TEMA 2 DIVISIBILIDAD 1º ESO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 2 DIVISIBILIDAD 1º ESO"

Transcripción

1 Alumno Fecha TEMA 2 DIVISIBILIDAD 1º ESO Si la división de un número A entre otro número B, es exacta, entonces decimos que: - El número A es divisible por el número B. Ej.: 12 : 4 = 3 12 divisible por 3 - El número A es múltiplo del número B Ej.: 12 es múltiplo de 4 - El número B es un divisor de A. Ej.: 4 es divisor de Completa la frase con múltiplo de o divisor de divisible por : a) 15 es... 5 b) 18 es c) d) 9 es e) 5 no es e) En la hoja del calendario rodea L M X J V S D a) Con un círculo todos los múltiplos de 3 b) Con un cuadrado todos los divisores de 18 c) tacha los números que son divisibles por 2 pero no por Distribuye los números en las casillas correspondientes: Divisibles por 2 Múltiplos de 3 Divisibles por 5 Múltiplos de 9 Divisibles por 3 Los múltiplos de un número A se obtienen al multiplicar A por cualquier otro número. Ej Los múltiplos de 5 son 5*1=5, 5*2=10, 5*3= 15,... es decir 5,10,15,... Los divisores de un número A se obtienen buscando divisiones exactas. Ej. Divisores de 10 son 1, 2, 5, 10, porque son los únicos números que al dividir a 10 da el resto cero. 4.- Escribe: a) Los cuatro primeros múltiplos de 6 b) los cinco primeros múltiplos de 12 c) El primer múltiplo de 10 mayor de 80 d) Los múltiplos de 4 comprendidos entre 10 y 25 e) El múltiplo más pequeño de 33 f) Múltiplo de 7 mayor de 72 y menor que 100 g) Múltiplos de 9 mayor de 52 y menor que 80: h) Los múltiplos de 6 comprendidos entre 30 y 55:

2 5.- Tacha los números que sean múltiplos de 3 y rodea con un círculo los que sean múltiplo de Qué múltiplos son comunes a 3 y a 4? Cuál es el más pequeño? 6.- Escribe: a) El mayor y menor divisor de 16 b) Un número que sólo tenga un divisor c) Un número que sólo tenga dos divisores d) Los divisores de 4 e) Dos divisores de 100 mayores de 22 f) Cuál es el menor divisor de un número? Y el mayor? g) Los divisores de 26. h) Tres divisores de 120 mayores de Tacha los números que no sean: a) Divisores de 4: 1,2,3,4 c) Divisores de 15: 1,2,3,5,6,7,8,9,10,12,13,14,15 b) Divisores de 5: 1,2,3,4,5 d) Divisores de 50: 1,2,3,5,10,15,20,30,50 Los criterios de divisibilidad sirven para saber si un número es divisible por 2,3,5,9... Un número es divisible por 2 si termina en 0 o número par. ( 2,4,6,8). Un número es divisible por 3 si la suma de sus cifras es múltiplo de 3. Un número es divisible por 4 si sus dos últimas cifras termina, en 00 o múltiplo de 4. Un número es divisible por 5 si termina en 0 ó 5. Un número es divisible por 6 si lo es por 2 y por 3. Un número es divisible por 9 si la suma de sus cifras es múltiplo de 9. Un número es divisible por 10 si termina en 0 Un número es divisible por 11 si la diferencia de la suma de las cifras de posición par y la suma de de las cifras de posición impar son 0 ó múltiplo de 11. Un número es divisible por 12 si lo es por 3 y por 4.

3 8.- Aplicando las reglas de divisibilidad completa la siguiente tabla ( marca con una x ) Divisible por: Completa los números para que sean divisibles por: a) 134_ 2 divisible por 6 b) 38_21 divisible por 11 c) 2455_ divisible por 9 d) 3642_ divisible por 5 e) 58_21 divisible por 11 f) 2435_ divisible por 3 Un número es primo si sólo tiene dos divisores: él mismo y la unidad. Un número es compuesto si tiene más de dos divisores. Ej.: El número 7 es primo porque sólo tiene dos divisores 1 y 7 El número 6 es compuesto porque tiene más de dos divisores, 1,2,3 y Indica si los siguientes números son primos o compuestos Nº Divisores Primo Compuesto Los números compuestos se pueden descomponer en producto de factores primos. Ej.: 12 = Entre estos números hay dos números primos, búscalos: Expresa cada uno de los números compuestos como producto de factores primos = = =

4 11,- Descomponer en producto de factores primos: a) 120 b) 88 c) = 88 = 84 = El mínimo común múltiplo de varios números, es el menor de los múltiplos comunes. Mcm(8,12) = 24 Múltiplos de 8: 8,16,24,32,40,48,56,64,72,80... Múltiplos de 12: 12,24,36, 48,60,72,84,... Para calcular el mcm de varios números, se descomponen los números en producto de factores primos y se seleccionan los factores comunes y no comunes elevados al mayor exponente. Mcm(8,12) =2³ 3 8= 2³ Factores primos no comunes elevados al mayor exponente. 12= 2² 3 Factores primos comunes elevados al mayor exponente Calcula : a) mcm( 24,60) = b) mcm ( 8, 10, 20) = = 60= 8= 10= 20= c) mcm (4,15)= d) mcm (48,15)=

5 El máximo común divisor de varios números, es el mayor de los divisores comunes. MCD(8,12) = 4 Divisores 8: 1,2,4,8 Divisores de 12: 1,2,3,4,6,12. Tienen en común los divisores 2 y 4, pero 4 es mayor. Para calcular el MCD de varios números, se descomponen los números en producto de factores primos y se seleccionan los factores comunes elevados al menor exponente. MCD(8,12) =2²= 4 8= 2³ 12= 2² 3 Factores primos comunes elevados al menor exponente Calcula : a) MCD ( 25,40 ) = b) MCD(16, 24) = = 40= 16= 24= c) MCD(18,24)= d) MCD(8,10,20)= = 24= 8= 10= 20= 14.- Se desea cuadricular una cartulina de manera que el lado del cuadrado que forma la cuadrícula sea la mayor posible. La cartulina mide 30 cm de ancho y 45 cm de largo. Cuál debe ser la longitud del lado del cuadrado?

6 15.- Tenemos 20 bocadillos de tortilla y 32 de chorizo. Queremos colocarlos en bolsas, de manera que todas tengan el mismo número de bocadillos y del mismo contenido. Si queremos llenar las bolsas con el mayor número de bocadillos. Cuántos bocadillos tendrá cada bolsa?. Cuántas bolsas necesitamos? 16.- Luis va a clase de música cada 3 días y a natación cada 5 días. Cada cuántos días coinciden las dos actividades? 17.- Dos coches de carreras dan vueltas en un circuito. El primero tarda 60 segundos en dar la vuelta y el segundo tarda 80 segundos. Cuántos segundos tardan en volver a coincidir en la meta? Cuántas vueltas ha dado cada coche hasta ese momento? 18.-Dos líneas de autobús tienen su cabecera en el mismo lugar. La línea roja tarda 25 minutos en volver al lugar de salida y la línea verde tarda 20 minutos. Si la primera salida de la mañana es simultánea, cada cuánto tiempo coinciden los autobuses en la cabecera.

ACTIVIDADES DE REFUERZO DE MATEMÁTICAS 1º DE E.S.O. TEMA 2 : DIVISIBILIDAD

ACTIVIDADES DE REFUERZO DE MATEMÁTICAS 1º DE E.S.O. TEMA 2 : DIVISIBILIDAD ACTIVIDADES DE REFUERZO DE MATEMÁTICAS 1º DE E.S.O. TEMA 2 : DIVISIBILIDAD ACTIVIDAD Nº: 1 FECHA: ALUMNO/A: GRUPO: Si la división de un número A, entre otro número B, es exacta, entonces decimos que: El

Más detalles

TEMA 3: DIVISIBILIDAD

TEMA 3: DIVISIBILIDAD TEMA : DIVISIBILIDAD MÚLTIPLOS Un número es MÚLTIPLO de otro cuando es el resultado de multiplicar el segundo número por cualquier número natural. 1 es MÚLTIPLO de 4 porque 4 x = 1 DIVISIBILIDAD Existe

Más detalles

Ampliación Tema 3: Múltiplo y divisores

Ampliación Tema 3: Múltiplo y divisores - Múltiplo. Divisible. Divisor Ampliación Tema 3: Múltiplo y divisores 56 8 56 es divisible por 8 0 7 56 es múltiplo de 8 Para indicar que 56 es múltiplo de 8 se escribe sobre el divisor 8 un punto :(8)

Más detalles

2. Subraya los múltiplos de 4: Subraya los múltiplos de 2:

2. Subraya los múltiplos de 4: Subraya los múltiplos de 2: TEMA 2. DIVISIBILIDAD Se dice que entre dos números hay una relación de divisibilidad cuando al dividir el mayor de ellos entre el menor la división es exacta. Se dice entonces que el número mayor es múltiplo

Más detalles

CEIP Mediterráneo. 1º relación de divisibilidad: múltiplos y divisores.

CEIP Mediterráneo. 1º relación de divisibilidad: múltiplos y divisores. Melilla DIVISIBILIDAD 1º relación de divisibilidad: múltiplos y divisores. Dos números están emparentados por la relación de divisibilidad cuando el cociente entre el mayor y el menor es exacto. El mayor

Más detalles

DIVISIBILIDAD CRITERIOS DE DIVISIBILIDAD

DIVISIBILIDAD CRITERIOS DE DIVISIBILIDAD DIVISIBILIDAD CRITERIOS DE DIVISIBILIDAD Un número es divisible por 2 si acaba en cero o cifra par. Ejemplos: 38, porque acaba en 8. 20, porque acaba en 0. Un número es divisible por 3 si la suma de sus

Más detalles

CUADERNILLO DE REFUERZO DE OPTATIVA DE MATEMATICAS 1º ESO. Si la división de un número A, entre otro número B, es exacta, entonces decimos que:

CUADERNILLO DE REFUERZO DE OPTATIVA DE MATEMATICAS 1º ESO. Si la división de un número A, entre otro número B, es exacta, entonces decimos que: CUADERNILLO DE REFUERZO DE OPTATIVA DE MATEMATICAS 1º ESO Si la división de un número A, entre otro número B, es exacta, entonces decimos que: El número A es divisible por el número B. El número A es múltiplo

Más detalles

DIVISIBILIDAD 2 3 = 8. Es decir, el resultado de multiplicar 2 por cualquier número natural.

DIVISIBILIDAD 2 3 = 8. Es decir, el resultado de multiplicar 2 por cualquier número natural. DIVISIBILIDAD I. Múltiplos y Divisores 1. MULTIPLOS Los múltiplos de 2 son = 2 2 1 = 4 2 2 = 6 2 3 = 8 2 4 etc Es decir, el resultado de multiplicar 2 por cualquier número natural. Múltiplo de un número

Más detalles

Múltiplos y divisores

Múltiplos y divisores Múltiplos y divisores 3 1. MÚLTIPLOS DE UN NÚMERO Los múltiplos de un número son los que lo contienen un número exacto de veces. El 12 es múltiplo de 3 porque lo contiene 4 veces. El 30 es múltiplo de

Más detalles

Un número a es múltiplo de otro b cuando es el resultado de multiplicar este último por otro número c.

Un número a es múltiplo de otro b cuando es el resultado de multiplicar este último por otro número c. DIVISIBILIDAD Múltiplos Un número a es múltiplo de otro b cuando es el resultado de multiplicar este último por otro número c. 18 = 2 9 18 es múltiplo de 2, ya que resulta de multiplicar 2 por 9. Tabla

Más detalles

MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural.

MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural. MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Múltiplos de un número Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural. Por ejemplo, si multiplicamos 9x2

Más detalles

Ejercicios Pendientes Matemáticas 2º ESO Curso Números Enteros Los Números Enteros

Ejercicios Pendientes Matemáticas 2º ESO Curso Números Enteros Los Números Enteros Los 1) 2) 1 3) 4) 5) 9) ) 2 11) 12) 16) 3 17) 18) 19) 4 20) 21) En qué orden se realizan las operaciones con números enteros Para resolver varias operaciones combinadas con números enteros, se debe seguir

Más detalles

MATEMÁTICAS 2º E.S.O. TEMA 1 DIVISIBILIDAD. NÚMEROS ENTEROS.

MATEMÁTICAS 2º E.S.O. TEMA 1 DIVISIBILIDAD. NÚMEROS ENTEROS. MATEMÁTICAS º E.S.O. TEMA 1 DIVISIBILIDAD. NÚMEROS ENTEROS. 1.1. Divisibilidad. Criterios de divisibilidad. 1.. Números primos y compuestos. 1.. Descomposición de un número en sus factores primos. 1..

Más detalles

Tema 2 Divisibilidad

Tema 2 Divisibilidad 1. Relación de Divisibilidad Tema 2 Divisibilidad Entre dos números a y b existe la relación de divisibilidad si al dividir a : b la división es exacta. Existe la relación de divisibilidad entre estos

Más detalles

Continuación Números Naturales:

Continuación Números Naturales: Continuación Números Naturales: Múltiplos y divisores de un número natural. Reglas de divisibilidad. Mínimo común múltiplo y Máximo común divisor. Ejercicios de aplicación. Continuación Números Naturales:

Más detalles

DIVISIBILIDAD NÚMEROS NATURALES

DIVISIBILIDAD NÚMEROS NATURALES DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar

Más detalles

DIVISIBILIDAD. 2º E.S.O. Un número es múltiplo de otro si se puede obtener multiplicando el segundo por otro número entero.

DIVISIBILIDAD. 2º E.S.O. Un número es múltiplo de otro si se puede obtener multiplicando el segundo por otro número entero. MULTIPLOS Y DIVISORES DIVISIBILIDAD. NÚMEROS ENTEROS. º E.S.O. Un número es múltiplo de otro si se puede obtener multiplicando el segundo por otro número entero. 8 es múltiplo de porque 8 = 9 75 es múltiplo

Más detalles

DIVISIBILIDAD NÚMEROS NATURALES

DIVISIBILIDAD NÚMEROS NATURALES DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar

Más detalles

Pendientes de Matemáticas de 1º ESO Relación 1. Números Naturales.

Pendientes de Matemáticas de 1º ESO Relación 1. Números Naturales. Pendientes de Matemáticas de 1º ESO Relación 1. Números Naturales. NOMBRE 1) Escribe con palabras los siguientes números: a) 6 534 = Seis mil quinientos treinta y cuatro b) 4 568 = c) 78 956 = d) 405 608

Más detalles

DIVISIBILIDAD. 1º relación de divisibilidad: múltiplos y divisores.

DIVISIBILIDAD. 1º relación de divisibilidad: múltiplos y divisores. CEPA Carmen Conde Abellán Matemáticas IyII Divisibilidad DIVISIBILIDAD 1º relación de divisibilidad: múltiplos y divisores. Dos números están emparentados por la relación de divisibilidad cuando el cociente

Más detalles

Ejercicios: Ejercicios: 3. Calcula los 5 primeros múltiplos de Calcula los múltiplos de 13 comprendidos entre 83 y 143

Ejercicios: Ejercicios: 3. Calcula los 5 primeros múltiplos de Calcula los múltiplos de 13 comprendidos entre 83 y 143 TEMA 1: DIVISIBILIDAD Y NÚMEROS ENTEROS MÚLTIPLOS Y DIVISORES Decimos que un número es múltiplo de otro si lo contiene un número entero de veces. Por ejemplo: 1 es múltiplo de 7 porque lo contiene veces

Más detalles

Un número natural a es múltiplo de otro número b si la división a : b es una división exacta.

Un número natural a es múltiplo de otro número b si la división a : b es una división exacta. Divisibilidad en MÚLTIPLOS DE UN NÚMERO Un número natural a es múltiplo de otro número b si la división a : b es una división exacta Ejemplo: 60 es múltiplo de 4 porque la división 60 : 4 = 5 es exacta

Más detalles

UNIDAD 2. MÚLTIPLOS Y DIVISORES

UNIDAD 2. MÚLTIPLOS Y DIVISORES UNIDAD. MÚLTIPLOS Y DIVISORES. MÚLTIPLOS DE UN NÚMERO.. DIVISORES DE UN NÚMERO. 3. NÚMEROS PRIMOS Y NÚMEROS COMPUESTOS. 4. CRITERIOS DE DIVISIBILIDAD. 5. MÍNIMO COMÚN MÚLTIPLO. 6. MÁXIMO COMÚN DIVISOR..

Más detalles

2 Divisibilidad. 1. Múltiplos y divisores

2 Divisibilidad. 1. Múltiplos y divisores 2 Divisibilidad 1. Múltiplos y divisores Calcula mentalmente e indica, de las siguientes divisiones, cuáles son exactas o enteras: a) 125 : 5 b) 28 : 6 c) 140 : 7 d) 23 400 : 100 P I E N S A Y C A L C

Más detalles

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte)

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte) TRABAJO DE MATEMÁTICAS PENDIENTES DE º E.S.O. (ª parte) NÚMEROS ENTEROS.-) Realiza las operaciones siguientes () (0) (-) ( ) (-) ( -) (-) ( -) (-) () - - - -0 - - - ( -) ( ) ( -) ( ) ( ) ( - ) ( - ) (

Más detalles

3. DIVISIBILIDAD. a es divisible por b si al dividir a entre b, el resto de la división es 0. Es decir :

3. DIVISIBILIDAD. a es divisible por b si al dividir a entre b, el resto de la división es 0. Es decir : 3. DIVISIBILIDAD a es divisible por b si al dividir a entre b, el resto de la división es 0. Es decir : Si a es divisible por b, diremos que: a es múltiplo de b b es divisor de a Un número es primo si

Más detalles

TEMA 1: DIVISIBILIDAD Y NÚMEROS ENTEROS.

TEMA 1: DIVISIBILIDAD Y NÚMEROS ENTEROS. TEMA : DIVISIBILIDAD Y NÚMEROS ENTEROS.. La relación de divisibilidad Ejemplos de multiplos y divisores: Determina si las siguientes parejas de números son múltiplos o divisores: a) 5 y 25 Lo primero será

Más detalles

INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS

INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS NIVELATORIO DE MATEMÁTICAS BÁSICAS Guía 3 Números Naturales y Enteros COMPETENCIA Reconoce operaciones. los conjuntos

Más detalles

Divisibilidad I. Nombre Curso Fecha

Divisibilidad I. Nombre Curso Fecha Matemáticas 2.º ESO Unidad 1 Ficha 1 Divisibilidad I Un número b es divisor de otro número a si al dividir a entre b la división es exacta. Se dice también que a es múltiplo de b. 1. Completa con la palabra

Más detalles

MÚLTIPLOS Y DIVISORES. MÚLTIPLOS

MÚLTIPLOS Y DIVISORES. MÚLTIPLOS MÚLTIPLOS Y DIVISORES. MÚLTIPLOS Los múltiplos de un número son los que lo contienen un número exacto de veces. El 2 es múltiplo de 3 porque lo contiene 4 veces. 3 x 4= 2 El 30 es múltiplo de 5 porque

Más detalles

TEMA: MULTIPLOS- DIVISORES CRITERIOS DE DIVISIBILIDAD PRIMOS- COMPUESTO

TEMA: MULTIPLOS- DIVISORES CRITERIOS DE DIVISIBILIDAD PRIMOS- COMPUESTO TEMA: MULTIPLOS- DIVISORES CRITERIOS DE DIVISIBILIDAD PRIMOS- COMPUESTO Los múltiplos de un número natural son los números naturales que resultan de multiplicar ese número por otros números naturales.

Más detalles

DIVISIBILIDAD. d. El 1 es de todos los números. 6) Utilizando los criterios de divisibilidad, completa con SI / NO la siguiente tabla:

DIVISIBILIDAD. d. El 1 es de todos los números. 6) Utilizando los criterios de divisibilidad, completa con SI / NO la siguiente tabla: Alumnos pendientes 1º ESO pag.2 DIVISIBILIDAD 1) Escribe la palabra múltiplo o divisor según corresponda: El 4 es divisor de 24 a. El 25 es de 5 b. El 25 es de 100 c. El 21 es de 21 d. El 1 es de todos

Más detalles

DIVISIBILIDAD NÚMEROS NATURALES

DIVISIBILIDAD NÚMEROS NATURALES DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar

Más detalles

Teoría (resumen) Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12, 15, 18, ; los múltiplos de 2 son: 2, 4, 6, 8, 10, 12, ; o sea los números pares.

Teoría (resumen) Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12, 15, 18, ; los múltiplos de 2 son: 2, 4, 6, 8, 10, 12, ; o sea los números pares. 1.- Divisibilidad Teoría (resumen) Múltiplos de un número. Son aquellos que se obtienen al multiplicar dicho número por los números naturales 1, 2, 3,. Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12,

Más detalles

Alumnos pendientes 1º ESO pag.1. Dpto. de Matemáticas.- I.E.S. María Moliner

Alumnos pendientes 1º ESO pag.1. Dpto. de Matemáticas.- I.E.S. María Moliner Alumnos pendientes 1º ESO pag.1 Alumnos pendientes 1º ESO pag.2 Alumnos pendientes 1º ESO pag.3 DIVISIBILIDAD Escribe la palabra múltiplo o divisor según corresponda: El 4 es de 24 a. El 25 es de 5 b.

Más detalles

2. Divisibilidad SOLUCIONARIO 2. NÚMEROS PRIMOS Y COMPUESTOS 1. MÚLTIPLOS Y DIVISORES PIENSA Y CALCULA

2. Divisibilidad SOLUCIONARIO 2. NÚMEROS PRIMOS Y COMPUESTOS 1. MÚLTIPLOS Y DIVISORES PIENSA Y CALCULA 16 SOLUCIONARIO 2. Divisibilidad 1. MÚLTIPLOS Y DIVISORES Calcula mentalmente e indica, de las siguientes divisiones, cuáles son exactas o enteras: a) 125 : 5 b) 28 : 6 c) 140 : 7 d) 23400 : 100 a) 25.

Más detalles

ACTIVIDADES DE MATEMÁTICAS SECUNDARIA Divisibilidad- mcm y mcd Hoja Nº 2

ACTIVIDADES DE MATEMÁTICAS SECUNDARIA Divisibilidad- mcm y mcd Hoja Nº 2 Teoría: Criterios de divisibilidad Podemos saber fácilmente si un número es divisible por otro sin necesidad de hacer la división, observando estas características: Los múltiplos de 2 terminan en 0, 2,

Más detalles

MÚLTIPLOS Y DIVISORES

MÚLTIPLOS Y DIVISORES MÚLTIPLOS Y DIVISORES MÚLTIPLOS DE UN NÚMERO Los múltiplos de un número son los que lo contienen un número exacto de veces. El 2 es múltiplo de 3 porque lo contiene 4 veces. El 30 es múltiplo de 5 porque

Más detalles

UNIDAD DIDÁCTICA 4º. Temporalización. septiembre octubre noviembre diciembre enero febrero marzo abril mayo junio

UNIDAD DIDÁCTICA 4º. Temporalización. septiembre octubre noviembre diciembre enero febrero marzo abril mayo junio UNIDAD DIDÁCTICA 4º Etapa: Educación Primaria. Ciclo: 3º Curso 6º Área del conocimiento: Matemáticas Nº UD: 4º (8 sesiones de 60 minutos; a ocho sesiones por quincena) Título: Múltiplos y divisores. Temporalización

Más detalles

1:F 2:V 3:F 4:V 5:V 6:F 7:F 8:V 9:F 10:V 11:F 12:V 13:V 14:V 15:V 16:V 17:F 18:V. 49 no es múltiplo de 9: 49:9 no es exacta

1:F 2:V 3:F 4:V 5:V 6:F 7:F 8:V 9:F 10:V 11:F 12:V 13:V 14:V 15:V 16:V 17:F 18:V. 49 no es múltiplo de 9: 49:9 no es exacta Tema 1: DIVISIBILIDAD Actividades para preparar el examen. Teoría: Contesta si son ciertas las afirmaciones: 1:F :V 3:F 4:V 5:V 6:F 7:F 8:V 9:F 10:V 11:F 1:V 13:V 14:V 15:V 16:V 17:F 18:V 19:V 0:V 1:F

Más detalles

APRENDER MATEMÁTICAS TEMA 2 JUAN LUIS CHAMIZO BLÁZQUEZ - CARMEN GORDO CUEVAS PEDRO M. RIVERA LEBRATO 35

APRENDER MATEMÁTICAS TEMA 2 JUAN LUIS CHAMIZO BLÁZQUEZ - CARMEN GORDO CUEVAS PEDRO M. RIVERA LEBRATO 35 TEMA 2 JUAN LUIS CHAMIZO BLÁZQUEZ - CARMEN GORDO CUEVAS PEDRO M. RIVERA LEBRATO 35 Divisibilidad Divisores de un número: Un número a es divisor de otro número b si al dividir este último por el primero

Más detalles

MÚLTIPLOS, DIVISORES Y DIVISIBILIDAD

MÚLTIPLOS, DIVISORES Y DIVISIBILIDAD MÚLTIPLOS, DIVISORES Y DIVISIBILIDAD 1 DIVISIBILIDAD La divisibilidad es una parte de la teoría de los números que analiza cada una de las condiciones que debe tener un número para que sea divisible por

Más detalles

Tema 2. Divisibilidad 1º de Educación Secundaria Obligatoria

Tema 2. Divisibilidad 1º de Educación Secundaria Obligatoria Tema 2. Divisibilidad 1º de Educación Secundaria Obligatoria Contenidos 1. Múltiplos y divisores 1.1. Múltiplos y divisores 1.2. Propiedades de múltiplos y divisores 2. Números primos y compuestos 2.1.

Más detalles

Múltiplos de un número

Múltiplos de un número Múltiplos de un número Rodea la opción correcta Para calcular los múltiplos de, multiplicamos por Los naturales Escribe cinco múltiplos de Cuántos kilogramos de patatas puedo comprar si los venden en bolsas

Más detalles

MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES

MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES 1 2 MÚLTIPLOS DE UN NÚMERO Un número es múltiplo de otro si se obtiene multiplicando este número por otro número natural. Ejemplo: 12 es múltiplo

Más detalles

Objetivos. Criterios de evaluación. Contenidos. Actitudes. Conceptos. Procedimientos

Objetivos. Criterios de evaluación. Contenidos. Actitudes. Conceptos. Procedimientos P R O G R A M A C I Ó N D E L A U N I D A D Objetivos 1 Identificar relaciones de divisibilidad entre números naturales y reconocer si un número es múltiplo o divisor de otro número dado. 2 Utilizar los

Más detalles

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES DIVISIBILIDAD

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES DIVISIBILIDAD DIVISIBILIDAD Definición de múltiplo Dados los números naturales a y b, se dice que a es múltiplo de b, si y solo si existe un número natural c, único, tal que a = b.c El número c se dice que es el cociente

Más detalles

5.- CRITERIOS DE DIVISIBILIDAD

5.- CRITERIOS DE DIVISIBILIDAD 5.- CRITERIOS DE DIVISIBILIDAD Por 2: si termina en cifra par Por3: sila sumade suscifras esmúltiplode 3 Por4: siterminaen 00 ó sus dos últimas cifras forman un númeromúltiplode 4 Por5: siacabaen 0 ó en

Más detalles

Tema 4: Múltiplos y Divisores

Tema 4: Múltiplos y Divisores Tema 4: Múltiplos y Divisores Índice 1. Introducción. 2. Múltiplos de un número. 3. Divisores de un número. 4. Criterios de divisibilidad. 5. Números primos y números compuestos. 6. Descomposición de un

Más detalles

FICHAS DE TRABAJO REFUERZO

FICHAS DE TRABAJO REFUERZO FICHAS DE TRABAJO REFUERZO DEPARTAMENTO DE MATEMATICAS CONTENIDO 1. Números naturales a. Leer y escribir números naturales b. Orden de cifras c. Descomposición polinómica d. Operaciones combinadas e. Potencias

Más detalles

EJERCICIOS DE POLINOMIOS

EJERCICIOS DE POLINOMIOS EJERCICIOS DE POLINOMIOS NOMBRE:... Nº:... º....- Escribe el grado, el número de términos y el nombre (monomio, binomio, trinomio, polinomio) que recibe cada una de las siguientes expresiones algebraicas:

Más detalles

NÚMEROS PRIMOS Y COMPUESTOS

NÚMEROS PRIMOS Y COMPUESTOS LECCIÓN 5: NÚMEROS PRIMOS Y COMPUESTOS 5.1.- NÚMEROS PRIMOS Y COMPUESTOS Un número se puede descomponer en un producto de dos factores buscando un divisor de dicho número y dividiéndolo entre el divisor

Más detalles

TEMA 1: LOS NÚMEROS ENTEROS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León.

TEMA 1: LOS NÚMEROS ENTEROS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. TEMA 1: LOS NÚMEROS ENTEROS Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 1. Los Números Enteros. 2. Suma y resta de números enteros.

Más detalles

TEMA 1 NÚMEROS NATURALES

TEMA 1 NÚMEROS NATURALES TEMA 1 NÚMEROS NATURALES Criterios De Evaluación de la Unidad 1 Efectuar correctamente operaciones combinadas de números naturales, aplicando correctamente las reglas de prioridad y haciendo un uso adecuado

Más detalles

Limpieza y organización del CUADERNO Realización y corrección de TAREAS TEMA 3 DIVISIBILIDAD ALUMNO/A: Nº

Limpieza y organización del CUADERNO Realización y corrección de TAREAS TEMA 3 DIVISIBILIDAD ALUMNO/A: Nº Limpieza y organización del CUADERNO Realización y corrección de TAREAS SATISFACTORIOACEPTABLE MEJORABLE TEMA 3 DIVISIBILIDAD ALUMNO/A: Nº Ejercicios TEMA 3 DIVISIBILIDAD (1º ESO) Página 1 1. R E L A C

Más detalles

DIVISIBILIDAD. 4.- Escribe todos los múltiplos de 13 que tengan dos cifras.

DIVISIBILIDAD. 4.- Escribe todos los múltiplos de 13 que tengan dos cifras. DIVISIBILIDAD 1.- Al dividir un número entre 38 da: 7 566 de cociente y 33 de resto. Si al dividendo le sumamos 14: a) cuánto daría de resto? b) y si le sumamos 4? c) y si le sumamos 146?, indica también

Más detalles

Tema 2. Divisibilidad. Múltiplos y submúltiplos.

Tema 2. Divisibilidad. Múltiplos y submúltiplos. Tema 2. Divisibilidad. Múltiplos y submúltiplos. En el tema 1, se ha mostrado como realizar cuentas con números naturales y enteros. Antes de conocer otras clases de números, los racionales, irracionales

Más detalles

1Soluciones a los ejercicios y problemas PÁGINA 34

1Soluciones a los ejercicios y problemas PÁGINA 34 PÁGINA 34 Pág. 1 M últiplos y divisores 1 Encuentra cuatro parejas múltiplo-divisor entre los siguientes números: 143 12 124 364 180 31 52 13 143 y 13 124 y 31 364 y 13 364 y 52 2 Responde justificando

Más detalles

MATEMÁTICAS 2º ESO. TEMA 1

MATEMÁTICAS 2º ESO. TEMA 1 MATEMÁTICAS 2º ESO. TEMA 1 1. DIVISIBILIDAD Y NÚMEROS ENTEROS 1. Los divisores son siempre menores o iguales que el número. 2. Los múltiplos siempre son mayores o iguales que el número. 3. Para saber si

Más detalles

El primer día del mes es juves. Cuál es el 29 día del mes?

El primer día del mes es juves. Cuál es el 29 día del mes? Divisibilidad. Para resolver juntos: Un cartel tiene 4 luces de colores Amarillo, Verde; Rojo; Blanco. Se van encendiendo, por minuto. El primer minuto, la luz amarilla, el segundo minuto la verde, el

Más detalles

Divisibilidad Actividades finales

Divisibilidad Actividades finales DIVISIBILIDAD. CRITERIOS 1. El dividendo de una división es 214, el divisor es 21 y el cociente es 10. Es divisible 214 por 21? 2. El número 186 es divisible por 31. Comprueba si 2 186 y 3 186 son también

Más detalles

MATEMÁTICAS 2º DE ESO LOE

MATEMÁTICAS 2º DE ESO LOE MATEMÁTICAS 2º DE ESO LOE TEMA I: NÚMEROS ENTEROS (parte 3/3) Los divisores de un número entero. Descomposición factorial de un número entero. Máximo común divisor (m.c.d.) de dos o más números enteros.

Más detalles

Números Enteros. Introducción

Números Enteros. Introducción Números Enteros Introducción Todos los conjuntos de números fueron de alguna manera "descubiertos" o sugeridos en conexión con problemas planteados en problemas físicos o en el seno de la matemática elemental

Más detalles

Bloque 1. Aritmética y Álgebra

Bloque 1. Aritmética y Álgebra Bloque 1. Aritmética y Álgebra Los números naturales Los números naturales Los números naturales se definen como: N = { 0,1, 2, 3, 4, 5,...,64, 65, 66,...,1639,1640,1641,1642,... } El sistema de numeración

Más detalles

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES DIVISIBILIDAD

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES DIVISIBILIDAD DIVISIBILIDAD Definición de múltiplo Dados los números naturales a y b, se dice que a es múltiplo de b, si y solo si existe un número natural k, único, tal que a = b.k El número k se dice que es el cociente

Más detalles

TEORÍA DE NÚMEROS. Ejemplos. 1. Calcule la factorización prima de los siguientes números: 3 780, 2 475, Solución A B C

TEORÍA DE NÚMEROS. Ejemplos. 1. Calcule la factorización prima de los siguientes números: 3 780, 2 475, Solución A B C TEORÍA DE NÚMEROS Ejemplos. Calcule la factorización prima de los siguientes números: 3 780, 2 475, 3 675. Solución A 3 780 2 890 2 945 3 35 3 05 3 35 5 7 7 B 2 475 3 825 3 275 5 55 5 C 3 675 3 225 5 245

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas.

Colegio Portocarrero. Curso Departamento de matemáticas. PRIORIDAD DE OPERACIONES: 1º Hay que resolver o quitar los paréntesis. 2º Se hacen las multiplicaciones y divisiones en el orden que aparezcan de izquierda a derecha 3º Se hacen las sumas y las restas

Más detalles

Divisibilidad CLAVES PARA EMPEZAR VIDA COTIDIANA RESUELVE EL RETO. a) Exacta. c) Exacta b) No exacta. d) No exacta.

Divisibilidad CLAVES PARA EMPEZAR VIDA COTIDIANA RESUELVE EL RETO. a) Exacta. c) Exacta b) No exacta. d) No exacta. CLAVES PARA EMPEZAR a) Exacta. c) Exacta. 54 6 81 9 0 9 0 9 b) No exacta. d) No exacta. 45 4 7 7 05 11 0 10 1 a) 6 9 54 c) 9 9 81 b) 4 11 1 44 1 45 d) 7 10 70 7 a) 18 3 5 54 5 59. La división está bien

Más detalles

TEORÍA DE DIVISIBILIDAD

TEORÍA DE DIVISIBILIDAD TEORÍA DE DIVISIBILIDAD MÚLTIPLOS Y DIVISORES.- Dados dos números naturales a y b, con a b, se dice que a es divisible por b o que a es múltiplo de b o que b es divisor de a, si la división de a : b es

Más detalles

UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico.

UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. UNIDAD 1. NÚMEROS. (Página 22 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. Clasificación de los números Números naturales son aquellos que utilizamos para contar. N = 0,1,2,,,5,6, Números

Más detalles

1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 8 3. EJERCICIOS DE DESARROLLO Página EJERCICIOS DE REFUERZO Página 63

1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 8 3. EJERCICIOS DE DESARROLLO Página EJERCICIOS DE REFUERZO Página 63 1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 8 3. EJERCICIOS DE DESARROLLO Página 38 5. EJERCICIOS DE REFUERZO Página 63 1 1. ESQUEMA - RESUMEN Página 1.1. MÚLTIPLOS Y DIVISORES DE

Más detalles

Lección 4: RELACIÓN DE DIVISIBILIDAD

Lección 4: RELACIÓN DE DIVISIBILIDAD Lección 4: RELACIÓN DE DIVISIBILIDAD 1.- RELACIÓN DE DIVISIBILIDAD. MÚLTIPLOS Y DIVISORES La divisibilidad es la relación que hay entre dos números cuando uno de ellos, el mayor, contiene una cantidad

Más detalles

C U R S O : MATEMÁTICA

C U R S O : MATEMÁTICA C U R S O : MATEMÁTICA GUÍA TEÓRICO PRÁCTICA Nº 1 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NATURALES Y ENTEROS NÚMEROS NATURALES Y CARDINALES ( IN, IN 0 ) Los elementos del conjunto ln = {1, 2, 3, } se denominan

Más detalles

1 Sí Sí Sí Sí Sí Sí Sí Sí. 6.- Halla los cinco primeros múltiplos de 3, los cinco primeros de 5 y los cinco primeros de 10.

1 Sí Sí Sí Sí Sí Sí Sí Sí. 6.- Halla los cinco primeros múltiplos de 3, los cinco primeros de 5 y los cinco primeros de 10. PROBLEMAS PROPUESTOS 1.- Cuáles de las siguientes afirmaciones son correctas? En los casos en los que no lo sean justifica la respuesta: a) 48 es divisible por 6. b) 6 es múltiplo de 48. c) 48 es divisor

Más detalles

Objetivos. Antes de empezar

Objetivos. Antes de empezar Objetivos En esta quincena aprenderás a: Saber si un número es múltiplo de otro. Reconocer las divisiones exactas. Hallar todos los divisores de un número. Reconocer los números primos. Descomponer un

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Las tutorías corresponden a los espacios académicos en los que el estudiante del Politécnico Los Alpes puede profundizar y reforzar sus conocimientos en diferentes temas de cara

Más detalles

UNIDAD 1: NÚMEROS NATURALES

UNIDAD 1: NÚMEROS NATURALES UNIDAD 1: NÚMEROS NATURALES 1. Calcula: Ya conoces las cuatro operaciones básicas, la suma, la resta, multiplicación y división. Cuando te aparezcan varias operaciones para realizar debes saber la siguiente

Más detalles

1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE AMPLIACIÓN Página 21

1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE AMPLIACIÓN Página 21 1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 7 3. EJERCICIOS DE DESARROLLO Página 19 4. EJERCICIOS DE AMPLIACIÓN Página 21 5. EJERCICIOS DE REFUERZO Página 22 1 1. ESQUEMA - RESUMEN

Más detalles

IES LA ASUNCIÓN

IES LA ASUNCIÓN MATEMÁTICAS º ESO Bloque I. Números y medidas. Tema 1: La relación de divisibilidad. TEORÍA 1. MÚLTIPLOS Y DIVISORES * Dos números a y b están emparentados por la relación de divisibilidad cuando su cociente

Más detalles

TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD

TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD Un número es divisible por: TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD - 2 Si es PAR. - 3 Si la suma de sus cifras es divisible por 3. - 4 Si el número formado por sus dos últimas cifras es divisible

Más detalles

4.- Raíces cuadradas.

4.- Raíces cuadradas. 4.- Raíces cuadradas. DEFINICIÓN La raíz cuadrada exacta de un número entero es otro número entero cuyo cuadrado coincide con el primer número, es decir: 2 a = b b = a No todos los enteros tienen raíz

Más detalles

2 Divisibilidad. 1. Múltiplos y divisores

2 Divisibilidad. 1. Múltiplos y divisores 2 Divisibilidad 1. Múltiplos y divisores Calcula mentalmente e indica, de las siguientes divisiones, cuáles son exactas o enteras: a) 125 : 5 b) 28 : 6 c) 140 : 7 d) 23 400 : 100 P I E N S A Y C A L C

Más detalles

UNIDAD 3. DIVISIBILIDAD

UNIDAD 3. DIVISIBILIDAD UNIDAD 3. DIVISIBILIDAD ACTIVIDADES FINALES PAG. 59 38. Múltiplos de 4: 16, 60 y 120 Múltiplos de 5: 15, 25, 60 y 120 39. a) 360 es múltiplo de 15: Verdadero b) 140 es múltiplo de 7: Verdadero c) 136 es

Más detalles

Números primos y compuestos

Números primos y compuestos Divisibilidad -Números primos y compuestos. -Múltiplos. Mínimo común múltiplo. -Divisores. Máximo común divisor. -Criterios de divisibilidad. -Descomposición factorial. -Aplicaciones. 1 Números primos

Más detalles

PÁGINA 19. Pág. 1. Unidad 1. Divisibilidad y números enteros

PÁGINA 19. Pág. 1. Unidad 1. Divisibilidad y números enteros Soluciones a las actividades de cada epígrafe PÁGINA 19 Pág. 1 1 Busca, entre estos números, parejas emparentadas por la relación de divisibilidad: 13 15 18 23 81 90 91 92 225 243 13 y 91 8 91 : 13 = 7

Más detalles

DIVISIBILIDAD 1º E.S.O. 80 es divisible entre no es divisible entre 25.

DIVISIBILIDAD 1º E.S.O. 80 es divisible entre no es divisible entre 25. DIVIBILIDAD º E.S.O. RELACIÓN DE DIVIBILIDAD Dos números están emparentados por la relación de divisibilidad cuando uno cabe en el otro una cantidad exacta de veces, es decir, cuando su cociente es exacto.

Más detalles

EJERCICIOS PENDIENTES 2º E.S.O.

EJERCICIOS PENDIENTES 2º E.S.O. EJERCICIOS PENDIENTES º E.S.O. OPERACIONES CON NÚMEROS ENTEROS.-Calcula 0 i h g f e d c b a.- Calcula 0 0 0 0 i h g f e d c b a.- Calcula 0 0 ] 0 [ 0 0 0 ] [ 0 0 0 h g f e d c b a.- Calcula 0 9 0 0 0 h

Más detalles

Ejercicios resueltos de aritmética

Ejercicios resueltos de aritmética Ejercicios resueltos de aritmética 1) Calcula: a) 5 3 7 + 1 + 8 b) 2 3 + 4 + 1 8 + 2 c) 1 3 + 5 7 + 9 11 d) 2 + 4 6 8 + 10 12 + 14 2) Quita paréntesis: a) a + (b + c) b) a (b + c) c) a + (b c) d) a (b

Más detalles

1Soluciones a los ejercicios y problemas PÁGINA 34

1Soluciones a los ejercicios y problemas PÁGINA 34 1Soluciones a los ejercicios y problemas PÁGINA 34 Pág. 1 M últiplos y divisores 1 Encuentra cuatro parejas múltiplo-divisor entre los siguientes números: 143 12 124 364 180 31 52 13 143 y 13 124 y 31

Más detalles

TEMA 1: NÚMEROS NATURALES, DIVISIBILIDAD 1º ESO. MATEMÁTICAS

TEMA 1: NÚMEROS NATURALES, DIVISIBILIDAD 1º ESO. MATEMÁTICAS TEMA 1: NÚMEROS NATURALES, DIVISIBILIDAD 1º ESO. MATEMÁTICAS Los números naturales De forma intuitiva podemos definir los números naturales de la siguiente forma: DEFINICIÓN Los números naturales son aquellos

Más detalles

PRIORIDAD DE OPERACIONES:

PRIORIDAD DE OPERACIONES: PRIORIDAD DE OPERACIONES 1º Hay que resolver o quitar los paréntesis. º Se hacen las multiplicaciones y divisiones en el orden que aparezcan de izquierda a derecha º Se hacen las sumas y las restas en

Más detalles

Unidad didáctica 1. Operaciones básicas con números enteros

Unidad didáctica 1. Operaciones básicas con números enteros Unidad didáctica 1 Operaciones básicas con números enteros 1.- Representación y ordenación de números enteros Para representar números enteros en una recta hay que seguir estos pasos: a) Se dibuja una

Más detalles

13 ESO. «El estudio es un esfuerzo total para aprender, y sólo es verdaderamente provechoso cuando se aprende» Morgan. Profesor

13 ESO. «El estudio es un esfuerzo total para aprender, y sólo es verdaderamente provechoso cuando se aprende» Morgan. Profesor «El estudio es un esfuerzo total para aprender, y sólo es verdaderamente provechoso cuando se aprende» 13 ESO Morgan. Profesor N N ÍNDICE: EL NIF DIA DEL MEDIO AMBIENTE 1. NÚMEROS NATURALES 2. MÚLTIPLOS

Más detalles

I.E.S. VICTORIA KENT DEPARTAMENTO DE MATEMÁTICAS Pág. 1 de 9 ACTIVIDADES DE REFUERZO DE MATEMÁTICAS DE 1º DE E.S.O. UNIDAD 3: DIVISIBILIDAD

I.E.S. VICTORIA KENT DEPARTAMENTO DE MATEMÁTICAS Pág. 1 de 9 ACTIVIDADES DE REFUERZO DE MATEMÁTICAS DE 1º DE E.S.O. UNIDAD 3: DIVISIBILIDAD DEPARTAMENTO DE MATEMÁTICAS Pág. de 9 Ejercicio nº.- ACTIVIDADES DE REFUERZO DE MATEMÁTICAS DE º DE E.S.O. UNIDAD : DIVISIBILIDAD Responde a las preguntas y justifica tus respuestas: a) El número 8 es

Más detalles

Matemáticas Orientadas a las Enseñanzas Aplicadas IES

Matemáticas Orientadas a las Enseñanzas Aplicadas IES Matemáticas Orientadas a las Enseñanzas Aplicadas IES Los números enteros y racionales. Contenidos 1. Números enteros. Representación y orden. Operaciones. Problemas. 2. Fracciones y decimales. Fracciones

Más detalles

DIVIDENDO DIVISOR COCIENTE RESTO

DIVIDENDO DIVISOR COCIENTE RESTO TEMA 1. NÚMEROS NATURALES 1. Realiza las siguientes operaciones combinadas: 20 460 25 418 256 27 5 16 60 54 :9 6 4 7 (8 4) 15: 5 ( 7 2) 4 (4 6) : 84 5 (6 : 2 5) 4 10 : 5 2. Completa la tabla calculando

Más detalles

TEMA 1. Los números enteros. Matemáticas

TEMA 1. Los números enteros. Matemáticas 1 Introducción En esta unidad veremos propiedades de los números enteros, como se opera con ellos (con y sin calculadora), los números primos, máximo común divisor y mínimo común múltiplo y por últimos

Más detalles

Hoja de problemas. nº 2 2003, 2011, 2017,

Hoja de problemas. nº 2 2003, 2011, 2017, Hoja de problemas nº 2 2, 3, 5, 7, 11, 13,11, 2003, 2011, 2017, Hojas de Problemas La Divisibilidad Hoja nº 2 Divisibilidad A. Ariza/A. Sánchez/R. Trigueros 1. Calcular todos los divisores de 60. 2. Calcular

Más detalles

A. MÚLTIPLOS Y DIVISORES. 1. Calcula 5 múltiplos de cada uno de los siguientes números a) 8 b) 13 c) 16 d) 35 e) 45. a) 12 b) 20 c) 23 d) 14 e) 30

A. MÚLTIPLOS Y DIVISORES. 1. Calcula 5 múltiplos de cada uno de los siguientes números a) 8 b) 13 c) 16 d) 35 e) 45. a) 12 b) 20 c) 23 d) 14 e) 30 EJERCICIOS Y PROBLEMAS. A. MÚLTIPLOS Y DIVISORES.. Calcula 5 múltiplos de cada uno de los siguientes números a) 8 b) c) 6 d) 5 e) 45 2.- Escribe los 6 primeros múltiplos de los siguientes números: a) 2

Más detalles

b Cuál o cuáles de estos números son divisores de 96? Explica por qué.

b Cuál o cuáles de estos números son divisores de 96? Explica por qué. EJERCICIOS DE DIVISIBILIDAD. 1º) Responde a las preguntas y justifica tu respuesta: a El número 6 es divisor de 30? Explica por qué. b El número 155 es múltiplo de 31? Explica por qué. 2º) Responde a las

Más detalles