0 st F () s = L

Más detalles

PRÁCTICA TRANSFORMADA DE LAPLACE CURSO CÁLCULO II. Práctica 11 (19/05/2015)

PRÁCTICA TRANSFORMADA DE LAPLACE CURSO CÁLCULO II. Práctica 11 (19/05/2015) PRÁCTICA TRANSFORMADA DE LAPLACE CURSO 4-5 CÁLCULO II Prácica Malab Prácica (9/5/5) Objeivo o Calcular ranformada de Laplace y ranformada invera de Laplace, uilizando cálculo imbólico. o Comprobar propiedade

Más detalles

Sistemas lineales invariantes

Sistemas lineales invariantes Siema lineale invariane Inroducción Un iema lineal invariane e repreena uualmene mediane un bloque en el que e mueran ano la exciación como la repuea (figura ): Exciación x() Siema lineal invariane Repuea

Más detalles

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos.

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos. Modelo 04. Pregunta 4B.- Un objeto etá ituado a una ditancia de 0 cm del vértice de un epejo cóncavo. Se forma una imagen real, invertida y tre vece mayor que el objeto. a) Calcule el radio de curvatura

Más detalles

Transformada de Laplace

Transformada de Laplace Capítulo 3 Tranformada de Laplace 3.. Introducción En general, una tranformada integral e una aociación de la función Z F () K(, t)f(t) dt A con la función f para alguna función fija K llamada núcleo y

Más detalles

SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann. Noviembre, 1859

SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann. Noviembre, 1859 SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann Noviembre, 859 No creo poder exprear mejor mi agradecimiento por la ditinción que la Academia me ha hecho al nombrarme

Más detalles

Sistemas Físicos. Prof. Francisco M. González-Longatt ELC Teoría de Control

Sistemas Físicos. Prof. Francisco M. González-Longatt  ELC Teoría de Control ELC-3303 Teoría de Control Modelación Matemática de Sitema Fíico Prof. Francico M. González-Longatt fglongatt@ieee.org http://www.giaelec.org/fglongatt/sp.htm . Introducción En el análii y dieño de itema

Más detalles

VARIABLE ALEATORIA UNIFORME

VARIABLE ALEATORIA UNIFORME VARIABLE ALEATORIA UNIFORME DEFINICIÓN Se dice que una variable X tiene una ditribución uniforme en el intervalo [a;b] i la fdp de X e: 1 i a x b f(x)= b-a 0 en otro cao Demotrar que la FDA etá dada por

Más detalles

Sistemas muestreados

Sistemas muestreados Sitema muetreado Félix Monaterio-Huelin 8 de febrero de 2016 Índice Índice 1 Índice de Figura 1 Índice de abla 1 1. Muetreador ideal y relación entre y 2 2. Muetreo de Sitema en erie 4 3. ZOH: dipoitivo

Más detalles

Lugar Geométrico de las Raíces

Lugar Geométrico de las Raíces Introducción Francico M. González-Longatt, Septiembre 007 Capítulo 5 Lugar Geométrico de la Raíce La caracterítica báica de la repueta tranitoria de un itema en lazo cerrado e relaciona etrechamente con

Más detalles

CÁLCULO III. Apuntes

CÁLCULO III. Apuntes CÁLCULO III. Apuntes Grado en Ingeniería en Tecnologías Industriales Tema 3 Arturo de Pablo Elena Romera Open Course Ware, UC3M http://ocw.uc3m.es/matematicas 3 TRANSFORMADA DE LAPLACE La transformada

Más detalles