UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química"

Transcripción

1 UAM I Grupo 911 Febrero 213 Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química Lista de ejercicios en estas páginas: 1 7 y Nota: Los ejercicios pueden contener errores, agradecemos que se comuniquen a los profesores para su corrección. Escribir a roger.casals@uam.es 1. Determinar el trabajo realizado por el campo vectorial F x, y, z) = xy, 2, 4z), a lo largo de la hélice circular H: rt) = cost), sint), t) para t 2π. El trabajo realizado por una fuerza F a lo largo de rt) es la integral de la componente de la fuerza en la dirección de rt). La dirección de una curva en un punto dado es precisamente la derivada r t). Dado un punto rt), la componente de F es el producto escalar F rt)) r t)). El trabajo es la adición de todas estas contribuciones infinitesimales de la fuerza a lo largo de la curva. Luego, el resultado es 2π W = F dl = F rt)) r t)dt H Tenemos r t) = sint), cost), 1) y F rt)) = cost) sint), 2, 4t), así El trabajo de F a lo largo de H es F rt)) r t) = 2 sin 2 t)) cost) + 4t. W = 2π [2 sin 2 t)) cost) + 4t]dt = 8π 2 2. Integrar el campo vectorial hx, y, z) = xy, yz, xz), sobre la curva descrita por rt) = t, t 2, t 3 ) entre los puntos, 1, ) y 1, 1, 1). Notemos en primer lugar que el punto, 1, ) corresponde a r) y r1) = 1, 1, 1). Luego t = da el punto inicial y t = 1 el punto final, por lo tanto t 1. omo en el ejercicio anterior, es necesario integrar h a lo largo de la curva. Esto quiere decir integrar la densidad obtenida al hacer el producto escalar hrt)) r t). iendo hrt)) = t 3, t 5, t 4 ) y r t) = 1, 2t, 3t 2 ): h dl = 1 3. alcular la integral 1, ),, 1) y, ). hrt)) r t)dt = 1 t 3 + 2t 6 + 3t 6 )dt = 1 t 3 + 5t 6 dt = 1 7 hr)dr si hx, y) = e y, sinπx)) y el triángulo de vértices Esta vez la curva, esto es la unión de los lados del triángulo, tiene tres partes 1, 2 y 3, una por lado. Empezemos con el lado horizontal 1 que une el punto 1

2 UAM I Grupo 911 Febrero 213, ) con 1, ), este se describe por r 1 t) = t, ) con t 1. El segmento que une 1, ) con, 1) pertenece a la recta y = x+1, luego 1 es r 2 t) = t, t+1) empezando con t = 1 y terminando en t =. El segmento que une, 1) con, ) pertenece a la recta y = x + 1, luego se describe por r 3 t) = t, t + 1) con punto de inicio en t = y final t =. La integral a lo largo de cada uno de estos segmentos se calcula como en los dos ejercicios anteriores: evaluando h a lo largo de r y haciendo el producto escalar del vector resultante con r t). Tenemos: r 1t) = 1, ), r 2t) = 1, ), r 3t) = 1, 1) hr 1 t)) = 1, sinπt)), hr 2 t)) = e t+1, sinπt)), hr 3 t)) = e t+1, sinπt)) Las tres integrales son: 1 hr 1 t)) r 1t)dt = 1 1dt = 2 hr 2 t)) r 2t)dt = e t+1 + sinπt))dt = 1 e π hr 3 t)) r 3t)dt = e t+1 sinπt))dt = 1 e 2 3 π La integral total es la suma de la integral en los tres lados I = h dl = h dl + h dl + h dl = 2e 2) π Alternativamente podemos calcular la integral en el contorno de un dominio usando el teorema de Green: P x, y)dx + Qx, y)dy = Q x P y ) dxdy, donde P es la fuerza del campo en la dirección x y Q la fuerza en la dirección y, i.e. la primera y la segunda componente del campo. En nuestro caso es el interior del triángulo, cuyos límites de integración son x y y x + 1 para el sector del segundo cuadrante y x 1 y y x + 1 para el sector del primer cuadrante. En nuestro caso la fuerza en la dirección x de h es P x, y) = e y mientras que Qx, y) = sinπx). Luego Q x = π cosπx), P y = e y. egún la teoría, la integral I también se puede calcular integrando Q x P y en el interior del triángulo: I = Q x P y ) dxdy = = x+1 π cosπx) e y ) dxdy + x+1 = 2e 2) 4 π π cosπx) e y ) dxdy = 1 Para describir una recta y = nx + m podemos coger t = x y usar rt) = t, nt + m). 2

3 UAM I Grupo 911 Febrero alcular la integral hr) dr, si hx, y) = y 2 + y, 2xy e 2y ) y es la circunferencia unidad. Podemos calcular la integral de línea directamente o integrar la densidad adecuada en el interior del dominio con frontera. En este caso = D 2 el disco unidad centrado en el origen x, y) =, ). Método 1: Integral de línea a lo largo de Describimos la curva mediante rθ) = cos θ, sin θ). Tenemos r θ) = sin θ, cos θ). La densidad a lo largo de la circunferencia es hrθ)) = hcos θ, sin θ) = sin 2 θ + sin θ, 2 sin θ cos θ e 2 sin θ ) Luego la integral de línea es = I = 2π sin 2 θ + sin θ, 2 sin θ cos θ e 2 sin θ ) sin θ, cos θ)dθ = sin θsin 2 θ + sin θ) + cos θ2 sin θ cos θ e 2 sin θ )dθ = π Método 2: Integral en el dominio con = En hx, y) = y 2 + y, 2xy e 2y ) tenemos P x, y) = y 2 + y y Qx, y) = 2xy e 2y. Luego la densidad Q x P y a integrar es P y = 2y + 1, Q x = 2y = Q x P y = y obtenemos de nuevo I = h dl = Q x P y ) dxdy = Area) = π. 5. Un planeta se mueve en el campo gravitatorio del sol: F r) = ρm r r 3, ρ, m constantes Demostrar que el campo de fuerzas es conservativo, hallar una función de energía potencial y determinar la energía gravitatoria del planeta. Recordemos que r 2 = x 2 + y 2 + z 2 y r = x, y, z). Luego el campo gravitatorio en el 3 espacio R 3 es F x, y, z) = ρm x, y, z) x 2 + y 2 + z 2 ) 3/2 Un campo de fuerzas en R 3 es conservativo si ocurre alguna de las tres siguientes propiedades equivalentes: 3

4 UAM I Grupo 911 Febrero 213 1) La fuerza proviene de una potencial, es decir existe una función ϕ : R 3 R tal que integra al campo, esto es, cumple la ecuación ϕ = F. 2) El trabajo de F a lo largo de trayectorias cerradas es : F dl =, siendo una curva cerrada cualquiera. 3) El producto vectorial del gradiente con la fuerza es nulo, i.e. F =. omprobemos que se satisface 1) hallando el potencial. Necesitamos una función ϕx, y, z) de modo que ϕ = x ϕ, y ϕ, z ϕ) = F. Luego tenemos que resolver las ecuaciones x ϕ = ρm x y ϕ = ρm y z ϕ = ρm z Integrando respecto a x, y y z la primera, segunda y tercera ecuación obtenemos: ρm ϕx, y, z) = x 2 + y 2 + z 2 ) 1/2 Podemos comprobar que efectivamente ϕ es el potencial gravitatorio, por ejemplo ) ρm x = ρm x 2 + y 2 + z 2 ) 1/2 x x 2 + y 2 + z 2 ) /2) = = ρm 1 ) ) 2 x2 + y 2 + z 2 ) 3/2 x 2x = ρm que efectivamente corresponde a la primera componente de F. La energía potencial gravitatoria del planeta es el trabajo de la fuerza gravitatoria del origen de potencial a la posición del planeta. Esto es precisamente ϕ evaluado en la posición del planeta por ser ϕ una primitiva de F y centrar el origen de potencial en el ol. La energía total del planeta será su energía cinética sumada a esta energía potencial. 6. onsidera la rampa espiral dada por ru, v) = u cosωv), u sinωv), bv) donde l, b, ω R son constantes y u, v) = [, l] [, 2π/ω]. 4

5 UAM I Grupo 911 Febrero alcula el módulo del vector normal a la superficie. 2. alcula el área de la superficie. 3. alcula x 2 + y 2 dσ. alculemos el módulo del vector normal a la superficie correspondiendo a esta parametrización ru, v). En primer lugar calculemos el vector normal. Recordemos que el producto vectorial de dos vectores en el 3 espacio R 3 es perpendicular a ambos, si encontramos dos vectores tangentes linealmente independientes a la superfície y hacemos su producto vectorial obtendremos un tercer vector, perpendicular a ambos vector tangentes, es decir, normal a la superficie. Los dos vectores tangentes que usamos son u ru, v) y v ru, v). Para la parametrización dada los vectores son u ru, v) = cosωv), sinωv), ), v ru, v) = uω sinωv), uω cosωv), b) u producto vectorial es n = cosωv), sinωv), ) uω sinωv), uω cosωv), b) = cosωv) uω sinωv) i = sinωv) uω cosωv) j = b sinωv), b cosωv), uω) b k El módulo del vector normal n es b sinωv), b cosωv), uω) = b 2 + u 2 ω 2 alculemos el área de la superficie, esto es, la integral a lo largo del dominio del módulo del vector normal n: 2π/ω l Área) = 1 da = b2 + u 2 ω 2 dudv = b2 + u 2 ω 2 dudv = Finalmente calculemos de la superfície es Luego la integral de superfície es l = 2π b2 + u ω 2 ω 2 du x 2 + y 2 dσ. La densidad fx, y, z) = x 2 + y 2 a lo largo fru, v)) = u. l 2π/ω x 2 + y 2 dσ = u b 2 + u 2 ω 2 dvdu = 2π ω 7. Evaluar las integrales de línea I 1 = = 2π b 2 + u 2 ω 2 ) 3/2 l 3ω = 2π[b2 + l 2 ω 2 ) 3/2 b 3 ] 3 3ω 3 xdx, I 2 = ydy a lo largo de las siguientes curvas orientas positivamente: l u b 2 + u 2 ω 2 du = 5

6 UAM I Grupo 911 Febrero 213 a) = {x 2 + y 2 = ρ 2 } R 2, con el radio ρ constante b) = { x 2 + y2 = 1 } R 2 a 2 b 2 Empezemos por la curva de a), la circunferencia de radio ρ centrada en el origen, ) R 2. Podemos integrar el campo P x, y)dx + Qx, y) en el contorno o la densidad Q x P y en el interior, en este caso el disco de radio ρ centrado en el origen. Usando la integral en el contorno, una posible parametrización es rt) = ρ cost), ρ sint)) con t 2π. El primer campo a integrar es F 1 x, y) = x, ), luego F rt)) = ρ cost), ), r t) = ρ sint), ρ cost)), F rt)) r t) = ρ 2 sint) cost) Entonces la primera integral da I 1 = F dl = 2π ρ 2 sint) cost)dt = dado que la primitiva es inmediata o usando sin2t) = 2 sint) cost). El resultado se podría haber deducido del hecho que el campo F es conservativo ya que la función φx, y) = x 2 /2 cumple φ = x φ, y φ) = x, ) = F x, y) Deducimos que el campo F integrado a lo largo de la curva en b), una elipse de semiejes a y b, tiene trabajo neto cero. Para la integral I 2 a lo largo de las curvas en a) y b) procedemos análogamente. Dado que τx, y) =, y 2 /2) es un potencial para el campo Gx, y) =, y) tenemos I 2 = por ser ambas curvas cerradas. A modo de ejemplo, calculemos la integral I 2 usando el teorema de Green. omo F x, y) = x, ), la fuerza a integrar es xdx: luego P x, y) = x y Qx, y) =. Por lo tanto la densidad a integrar es Q x P y =, y el trabajo neto producido por la fuerza a lo largo de es. En conclusión, las cuatro integrales se anulan. 9. Determinar el trabajo realizado por la fuerza F x, y, z) = x 2, y 2, 1 ) 4 al desplazarnos en la hélice rt) = cost), sint), t) desde el punto p = 1,, ) al punto q = 1,, 3π). Los puntos p y q corresponden a los valores t = y t = 3π respectivamente, luego integraremos en t 3π. La densidad a integrar es el producto escalar F rt)) r t), como F rt)) = cost) 2, sint), ), r t) = sint), cost), 1) = F rt)) r t) = 1 4 6

7 UAM I Grupo 911 Febrero 213 El trabajo realizado es entonces W = F dr = 3π 1 4 dt = 3π 4 1. alcular el trabajo realizado por la fuerza F x, y, z) = x 2 y, x z, xyz) al desplazarnos en la curva descrita por rt) = t, t 2, 2) con t 1. La densidad a integrar es F rt)) r t), esto es F rt)) = t 4, t 2, 2t 3 ), r t) = 1, 2t, ) = F rt)) r t) = t 4 + 2tt 2) El trabajo se calcula integrando la densidad a lo largo de la curva : 1 W = F dl = t 4 + 2tt 2)dt = alcular el trabajo realizado por la fuerza F x, y) = x 3 2x 2, x y/2) al movernos en la curva descrita por rt) = t, t 2 ). omprobar que el trabajo es nulo cuando el vector tangente es perpendicular a la fuerza. Primero calculemos la integral sistemáticamente. La densidad es F rt)) r t), en nuestro caso F rt)) = t 3 2t 2, t t 2 /2), r t) = 1, 2t) = F rt)) r t) = t 3 2t 2 +2t 2 t 3 = Luego el trabajo realizado por la fuerza F entre cualquier par de puntos de la parabola es, por ser la integral de la densidad. Es claro que en general si la fuerza F rt)) es perpendicular al vector tangente r t), i.e. F rt)) r t) =. Por lo tanto, el trabajo realizado es nulo dado que integramos la densidad. 12. Dada la fuerza F x, y) = y, x 2 ), calcular su integral de línea, i.e. el trabajo realizado, en la curva rt) = 4 t, 4t t 2 ) con t 3, y razonar el resultado que se obtendría recorriendo la curva en sentido inverso. La densidad es la fuerza evaluada en los puntos de la curva producto escalar con el vector tangente, que captura la componente de la fuerza en la dirección de la curva: F rt)) = 4t t 2, 4 t) 2 ), r t) =, 4 2t), F rt)) r t) = t 2 4t+4 2t)4 t) 2 La integral es F dl = 3 t 2 4t + 4 2t)4 t) 2 dt = 69 2 En el sentido inverso el resultado cambia de signo. Esto se sigue de la interpretación física o directamente usando la parametrización de t = 3 a t = junto con b a = a b 7

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES 1.- En cada uno de los siguientes casos calcular la integral de línea dada a) + +, donde C es el segmento de recta que une el punto O(0,0)

Más detalles

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green ANÁLISIS MATEMÁTIO II - Grupo iencias 018 Práctica 9 ampos conservativos - Teorema de Green A. ampos conservativos 1. Mostrar que F x, y) = y cos x) i + x sen y) j no es un campo vectorial gradiente..

Más detalles

Integrales de lı nea y de superficie

Integrales de lı nea y de superficie EJERIIO DE A LULO II PARA GRADO DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera 4 4.1 Integrales de lı nea y de superficie Integrales sobre curvas

Más detalles

Integrales en Curvas y Superfícies

Integrales en Curvas y Superfícies Integrales en Curvas y Superfícies R. Casals, M.A. Zurro Versión Preliminar Contents 1 Nociones geométricas 2 1.1 Operaciones con vectores........................... 2 1.2 Curvas.....................................

Más detalles

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8 ANALISIS MATEMATIO II (iencias- 2011) Integrales sobre curvas (o de línea) Trabajo Práctico 8 1. Evaluar las siguientes integrales curvilíneas γ f ds. (a) f(x, y, z) = x + y + z ; r(t) = (sen t, cos t,

Más detalles

Capítulo 5. Integrales sobre curvas y superficies

Capítulo 5. Integrales sobre curvas y superficies Capítulo 5. Integrales sobre curvas y superficies 5.1. Integrales de funciones escalares sobre curvas 5.2. Integrales de campos vectoriales sobre curvas 5.3. Teorema de Green 5.4. Integrales sobre superficies

Más detalles

Cálculo diferencial e integral 4

Cálculo diferencial e integral 4 álculo diferencial e integral 4 Guía 4 1. alcular la divergencia y el rotacional de los siguientes campos vectoriales: a) V (x, y, z) = yzi + xzj + xyk. b) V (x, y, z) = x 2 i + (x + y) 2 j + (x + y +

Más detalles

Funciones reales de varias variables

Funciones reales de varias variables PROBLEMAS DE CÁLCULO II Curso 2-22 2 Funciones reales de varias variables. Dibuja las curvas de niveles,,..., 5 y la representación gráfica de las siguientes funciones a) f(x, y) = 5 x y b) f(x, y) = x

Más detalles

Matemáticas III Tema 5 Integrales de ĺınea

Matemáticas III Tema 5 Integrales de ĺınea Matemáticas III Tema 5 Integrales de ĺınea Rodríguez Sánchez, F.J. Muñoz Ruiz, M.L. Merino órdoba, S. 2014. OW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia reative ommons Attribution- Nonomercial-ShareAlike

Más detalles

Tarea 3 - Vectorial

Tarea 3 - Vectorial Tarea 3 - Vectorial 5. Part :. -.3.. Hallar las lineas de flujo σ(t) de los campos vectoriales F (x, y) = x, 4y y G(x, y) = x ı y j que cumplen σ() = (, ). olución: Las lineas de flujo del campo vectorial

Más detalles

Problemas de Análisis Vectorial y Estadístico

Problemas de Análisis Vectorial y Estadístico Relación 1. Funciones Γ y β 1. Función Gamma Definimos la función gamma Γ(p) como: Demostrar que: Γ(p) = t (p 1) e t dt para p> a) Γ(1) = 1 b) Integrando por partes, ver que Γ(p) = (p 1)Γ(p 1) para p>1

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Matemáticas III Tema 5 Integrales de línea

Matemáticas III Tema 5 Integrales de línea Matemáticas III Tema 5 Integrales de línea Rodríguez Sánchez, F.J. Muñoz Ruiz, M.L. Merino órdoba, S. 14. OW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia reative ommons ttribution- Nonomercial-Sharelike

Más detalles

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio.

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio. Asignatura: álculo II PRUEBAS DE EVALUAIÓN NOTA: En todos los ejercicios se deberá justificar la respuesta eplicando el procedimiento seguido en la resolución del ejercicio. URSO 010 011 JUNIO URSO 10

Más detalles

El Teorema de Green. Una curva dada por r(t) = x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) Curva no simple

El Teorema de Green. Una curva dada por r(t) = x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) Curva no simple El Teorema de Green Una curva dada por r(t) x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) r(d) si c d. urva simple urva no simple urva orientada positivamente La curva

Más detalles

GUÍA DE EJERCICIOS - INTEGRALES MÚLTIPLES

GUÍA DE EJERCICIOS - INTEGRALES MÚLTIPLES GUÍA DE EJERIIOS - INTEGRALES MÚLTIPLES 1. Escriba la expresión que permite calcular por integrales dobles: a. El área de una región plana R. b. El volumen de un sólido V, de altura z = f(x,y). c. La masa

Más detalles

Teorema de Stokes Introducción

Teorema de Stokes Introducción EIÓN 1 1.1 Introducción En la presente sesión se revisa el último teorema clave del cálculo vectorial, el teorema de tokes. Este teorema establece una relación entre una integral de línea sobre una curva

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0.

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0. ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. 6 de Junio de 8 Primera parte Ejercicio. onsideremos los rectángulos de lados paralelos a los ejes que pueden inscribirse en la elipse x

Más detalles

Segundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de x = r cos θ, y = r sen θ, z = θ,

Segundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de x = r cos θ, y = r sen θ, z = θ, egundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de 216 Este es un examen individual, no se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. ecuerde apagar

Más detalles

Clase 10: Extremos condicionados y multiplicadores de Lagrange

Clase 10: Extremos condicionados y multiplicadores de Lagrange Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función

Más detalles

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013 Análisis II - Análisis matemático II - Matemática 3 do. cuatrimestre de 3 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones.. Verificar el teorema de Stokes para el hemisferio

Más detalles

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x 1. Hallar κ de manera que el flujo saliente del campo f ( x, = (x + y + z, 6y a través de la frontera del cuerpo x + y + z 16 x + y κ, 0 < k < 4 f : R R un campo vectorial definido por:. Sea γ ( t ) =

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

Ejercicios típicos del segundo parcial

Ejercicios típicos del segundo parcial Ejercicios típicos del segundo parcial El segundo examen parcial consiste en tres ejercicios prácticos y dos teóricos, aunque esta frontera es muy difusa. Por ejemplo, el primer ejercicio de esta serie,

Más detalles

Análisis Matemático I (Ing. de Telecomunicación), Examen final, 26 de enero de 2010 RESPUESTAS A AMBOS MODELOS

Análisis Matemático I (Ing. de Telecomunicación), Examen final, 26 de enero de 2010 RESPUESTAS A AMBOS MODELOS Análisis Matemático I (Ing. de Telecomunicación), 29-1 Examen final, 26 de enero de 21 RESPUESTAS A AMBOS MODELOS Primera Parte Las preguntas 1 14 son de tipo test. Se pide elegir una única respuesta en

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. er. cuatrimestre de 8 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones. Ejercicio. Verificar el teorema de Stokes para el

Más detalles

Parametrización de curvas Integrales de linea. h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/

Parametrización de curvas Integrales de linea. hp://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Parametrización de curvas Integrales de linea h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Curvas en el espacio En el espacio, una curva se define por el corte de dos superficies. La forma más general

Más detalles

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS.

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. Cálculo III, Examen Final. Semestre Primavera 1 Tiempo: 11 min. Problema 1 [1,5 puntos] La curvatura de una trayectoria

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 9 de Junio de 4 Primera parte Ejercicio. Un depósito subterráneo de gasolina tiene forma de cilindro elíptico con semieje orizontal a

Más detalles

Integración sobre curvas

Integración sobre curvas Problemas propuestos con solución Integración sobre curvas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Integral de línea de campos escalares 1

Más detalles

Capítulo 3. Funciones con valores vectoriales

Capítulo 3. Funciones con valores vectoriales Capítulo 3. Funciones con valores vectoriales 3.1. Curvas: recta tangente y longitud de arco 3.2. Superficies parametrizadas 3.3. Campos vectoriales, campos conservativos Capítulo 3. Funciones con valores

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

Clase 14: Fórmula del Cambio de Variables

Clase 14: Fórmula del Cambio de Variables Clase 4: Fórmula del Cambio de Variables C.J. Vanegas 4 de junio de 8 Recordemos.. Método de sustitución en integrales de una variable: b f(g(t))g (t) dt g(b) a g(a) f(s) ds s g(t) ds g (t)dt t a s g(a)

Más detalles

Lista de Ejercicios Complementarios

Lista de Ejercicios Complementarios Lista de Ejercicios omplementarios Matemáticas VI (MA-3) Verano. ean α >, β > y a, b R constantes. ea la superficie que es la porción del cono de ecuación z = α x + y que resulta de su intersección con

Más detalles

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen Universidad Técnica Federico anta aría Coordinación de atemática IV Guía-Apunte de Preparación del CAR 2 do emestre 2011 Información Contenidos del Certamen Teorema de Green, Teorema de Green para Regiones

Más detalles

x 2 y si x 3y 2 si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares.

x 2 y si x 3y 2 si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares. FIUBA 07-05-11 Análisis Matemático II Parcial - Tema 1 1. Sea f(x, y) = { x y si x 3y si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares.. Sea G(x, y) = (u(x, y),

Más detalles

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión 1 Guía de Estudio para la Sección de Matemáticas del Examen de Admisión 215-1 El material relativo al temario puede ser consultado en la amplia bibliografía que allí se menciona o en alguno de los muchísimos

Más detalles

Remark Las mismas definiciones podemos dar para el caso de : I R 2 t t xt, yt a la que denominaremos curva plana.

Remark Las mismas definiciones podemos dar para el caso de : I R 2 t t xt, yt a la que denominaremos curva plana. Profesor: Roque Molina Legaz Tema 3. LA INTEGRAL DE LÍNEA. APLICACIONES. Como ya hemos visto, el concepto de integral simple de Riemann se estableció para funciones reales definidas y acotadas en un intervalo

Más detalles

Ejercicios Tercer Parcial del curso MA-1003.

Ejercicios Tercer Parcial del curso MA-1003. Ejercicios para MA 1003: álculo III 1 UNIVERIDAD DE OTA RIA FAULTAD DE IENIA EUELA DE MATEMÁTIA DEPARTAMENTO DE MATEMÁTIA APLIADA MA-1003 álculo III I ILO 2018 Ejercicios Tercer Parcial del curso MA-1003.

Más detalles

1.5. Integral de línea de un campo Vectorial.

1.5. Integral de línea de un campo Vectorial. .5. Integral de línea de un campo Vectorial. Sea F ( xyz,, un campo vectorial continuo sobre R donde F representa un campo de fuerzas aplicado sobre una partícula cuya trayectoria puede ser descrita por

Más detalles

Soluciones de los ejercicios del segundo examen parcial

Soluciones de los ejercicios del segundo examen parcial Matemáticas III GIC, curso 5 6 Soluciones de los ejercicios del segundo examen parcial EJERCICIO. Considera la integral doble π π ibuja la región del plano XY en la que se está integrando. Usa el teorema

Más detalles

PRÁCTICAS DE CÁLCULO PARA I. QUÍMICA

PRÁCTICAS DE CÁLCULO PARA I. QUÍMICA PRÁCTICS DE CÁLCULO PR I. QUÍMIC Departamento de nálisis Matemático Curso 2005/2006 Práctica 1 Cálculo Diferencial............................... 1 Práctica 2 Cálculo Integral.................................

Más detalles

Tarea 1 - Vectorial

Tarea 1 - Vectorial Tarea - Vectorial 2050. Part :. - 3.2.. Un cerro se queda en las montañas en la altura de 6 mil metros. El cerro tiene la forma del gráfico de la función z = f(x, y) = x 2 y 2. Observamos que plaquitas

Más detalles

4 Integrales de línea y de superficie

4 Integrales de línea y de superficie a t e a PROBLEMA DE ÁLULO II t i c a s 1 o Ings. Industrial y de Telecomunicación URO 2009 2010 4 Integrales de línea y de superficie 4.1 Integrales sobre curvas y campos conservativos. Problema 4.1 Integra

Más detalles

PEP 3. Responda 4 de los siguientes 9 problemas, escogiendo al menos uno de cada sección.

PEP 3. Responda 4 de los siguientes 9 problemas, escogiendo al menos uno de cada sección. Universidad de Santiago de Chile Cálculo odrigo Vargas do semestre 1 PEP Nombre: Nota: esponda de los siguientes 9 problemas, escogiendo al menos uno de cada sección. Sección 1. 1. Use coordenadas esféricas

Más detalles

Integrales Dobles. Hermes Pantoja Carhuavilca. Matematica II. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos

Integrales Dobles. Hermes Pantoja Carhuavilca. Matematica II. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Integrales Dobles Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 76 CONTENIDO Integrales Dobles Introducción

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 2000 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 2000 Primera parte ÁLULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 000 Primera parte Ejercicio 1. Entre todos los rectángulos del plano YOZ,inscritos en la parábola z = a y (siendo a>0) yconbaseenelejeoy

Más detalles

Integrales de Superficie

Integrales de Superficie Capítulo 12 Integrales de uperficie 12.1. Definiciones Básicas Nuestro porpóstito en esta sección es el definir el concepto de integral de una función f : M R sobre una superficie M en el espacio. Para

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen del 14 de Septiembre de 2000 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen del 14 de Septiembre de 2000 Primera parte ÁLULO Primer curso de Ingeniero de Telecomunicación Examen del de Septiembre de Primera parte Ejercicio. Un flan tiene forma de tronco de paraboloide de revolución, siendo r y r losradiosdesusbasesyh su

Más detalles

INTEGRACION EN VARIAS VARIABLES: Integrales dobles. 1. e x+y dy dx. 3. Evaluar las siguientes integrales en los recintos que se indican:

INTEGRACION EN VARIAS VARIABLES: Integrales dobles. 1. e x+y dy dx. 3. Evaluar las siguientes integrales en los recintos que se indican: INTEGACION EN VAIAS VAIABLES: Integrales dobles.. Evaluar las siguientes integrales iteradas: (x y + y )dy dx xye x+y dy dx ( x ln y)dy dx ln [((x + )(y + )] dx dy. 3 ; ; ; ln. 5. Sea I = [, ] [, 3]. Calcular

Más detalles

CAPÍTULO 10. Teoremas Integrales.

CAPÍTULO 10. Teoremas Integrales. CAPÍTULO 10 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

Funciones de varias variables: continuidad derivadas parciales y optimización

Funciones de varias variables: continuidad derivadas parciales y optimización Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio

Más detalles

Matemáticas III Tema 6 Integrales de superficie

Matemáticas III Tema 6 Integrales de superficie Matemáticas III Tema 6 Integrales de superficie Rodríguez ánchez, F.J. Muñoz Ruiz, M.L. Merino Córdoba,. 214. OCW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia Creative Commons Attribution- NonComercial-hareAlike

Más detalles

CAMPOS: CIRCULACIÓN Y FLUJO

CAMPOS: CIRCULACIÓN Y FLUJO AMPO: IRULAIÓN Y FLUJO Dado el vector a ( x + y) i ˆ + xy ˆ j calcular su circulación a lo largo de la recta y x+ desde el punto A (, ) al B (, 2). olución: I.T.I. 99, 5, I.T.T. 2 En la trayectoria que

Más detalles

Tarea 4-Integral de línea

Tarea 4-Integral de línea Tarea 4-Integral de línea I. alcular la integral de línea del campo vectorial f a lo largo del camino que se indica. (Apostol TomoII Pag. 37-10.5) 1. f (x, y) = (x xy)i + (y xy)j a lo largo de la parábola

Más detalles

CAPÍTULO 11. Teoremas Integrales.

CAPÍTULO 11. Teoremas Integrales. CAPÍTULO 11 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

Análisis Matemático II Curso 2018 Práctica introductoria

Análisis Matemático II Curso 2018 Práctica introductoria Análisis Matemático II Curso 018 Práctica introductoria Cónicas - Sus ecuaciones y gráficas 1. Encontrar la forma estándar de cada cónica y graficar. a) x + y 6y = 0 b) x + y 1 = 0 c) x(x + 1) y = 4 d)

Más detalles

Clase 4. Campos Vectorialesy OperadoresDiferenciales

Clase 4. Campos Vectorialesy OperadoresDiferenciales lase 4. ampos Vectorialesy Operadoresiferenciales Un campo vectorial en R n es una función F : R n R n. i F es un campo vectorial, una línea de flujo (línea de corriente o curva integral) para F es una

Más detalles

ANALISIS II Computación. Práctica 4. x 3. x 2 + y 2. x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0)

ANALISIS II Computación. Práctica 4. x 3. x 2 + y 2. x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0) facultad de ciencias exactas y naturales uba curso de verano 2006 ANALISIS II Computación Práctica 4 Derivadas parciales 1. Calcular (a) f xy y (2, 1) para f(x, y) = + x y (b) f z (1, 1, 1) para f(x, y,

Más detalles

Soluciones de los ejercicios del examen final de la primera convocatoria

Soluciones de los ejercicios del examen final de la primera convocatoria Matemáticas III GI, curso 2015 2016 oluciones de los ejercicios del examen final de la primera convocatoria EJERIIO 1. De un campo escalar fx, y, z se sabe que es de clase R 3 y que su gradiente en el

Más detalles

Solution: Sea R = r = x 2 +y 2 +z 2. (b) Cálculo directo. 1 x2 +y 2 +z 2 = 1 R. (c) f =

Solution: Sea R = r = x 2 +y 2 +z 2. (b) Cálculo directo. 1 x2 +y 2 +z 2 = 1 R. (c) f = Universidad de los Andes Departamento de Matemáticas MAT7 Cálculo Vectorial Tarea 3 Individual ntregue en clase a su profesor de la MAGISTRAL la semana 5 (Ma. 3 Vi. 6 Dic.). (4 points) [Rotacional, Divergencia,

Más detalles

Integrales Curvilíneas.

Integrales Curvilíneas. CAPÍTULO 7 Integrales Curvilíneas. Este capítulo abre la segunda parte de la materia : el cálculo integral vectorial. Las integrales de línea de campos escalares y vectoriales tienen aplicaciones a la

Más detalles

Diferenciación SEGUNDA PARTE

Diferenciación SEGUNDA PARTE ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 4 - Primer Cuatrimestre 009 Diferenciación SEGUNDA PARTE Regla de la Cadena 1 Sean f(u, v, w) = u + v 3 + wu y g(x, y) = x sen(y) Además, tenemos

Más detalles

TRABAJO PRÁCTICO Nº 4: INTEGRALES CURVILÍNEAS

TRABAJO PRÁCTICO Nº 4: INTEGRALES CURVILÍNEAS Análisis Matemático T.P. Nº TRABAJO PRÁTIO Nº : INTEGRALES URVILÍNEAS. alcular ( )d ( )d siendo AB la poligonal orientada de lados =, = con origen AB en A(,) etremo en B(,).. alcular cos d send siendo

Más detalles

Integrales Curvilíneas.

Integrales Curvilíneas. CAPÍTULO 8 Integrales Curvilíneas. Este capítulo abre la segunda parte de la materia : el cálculo integral vectorial. Las integrales de línea de campos escalares y vectoriales tienen aplicaciones a la

Más detalles

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático Ejercicios de Fundamentos Matemáticos I Ingeniería de Telecomunicaciones Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada FUNDAMENTO MATEMÁTICO I Relación de Ejercicios N o

Más detalles

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación Soluciones de los ejercicios del examen de del 29 de junio de 27 Primero de Ingeniería de Telecomunicación Ejercicio a Justifica que la ecuación x 2 = x sen x+ cos x tiene exactamente dos soluciones reales.

Más detalles

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2017 Práctica 5 - Polinomio de Taylor. Extremos de funciones de varias variables

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2017 Práctica 5 - Polinomio de Taylor. Extremos de funciones de varias variables ANÁLISIS MATEMÁTIO II - Grupo iencias 07 Práctica 5 - Polinomio de Taylor. Extremos de funciones de varias variables A. Polinomio de Taylor. Hallar el polinomio de Taylor de segundo orden para las siguientes

Más detalles

Funciones Implícitas.

Funciones Implícitas. CAPÍTULO 5 Funciones Implícitas. En este capítulo presentamos el concepto de función implícita. Esta idea nos ayuda a obtener derivadas de funciones que no podemos conocer explícitamente, pero su aplicación

Más detalles

1. INTEGRALES MÚLTIPLES

1. INTEGRALES MÚLTIPLES 1. INTEGALES MÚLTIPLES 1. Calcular las siguientes integrales iteradas: 1. x x 7 y dy dx dx 1. x x y y dx dy 1 1 7. (1 + xy) dx dy 1 1 π/. x sen y dy dx 5. (x + y) dx dy 6/ 1 6. (x + y) 8 dx dy 616 5 1

Más detalles

AMPLIACIÓN DE CÁLCULO

AMPLIACIÓN DE CÁLCULO AMPLIACIÓN DE CÁLCULO Problemas propuestos Departamento de Matemáticas del Área Industrial Programa de Ampliación de Cálculo. Curso 2014/15 1. Cálculo de integrales múltiples Integrales dobles en rectángulos;

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen de 1 de Septiembre de 2009 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen de 1 de Septiembre de 2009 Primera parte ÁLULO Primer curso de ngeniero de Telecomunicación Examen de de Septiembre de 9 Primera parte Ejercicio. En un círculo de radio a se toma un diámetro POQ. Sobre la perpendicular al círculo en el punto

Más detalles

1. Dar la definición de la integral de línea y de la integral de superficie de un campo vectorial y de un campo escalar.

1. Dar la definición de la integral de línea y de la integral de superficie de un campo vectorial y de un campo escalar. NOTAS DE LASE ÁLULO III Unidad 4: INTEGRALES DE LINEA, DE SUPERFIIE, TEOREMAS FUNDAMENTALES Guía de Estudio Doris Hinestroza 1 Índice 1. INTEGRALES DE LINEA, DE SUPERFIIE, TEO- REMAS FUNDAMENTALES DEL

Más detalles

1. Use el Teorema de Green para calcular el área de la región del. plano xy que satisface las desigualdades y x, x y, 8xy 1.

1. Use el Teorema de Green para calcular el área de la región del. plano xy que satisface las desigualdades y x, x y, 8xy 1. CÁLCULO VECTORIAL (54) SEGUNO PARCIAL (%) 9//9 EPARTAMENTO E APLICAA Use el Teorema de Green para calcular el área de la región del plano xy que satisface las desigualdades y x, x y, 8xy Halle el área

Más detalles

AMPLIACIÓN DE CÁLCULO

AMPLIACIÓN DE CÁLCULO AMPLIACIÓN DE CÁLCULO Problemas propuestos Departamento de Matemáticas del Área Industrial Índice general Programa III Tema 1. Enunciados 1 Tema 2. Enunciados 6 Tema 3. Enunciados 12 Tema 4. Enunciados

Más detalles

Análisis Matemático 2

Análisis Matemático 2 Análisis Matemático 2 Una resolución de ejercicios con hipervínculos a videos on-line Autor: Martín Maulhardt Revisión: Fernando Acero y Ricardo Sirne Análisis Matemático II y II A Facultad de Ingeniería

Más detalles

Matemáticas III Andalucía-Tech

Matemáticas III Andalucía-Tech Matemáticas III Andalucía-Tech Tema Optimización en campos escalares Índice 1. Formas cuadráticas y matrices simétricas reales 1. Extremos relativos de un campo escalar 3.1. Polinomio de Taylor de un campo

Más detalles

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0)

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0) facultad de ciencias exactas y naturales uba primer cuatrimestre 2007 ANÁLISIS II Computación Práctica 4 Derivadas parciales 1. Calcular a) f y (2, 1) para f(x, y) = xy + x y b) f z (1, 1, 1) para f(x,

Más detalles

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 10. Cálculo vectorial.

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 10. Cálculo vectorial. ÁLULO ngeniería ndustrial. urso 2009-2010. Departamento de Matemática Aplicada. Universidad de evilla. Lección 10. álculo vectorial. Resumen de la lección. 10.1. ntegrales de línea. ntegral de línea de

Más detalles

A) Hallar el volumen del sólido formado cuando la región del primer cuadrante limitada por Z 4. 1 x 4 1 dx. Z b. p (x) h (x) dx.

A) Hallar el volumen del sólido formado cuando la región del primer cuadrante limitada por Z 4. 1 x 4 1 dx. Z b. p (x) h (x) dx. ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA I.T.I. Especialidad en Electricidad. Curso 4-5. Soluciones al Segundo Parcial de Fundamentos Matemáticos de la Ingeniería. PROBLEMA.- A) Hallar el volumen del

Más detalles

Coordenadas Generalizadas en el Espacio

Coordenadas Generalizadas en el Espacio Capítulo 3 Coordenadas Generalizadas en el Espacio Las coordenadas cartesianas usuales en R 3 pueden verse también como un sistema de tres familias de superficies en el espacio, de modo que cada punto

Más detalles

Teorema de la Función Implícita

Teorema de la Función Implícita Teorema de la Función Implícita El círculo de radio 1 con centro en el origen, puede representarse implícitamente mediante la ecuación x 2 + y 2 1 ó explícitamente por las ecuaciones y 1 x 2 y y 1 x 2

Más detalles

PRÁCTICAS DE ANÁLISIS VECTORIAL

PRÁCTICAS DE ANÁLISIS VECTORIAL PRÁCTICAS E ANÁLISIS VECTORIAL epartamento de Análisis Matemático Curso 24/25 Profesores responsables Pablo Galindo Aníbal Moltó Práctica 1 Integral de línea. Superficies y áreas de superficie............

Más detalles

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Comentarios y ejemplos - Práctica 10

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Comentarios y ejemplos - Práctica 10 ANÁLII MATEMÁTICO II - Grupo Ciencias 218 Comentarios y ejemplos - Práctica 1 A. Parametrizaciones de superficies El concepto de parametrización de una superficie es análogo al de parametrización de una

Más detalles

Temas 1 y 2: Cálculo Diferencial y Optimización ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Temas 1 y 2: Cálculo Diferencial y Optimización ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO CÁLCULO II. Ejercicio de Examen Final Temas 1 y : Cálculo Diferencial y Optimización FECHA: 1/07/1 TIEMPO RECOMENDADO: 40 m Puntuación/TOTAL:,5/10 ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO w w 1. Dada

Más detalles

TEORIA MATEMATICAS 5 PRIMER PARCIAL

TEORIA MATEMATICAS 5 PRIMER PARCIAL Def: Grafica de una función TEORIA MATEMATICAS 5 PRIMER PARCIAL Sea:. Definimos la grafica de f como el subconjunto de formado por los puntos, de en los que es un punto de U. Simbólicamente grafica es:

Más detalles

FACULTAD DE CIENCIAS DEL MAR. FUNDAMENTOS MATEMÁTICOS II. Convocatoria Extraordinaria de Diciembre de 2002.

FACULTAD DE CIENCIAS DEL MAR. FUNDAMENTOS MATEMÁTICOS II. Convocatoria Extraordinaria de Diciembre de 2002. FAULTAD DE IENIAS DEL MAR. FUNDAMENTOS MATEMÁTIOS II. onvocatoria Extraordinaria de Diciembre de. xydx x y dy a lo largo de la elipse.- alcular + ( ) contrario al de las agujas del reloj. x y + = recorrida

Más detalles

Integración doble Integrales dobles sobre regiones no rectangulares

Integración doble Integrales dobles sobre regiones no rectangulares Nuestra intención es extender la definición de integral doble, de funciones continuas, sobre regiones más generales que el rectángulo. Para ello definiremos dos tipos de regiones en el plano, que llamaremos

Más detalles

ANALISIS II 12/2/08 COLOQUIO TEMA 1

ANALISIS II 12/2/08 COLOQUIO TEMA 1 ANALISIS II //08 COLOQUIO TEMA Sea f : R R un campo vectorial C y C la curva parametrizada por: γ(t) = (cost, 0, sent) con t ɛ [0, π] Sabiendo que C f ds = 6 y que rot( f( ) = (z, ), calcular la integral

Más detalles

PRACTICO A.M. II 2014

PRACTICO A.M. II 2014 PRATIO 4- - A.M. II 014 INTEGRALES DE LINEA INTEGRAL DE LINEA DE AMPOS ESALARES 1. alcule las siguientes integrales de línea a) f ds donde es el arco de parábola x 4 desde (-, -1) hasta (5, ), f está dada

Más detalles

Examen final de Cálculo Integral

Examen final de Cálculo Integral Examen final de Cálculo Integral 8 de junio de (Soluciones) Cuestiones C Sí se puede asegurar que es integrable, como consecuencia del teorema 4. de los apuntes: Llamamos W y f : W R a la esfera y a la

Más detalles

PRÁCTICAS DE MATEMÁTICAS LICENCIATURA DE QUÍMICAS

PRÁCTICAS DE MATEMÁTICAS LICENCIATURA DE QUÍMICAS PRÁCTICAS DE MATEMÁTICAS LICENCIATURA DE QUÍMICAS Departamento de Análisis Matemático Curso 2002/2003 Práctica 1 Álgebra lineal................................... 1 Práctica 2 Cálculo Diferencial...............................

Más detalles

Primer Examen Parcial Tema A Cálculo Vectorial Marzo 5 de 2016

Primer Examen Parcial Tema A Cálculo Vectorial Marzo 5 de 2016 rimer Examen arcial Tema A Cálculo Vectorial Marzo 5 de 016 Este es un examen individual, no se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. Recuerde apagar y guardar

Más detalles

7.1. CAMPOS VECTORIALES EN DEFINICIONES

7.1. CAMPOS VECTORIALES EN DEFINICIONES 7 n 7.. AMPO VETOIALE EN 7.. 7.. DEFINIIONE 7.. 7.. POPIEDADE 7.. 7.4. AMPO VETOIALE 7.4. ONEVATIVO 7.5. INTEGALE DE LÍNEA 7.6. TEOEMA DE GEEN 7.7. INTEGAL DE LÍNEA PAA EL ÁEA DE UNA EGIÓN PLANA 7.8. INTEGALE

Más detalles

UNIDAD II. 2 Cinemática. 2.1 Movimiento rectilíneo. 2.2 Movimiento bajo aceleración constante. 2.3 Movimiento circular

UNIDAD II. 2 Cinemática. 2.1 Movimiento rectilíneo. 2.2 Movimiento bajo aceleración constante. 2.3 Movimiento circular 42 UNIDAD II 2 Cinemática 2.1 Movimiento rectilíneo 2.2 Movimiento bajo aceleración constante 2.3 Movimiento circular 2.4 Movimiento curvilíneo general 43 UNIDAD II 2 CINEMATICA. La Cinemática (del griego

Más detalles

Guía Semanas 13 y RESUMEN. Universidad de Chile. Ingeniería Matemática. Triedro de vectores y factores escalares. Supongamos que r.

Guía Semanas 13 y RESUMEN. Universidad de Chile. Ingeniería Matemática. Triedro de vectores y factores escalares. Supongamos que r. 1. RESUMEN Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables 08-1 Ingeniería Matemática Guía Semanas 13 y 14 Triedro de vectores y factores

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES ) 3-1. Calcular, para las siguientes funciones. a) fx, y) x cos x sen y b) fx, y) e xy c) fx, y) x + y ) lnx + y )

Más detalles