LAS LEYES DE LA RADIACIÓN EN LA TIERRA Y EN EL ESPACIO OBJETIVO RESUMEN. GENERACIÓN DE LINEAS: Leyes de Kirchhoff

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LAS LEYES DE LA RADIACIÓN EN LA TIERRA Y EN EL ESPACIO OBJETIVO RESUMEN. GENERACIÓN DE LINEAS: Leyes de Kirchhoff"

Transcripción

1 LAS LEYES DE LA RADIACIÓN EN LA TIERRA Y EN EL ESPACIO OBJETIVO Aproximarnos a los procesos que absorben y generan radiación electromagnética en la Tierra y en el espacio. Basada en presentación de Tabaré Gallardo y Mario Bidegain, con aportes de Gonzalo Tancredi Facultad de Ciencias RESUMEN 1. Generación de líneas: Kirchhoff 2. Contínuo: Planck, Wien, Stefan 3. Aplicaciones en estrellas: temperaturas y radios 4. Aplicaciones en Sistema Solar: temperaturas y composición 5. Generación de contínuo y líneas en estrellas, nubes y galaxias 6. La radiación en la Tierra GENERACIÓN DE LINEAS: Leyes de Kirchhoff 1

2 RESUMEN HISTÓRICO EL CONTÍNUO: Leyes de Planck, Wien y Stefan 1859 Kirchhoff: radiación de cuerpo en equilibrio térmico 1860 Kirchhoff y Bunsen: leyes de radiación 1879 Stefan: obtención empírica del flujo total 1893 Wien: ley de desplazamiento 1896 Zeeman: efecto y aplicación al estudio de manchas solares 1900 Planck: deducción teórica de la radiación de cuerpo negro 1906 Schwarzschild: teoría de campos de radiación estacionarios 1911 Rutherford: modelo de átomo con núcleo y nube de electrones 1913 Bohr: modelo del átomo de Hidrógeno 1916 Eddington: teoría de la constitución interna de las estrellas Energía emitida por la superficie emisora por unidad de tiempo (dt), por unidad de area (da), por unidad de frecuencia (dν), por unidad de ángulo sólido (dω) Energía recibida por un detector en dirección que forma ángulo θ con la normal de = I ( dacosθ ) dν dω dt Flujo (Densidad de Flujo) Integral de la intensidad en todas direcciones de I F I cos Ω F = S I I(ν ) cosθ dω = θ dω I Ley de Planck: medio (o cuerpo) en equilibrio térmico emitirá con: 3 2hν ( ν ) = Bν ( ν, T ) = 2 hν / kt ν c ( e ν - frecuencia [Hz = 1/s] T Temperatura [ K] h Constante de Planck (6.63 x Js) k Constante de Boltzmann (1.38 x JK -1 ) 1) 2

3 c ν = = c / ν c dν = d 2 I dν = I d I ν - longitud de onda [m] c velocidad de luz (3x10 8 ms -1 ) 2hc ( ) = B (, T ) = 5 hc / ( e 2 kt 1) max ( Angstroms K ) = T Si integramos la intensidad en todas las direcciones y en todas las frecuencias obtenemos el Flujo o energía emitida por unidad de área y de tiempo: 4 F = σt Ley de Stefan Ley de Wien σ - constante de Stefan (5.67x10-8 Wm -2 K -4 ) La observación y la teoría concuerdan en que las estrellas a grosso modo están formadas por capas gaseosas concéntricas en equilibrio térmico. La intensidad de la emisión resultante de un medio como éste es la función de Planck la cual es independiente de las propiedades del medio, solo depende de su temperatura (aunque T dependerá de las propiedades del medio). I ν 3 2hν ( ν ) = Bν ( ν, T ) = 2 hν / kt c ( e 1) La Ley de Wien y la Ley de Stefan se deducen de la Ley de Planck Luminosidad: energía total emitida por unidad de tiempo. Para el caso de una ESTRELLA ESFERICA: L = S F = 2 4 4πR σt Condición: emisión planckiana (equilibrio térmico) La temperatura deducida a través de esta expresión se conoce como Temperatura Efectiva de la estrella y se requiere conocer el radio y la luminosidad de la estrella. En realidad la radiación que recibimos es la suma de emisiones de diferentes capas superficiales a diferentes temperaturas pero el efecto total es equivalente al de una capa de temperatura Tef. La observación de la intensidad de las estrellas en función de la frecuencia concuerda muy bien con la curva de Planck. Ajustando las curvas de emisión estelares a las de Planck podemos estimar las temperaturas (Temp de brillo, Temp de color) de las superficies que generan esa emisión observada. Luego podemos deducir el radio estelar. 3

4 Ejemplo: radiación cósmica de fondo APLICACIONES EN EL SISTEMA SOLAR: TEMPERATURAS Y COMPOSICIÓN Radiación recibida en un planeta propagada en el vacío: la densidad de flujo (o flujo ) decrece con el cuadrado de la distancia al Sol. La energía absorbida por el planeta dependera de su Albedo : Si el asteroide se encuentra a temperatura constante quiere decir que toda la energía absorbida es reemitida: y el espectro de emisión del asteroide será: I( ν ) = B( ν, Teq ) T eq << T Sol 4

5 espectro observado = emisión + reflexión Temperaturas de equilibrio en el sistema solar: determinación de radio Dependen básicamente de la distancia al Sol y del Albedo. Radiación a través de un medio absorbente. OPACIDAD 1 α = L L = Camino Libre Medio de los fotones La luz en su pasaje por un medio denso Efectos: Absorción, dispersión y variación del camino óptico I(0) e I(0) e I ( r) = = Dα D / L Si D>>L, gran absorción Si D<<L, absorción despreciable Las ventanas atmósfericas 5

6 Ejemplo: atmosfera terrestre. D >> L (fotones en gamma, X, UV) D << L (fotones en visible) Las condiciones cambiantes RADIACION SOLAR RECIBIDA EN EL TOPE DE LA ATMOSFERA Y EN LA SUPERFICIE TERRESTRE LA RADIACIÓN EN LA TIERRA 6

7 RADIACION SOLAR EN SU PASO POR LA ATMOSFERA RADIACION TERRESTRE RADIACION TERRESTRE EN SU PASO POR LA ATMOSFERA BALANCE DE ENERGIA EN EL SISTEMA TIERRA-ATMOSFERA RADIACION SOLAR ULTRAVIOLETA INSOLACION Y ESTACIONES La banda biológicamente activa de la UV abarca las longitudes de onda comprendidas entre los 200 y 400 nm. Las longitudes de onda inferiores a 200 nm no tienen importancia biológica porque son absorbidas rápidamente por la atmósfera. UV-C abarca desde 200 hasta 280 nm, también se le llama UV de onda corta, UV lejana o radiación germicida. UV-B entre 280 y 320 nm, se la conoce como UV media o radiación de quemadura solar. Es la que tiene efectos biológicos más potentes. Solamente el 1% de la radiación solar está dentro de este rango y la mayor parte es absorbida por el ozono. Tiene gran interés porque pueden causar daño a nivel molecular. UV-A entre 320 y 400 nm, también conocida como UV de onda larga, UV próxima o luz negra. Es importante en la generación fotoquímica del smog, en la decoloración y daño de los plásticos, pinturas y telas. 7

8 BIBLIOGRAFIA: Astronomy Today: Astronomia e Astrofisica: Astronomy Notes, Nick Strobel: The Cosmic Perspective: 8

1 Antecedentes y definiciones previas

1 Antecedentes y definiciones previas Apuntes para la charla La Radiacion de Cuerpo Negro en Astrofisica Estelar. Tabare Gallardo, Catedra Alicia Goyena, 15 de mayo de 22. 1 Antecedentes y definiciones previas 1859 Kirchhoff: radiacion de

Más detalles

Ciencias de la Tierra y el Espacio Clase 2 Leyes de radiación.

Ciencias de la Tierra y el Espacio Clase 2 Leyes de radiación. Ciencias de la Tierra y el Espacio 1-2016 Clase 2 Leyes de radiación. OBJETIVOS Después de esta clase el estudiante debe ser capaz de: Entender el concepto de espectro electromagnético y su relación con

Más detalles

El cuerpo negro. Figura 3.1: Cuerpo negro

El cuerpo negro. Figura 3.1: Cuerpo negro Capítulo 3 El cuerpo negro. Cuerpo negro: Distribución de fotones dentro de un recinto cuyas paredes se mantienen en equilibrio termodinámico (T = cte.): radiación del cuerpo negro (BB). Figura 3.1: Cuerpo

Más detalles

El espectro del Sol. nuo: Ley de Planck. La radiación electromagnética tica en su pasaje por la atmósfera. λ λ OBJETIVO.

El espectro del Sol. nuo: Ley de Planck. La radiación electromagnética tica en su pasaje por la atmósfera. λ λ OBJETIVO. La radiación electromagnética tica en su pasaje por la atmósfera La radiación electromagnética es la principal (y casi única) fuente de información que disponemos de los objetos de estudio en la Astronomía.

Más detalles

TEMA 3: Interacción de la radiación solar con la superficie de la Tierra y la atmósfera

TEMA 3: Interacción de la radiación solar con la superficie de la Tierra y la atmósfera TEMA 3: Interacción de la radiación solar con la superficie de la Tierra y la atmósfera Objetivo Entender por qué la Tierra tiene un temperatura promedio global moderada que permite su habitabilidad, y

Más detalles

Radiación. La radiación electromagnética

Radiación. La radiación electromagnética Radiación Curso Introducción a las Ciencias de la Tierra y el Espacio II La radiación electromagnética Es el portador de la información de los objetos astronómicos. Es la forma en que la energía electromagnética

Más detalles

Radiación. Cuerpo Negro Espectros Estructura del Atomo Espectroscopia Efecto Doppler. L. Infante 1

Radiación. Cuerpo Negro Espectros Estructura del Atomo Espectroscopia Efecto Doppler. L. Infante 1 Radiación Cuerpo Negro Espectros Estructura del Atomo Espectroscopia Efecto Doppler L. Infante 1 Cuerpo Negro: Experimento A medida que el objeto se calienta, se hace más brillante ya que emite más radiación

Más detalles

RADIACIÓN ELECTROMAGNÉTICA Y TÉCNICAS DE OBSERVACIÓN. Curso Introducción a la Astronomía 1

RADIACIÓN ELECTROMAGNÉTICA Y TÉCNICAS DE OBSERVACIÓN. Curso Introducción a la Astronomía 1 RADIACIÓN ELECTROMAGNÉTICA Y TÉCNICAS DE OBSERVACIÓN Curso 2011-12 Introducción a la Astronomía 1 Brillo Magnitud aparente El ojo detecta la luz de forma logarítmica, es decir, detecta cambios no de manera

Más detalles

TEMA 2. LA IMPORTANCIA DE LA SUPERFICIE EN LOS BALANCES DE ENERGÍA Y AGUA.

TEMA 2. LA IMPORTANCIA DE LA SUPERFICIE EN LOS BALANCES DE ENERGÍA Y AGUA. TEMA 2. LA IMPORTANCIA DE LA SUPERFICIE EN LOS BALANCES DE ENERGÍA Y AGUA. 1. EL BALANCE DE ENERGÍA 1.1. El balance de radiación A. Características de la radiación B. Principios generales del comportamiento

Más detalles

Las ventanas atmósfericas

Las ventanas atmósfericas TEMA 2 La radiación electromagnética. El pasaje de la radiación a través de la atmósfera. Las leyes de la radiación. Magnitudes aparentes y absolutas. CTE 2 - Tema 2 1 Las ventanas atmosféricas Las ventanas

Más detalles

Radiación electromagnética

Radiación electromagnética Page 1 Radiación electromagnética Consideremos una partícula cargada en reposo respecto de un observador inercial, produciendo un campo eléctrico. Al moverse a cierta velocidad se observará un campo electromagnético.

Más detalles

B a la n c e de e n e rg ía de l s is t e m a c lim á tic o

B a la n c e de e n e rg ía de l s is t e m a c lim á tic o B a la n c e de e n e rg ía de l s is t e m a c lim á tic o En equilibrio, la Tierra recibe tanta energía del Sol como la que emite. Si uno de los componentes cambia, el balance energético se ajustará

Más detalles

Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas. INTRODUCCIÓN a las CIENCIAS de la ATMÓSFERA

Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas. INTRODUCCIÓN a las CIENCIAS de la ATMÓSFERA Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas INTRODUCCIÓN a las CIENCIAS de la ATMÓSFERA Práctica 2 : ENERGÍA, CALOR, RADIACIÓN SOLAR Y TERRESTRE. Definiciones, ecuaciones

Más detalles

- RADIACIÓN SOLAR. Leyes. Variabilidad. Balance de la radiación solar entre la que llega y sale de la superficie terrestre.

- RADIACIÓN SOLAR. Leyes. Variabilidad. Balance de la radiación solar entre la que llega y sale de la superficie terrestre. - RADIACIÓN SOLAR. Leyes. Variabilidad. Balance de la radiación solar entre la que llega y sale de la superficie terrestre. La radiación solar es el conjunto de radiaciones electromagnéticas emitidas por

Más detalles

Tema 2. La importancia de la superficie en los balances de energía a y agua.

Tema 2. La importancia de la superficie en los balances de energía a y agua. Tema 2. La importancia de la superficie en los balances de energía a y agua. 1. Nociones generales sobre el balance de energía 1.1. Los caracteres de la radiación 1.2. Procesos experimentados por la radiación

Más detalles

Objetos del Universo Andrea Sánchez & Gonzalo Tancredi. Hace millones de años El BIG BANG. Galaxias: los grandes bloques...

Objetos del Universo Andrea Sánchez & Gonzalo Tancredi. Hace millones de años El BIG BANG. Galaxias: los grandes bloques... Objetos del Universo Andrea Sánchez & Gonzalo Tancredi Hace 15000 millones de años El BIG BANG Qué pasa cuando oímos la sirena de una ambulancia : efecto Fissau Con la luz: efecto Doppler. Corrimiento

Más detalles

Clase VII Termodinámica de energía solar fototérmica

Clase VII Termodinámica de energía solar fototérmica Clase VII Termodinámica de energía solar fototérmica Alejandro Medina Septiembre 2015 http://campus.usal.es/gtfe Espectro electromagnético y radiación térmica La radiación térmica es energía electromagnética

Más detalles

GF3003 Ciencias Atmosféricas. Laura Gallardo Klenner Departamento de Geofísica de la Universidad de Chile Primavera 2010

GF3003 Ciencias Atmosféricas. Laura Gallardo Klenner Departamento de Geofísica de la Universidad de Chile Primavera 2010 GF3003 Ciencias Atmosféricas Laura Gallardo Klenner Departamento de Geofísica de la Universidad de Chile Primavera 2010 Recuerdos: HOY Radiación electromagnética Radiación de cuerpo negro Ley de Kirchoff

Más detalles

Radiación del cuerpo negro 2.1 CONCEPTOS BÁSICOS SOBRE EL EQUILIBRIO TERMODINÁMICO

Radiación del cuerpo negro 2.1 CONCEPTOS BÁSICOS SOBRE EL EQUILIBRIO TERMODINÁMICO Capítulo 2 Radiación del cuerpo negro 2.1 CONCEPTOS BÁSICOS SOBRE EL EQUILIBRIO TERMODINÁMICO En el capítulo anterior hemos mencionado que para conocer el estado de la materia en situaciones de interés

Más detalles

interacción de la radiación con la atmósfera

interacción de la radiación con la atmósfera 1 interacción de la radiación lección 4 sumario 2 Introducción. Composición de la atmósfera. Efectos atmosféricos: Dispersión. Absorción. Correcciones atmosféricas. introducción 3 La atmósfera se interpone

Más detalles

INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA

INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA Haydee Karszenbaum Veronica Barrazza haydeek@iafe.uba.ar vbarraza@iafe.uba.ar Clase 1.2: ondas y leyes de la radiación Teledetección cuantitativa 1 Características

Más detalles

radiación electromagnética

radiación electromagnética radiación electromagnética ondas propagándose en el espacio con velocidad c crestas amplitud l valles longitud de onda [ l]=cm, nm, μm, A Frecuencia=n=c/l [ n ]=HZ=1/s l= numero de ondas por unidad de

Más detalles

CAPÍTULO VI TRANSPORTE DE ENERGÍA POR RADIACIÓN

CAPÍTULO VI TRANSPORTE DE ENERGÍA POR RADIACIÓN CAPÍTULO VI TRANSPORTE DE ENERGÍA POR RADIACIÓN 6.1 El espectro de radiación electromagnética El transporte de energía por conducción y convección necesitan la existencia de un medio material. La conducción

Más detalles

Federico Robledo Estudiante de doctorado en Ciencias de la Atmósfera y docente del DCAO. Porqué pensar en un Sistema Climático?

Federico Robledo Estudiante de doctorado en Ciencias de la Atmósfera y docente del DCAO. Porqué pensar en un Sistema Climático? Federico Robledo Estudiante de doctorado en Ciencias de la Atmósfera y docente del DCAO Porqué pensar en un Sistema Climático? Qué es la atmósfera? es la capa gaseosa que cubre la Tierra y que se mantiene

Más detalles

Capítulo 24. Emisión y absorción de la luz. Láser

Capítulo 24. Emisión y absorción de la luz. Láser Capítulo 24 Emisión y absorción de la luz. Láser 1 Absorción y emisión La frecuencia luminosa depende de los niveles atómicos entre los que se produce la transición electrónica a través de: hν = E f E

Más detalles

Tema 1: Resumen y (algunos) problemas

Tema 1: Resumen y (algunos) problemas Tema 1: Resumen y (algunos) problemas Radiación emitida por un cuerpo negro. En general los cuerpos emiten, absorben y reflejan radiación. Se llama cuerpo negro a aquel que no refleja radiación. Un ejemplo

Más detalles

LICENCIATURA EN TECNOLOGÍA FÍSICA MODERNA. III. Antecedente de la Teoría Cuántica. IV. Mecánica Cuántica

LICENCIATURA EN TECNOLOGÍA FÍSICA MODERNA. III. Antecedente de la Teoría Cuántica. IV. Mecánica Cuántica III. y IV. Teoría Cuántica LICENCIATURA EN TECNOLOGÍA FÍSICA MODERNA III. Antecedente de la Teoría Cuántica IV. Mecánica Cuántica M. en C. Angel Figueroa Soto. angfsoto@geociencias.unam.mx Centro de Geociencias,

Más detalles

Astrofísica moderna. En la segunda parte de esta asignatura tratamos la historia de la astronomía en los últimos años.

Astrofísica moderna. En la segunda parte de esta asignatura tratamos la historia de la astronomía en los últimos años. Astrofísica moderna En la segunda parte de esta asignatura tratamos la historia de la astronomía en los últimos 60-80 años. La visión del universo en los años 1930 1. Sistema solar 2. Estrellas 3. Galaxias

Más detalles

Radiación del cuerpo negro

Radiación del cuerpo negro Estructura de la Materia Radiación del cuerpo negro Martha M. Flores Leonar FQ UNAM 13 de febrero de 2018 FENÓMENO DE LA RADIACIÓN TÉRMICA Consiste en la transferencia de energía por medio de radiación.

Más detalles

FÍSICA GENERAL PARA ARQUITECTURA

FÍSICA GENERAL PARA ARQUITECTURA FÍSICA GENERAL PARA ARQUITECTURA 105_01_03_Iluminación UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS ESCUELA DE FÍSICA HEYDI MARTÍNEZ Onda La luz es un tipo de onda ILUMINACIÓN COMPORTAMIENTO

Más detalles

ATMOSFERAS PLANETARIAS

ATMOSFERAS PLANETARIAS ATMOSFERAS PLANETARIAS Las atmósferas es un fluído particular (GASES) en procura del equilibrio. Clasificación: Planetas terrestres: : Venus, Tierra, Marte,, Titan Atmosferas tenues: Mercurio,, Io, Triton,

Más detalles

Capas del sol. Superficial o fotósfera: Poco espesor Temp de 6000 C Irradia la parte visible del espectro

Capas del sol. Superficial o fotósfera: Poco espesor Temp de 6000 C Irradia la parte visible del espectro Radiación solar Sol: Estrella del sistema planetario Fuente de radiaciones caloríficas y otras formas de energía Localiza a 150000000 de km de la Tierra Temp de su núcleo es 15000000 C Fuente de energía

Más detalles

Clase 3 Transferencia radiativa. Otoño 2007

Clase 3 Transferencia radiativa. Otoño 2007 Clase 3 Transferencia radiativa Otoño 2007 Preguntas claves 1. De donde y como la Tierra recibe su energía? 2. Que es la radiación solar y terrestre? 3. Cuál es la temperatura de equilibrio del planeta?

Más detalles

TEORÍA CORPUSCULAR DE LA LUZ.

TEORÍA CORPUSCULAR DE LA LUZ. Marta Vílchez TEORÍA CORPUSCULAR DE LA LUZ. Max Planck (1858-1947) Albert Einstein (1879-1955) Arthur H. Compton (189-196) 1 Marta Vílchez Antecedentes de la teoría corpuscular. Radiación del cuerpo negro.

Más detalles

Recordando. Primer Modelo atómico (1900) Segundo Modelo atómico (1910) J. J. Thomson Budín de pasas. E. Rutherford Modelo planetario

Recordando. Primer Modelo atómico (1900) Segundo Modelo atómico (1910) J. J. Thomson Budín de pasas. E. Rutherford Modelo planetario ANTECEDENTES DEL MODELO ACTUAL DEL ATOMO Raquel Villafrades Torres Universidad Pontificia Bolivariana Química General Química General Ingeniera Química Raquel Villafrades Torres Abril de 2009 Primer Modelo

Más detalles

Tema 3. Espectros. Leyes de Kirchhoff. Efecto Doppler. Espectro de Fraunhofer. Física solar. Actividad solar. Viento solar.

Tema 3. Espectros. Leyes de Kirchhoff. Efecto Doppler. Espectro de Fraunhofer. Física solar. Actividad solar. Viento solar. Tema 3 Espectros. Leyes de Kirchhoff. Efecto Doppler. Espectro de Fraunhofer. Física solar. Actividad solar. Viento solar. CTE 2 - Tema 3 1 Distintos tipos de espectros - Leyes de Kirchhoff CTE 2 - Tema

Más detalles

GF3003 Ciencias Atmosféricas. Laura Gallardo Klenner Departamento de Geofísica de la Universidad de Chile Primavera 2010

GF3003 Ciencias Atmosféricas. Laura Gallardo Klenner Departamento de Geofísica de la Universidad de Chile Primavera 2010 GF3003 Ciencias Atmosféricas Laura Gallardo Klenner Departamento de Geofísica de la Universidad de Chile Primavera 2010 HOY Efecto invernadero Absorción UV y visible Partículas atmosféricas Ley de Beer

Más detalles

Meteorología y Climatología Ciencias Ambientales

Meteorología y Climatología Ciencias Ambientales Meteorología y Climatología Ciencias Ambientales TEMA 2. RADIACIÓN. BALANCE RADIATIVO Introducción Absorción, emisión y dispersión. Radiación Solar. Radiación Térmica. Balance de radiación Instrumentos

Más detalles

transparent FÍSICA CUÁNTICA Prof. Jorge Rojo Carrascosa 21 de marzo de 2017

transparent   FÍSICA CUÁNTICA Prof. Jorge Rojo Carrascosa 21 de marzo de 2017 transparent www.profesorjrc.es 21 de marzo de 2017 Radiación del cuerpo negro 1 Ley de Stefan: E = σt 4 σ = 5, 67 10 8 Js 1 m 2 K 4 2 Ley de Desplazamiento de Wien λ m T = C C = cte = 0, 2897 cmk 3 Ley

Más detalles

HIDROLOGÍA. CALSE 5: HIDROCLIMATOLOGÍA DE COLOMBIA Segunda parte. Julián David Rojo Hdz. I.C. Msc. Recursos Hidráulicos

HIDROLOGÍA. CALSE 5: HIDROCLIMATOLOGÍA DE COLOMBIA Segunda parte. Julián David Rojo Hdz. I.C. Msc. Recursos Hidráulicos HIDROLOGÍA CALSE 5: HIDROCLIMATOLOGÍA DE COLOMBIA Segunda parte Julián David Rojo Hdz. I.C. Msc. Recursos Hidráulicos 2.2 BALANCE DE ENERGÍA CONTENIDO 2.2.1 Ley de Stefan Boltzman 2.2.2 Radiación solar.

Más detalles

Introducción a la Meteorología. Docentes: Stefanie Talento (Teórico) Santiago de Mello (Práctico)

Introducción a la Meteorología. Docentes: Stefanie Talento (Teórico) Santiago de Mello (Práctico) Introducción a la Meteorología 2016 Docentes: Stefanie Talento (Teórico) Santiago de Mello (Práctico) Horarios: Teórico: Práctico: Miércoles 13.30-15.30 (salón 102-104) Viernes 14.00-16.00 (salón 102-104)

Más detalles

Física Contemporánea con Laboratorio p. 1

Física Contemporánea con Laboratorio p. 1 Física Contemporánea con Laboratorio Javier M. Hernández FCFM - BUAP Primavera 2015 Física Contemporánea con Laboratorio p. 1 Física clásica Física Clásica (ca. 1880) Teoría: Newton, Maxwell, Gibbs Exps:

Más detalles

EL ESPECTRO ELECTROMAGNÉTICO

EL ESPECTRO ELECTROMAGNÉTICO FACULTAD DE CIENCIAS QUÍMICAS Espectrometría Objeto de Estudio Nº 1 LECTURA N 2 EL ESPECTRO ELECTROMAGNÉTICO Bibliografía: http://almaak.tripod.com/temas/espectro.htm Facultad de Ciencias Químicas F.C.Q.

Más detalles

Clase 3 Transferencia radiativa

Clase 3 Transferencia radiativa Clase 3 Transferencia radiativa Preguntas claves 1. De donde y como la Tierra recibe su energía? 2. Que es la radiación solar y terrestre? 3. Cuál es la temperatura de equilibrio del planeta? 4. Qué es

Más detalles

Síntesis de Física 2º de Bach. Borrador Mecánica Cuántica - 1 RADIACIÓN DEL CUERPO NEGRO Y LA HIPÓTESIS DE PLANCK

Síntesis de Física 2º de Bach. Borrador Mecánica Cuántica - 1 RADIACIÓN DEL CUERPO NEGRO Y LA HIPÓTESIS DE PLANCK Síntesis de Física º de Bach. Borrador Mecánica Cuántica - 1 MECÁNICA CUÁNTICA RADIACIÓN DEL CUERPO NEGRO Y LA HIPÓTESIS DE PLANCK Todos los cuerpos emiten energía radiante debido a su temperatura. Vamos

Más detalles

La ley de desplazamiento de Wien (Premio Nobel 1911):

La ley de desplazamiento de Wien (Premio Nobel 1911): Trabajo de laboratorio Nro 1: Verificación de la ley de Stefan Boltzmann y determinación de la constante de Planck mediante el análisis de la radiación del cuerpo negro Introducción Toda superficie cuya

Más detalles

Transferencia de Calor por Radiación

Transferencia de Calor por Radiación INSTITUTO TECNOLÓGICO de Durango Transferencia de Calor por Radiación Dr. Carlos Francisco Cruz Fierro Revisión 1 67004.97 12-jun-12 1 INTRODUCCIÓN A LA RADIACIÓN ELECTROMAGNÉTICA 2 Dualidad de la Luz

Más detalles

Leyes de Kirchhoff. Radiación y Espectros. Pasaje de la radiación electromagnética a través de la atmósfera. Transiciones atómicas y moleculares

Leyes de Kirchhoff. Radiación y Espectros. Pasaje de la radiación electromagnética a través de la atmósfera. Transiciones atómicas y moleculares Radiación y Espectros Pasaje de la radiación electromagnética a través de la atmósfera Andrea Sánchez y Gonzalo Tancredi Curso CTE II Generación n de líneas: l Leyes de Kirchhoff Transiciones atómicas

Más detalles

ESPECTRO SOLAR. El sol emite su energía como radiación electromagnética en un amplio rango de frecuencias (espectro).

ESPECTRO SOLAR. El sol emite su energía como radiación electromagnética en un amplio rango de frecuencias (espectro). ESPECTRO SOLAR El sol emite su energía como radiación electromagnética en un amplio rango de frecuencias (espectro). Es necesario tenerlo en cuenta porque la atmósfera es selectiva (también lo son los

Más detalles

c = λν λ = longitud de onda (distancia entre crestas de la onda) 1Å(angstrom) = 10 8 cm = m

c = λν λ = longitud de onda (distancia entre crestas de la onda) 1Å(angstrom) = 10 8 cm = m RADIACIÓN TÉRMICA Emisión y absorción de la radiación térmica - Ley de Steffan - Radiación de un cuerpo negro - Ley de Wien - Teoría de Rayleigh-Jeans - Teoría cuántica de Planck. En la Física Clásica

Más detalles

Ordenes de Magnitud Involucrados

Ordenes de Magnitud Involucrados EL RECURSO SOLAR Ordenes de Magnitud Involucrados Potencia emitida o radiada por el sol = 4 x Energía solar interceptada por la Tierra = Energía Consumida Mundial del orden = 15 10 11 10 20 10 [MW] [MWh/año]

Más detalles

PRÁCTICA 3 CTE I 2018

PRÁCTICA 3 CTE I 2018 PRÁCTICA 3 CTE I 2018 ESPECTROSCOPÍA I) OBJETIVOS Obtener experimentalmente espectros en el visible de átomos y moléculas, y estudiar sus líneas de emisión más prominentes. Identificar especies desconocidas

Más detalles

leyes de la radiación Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz Ingeniería Técnica en Topografía lección 2 Teledetección

leyes de la radiación Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz Ingeniería Técnica en Topografía lección 2 Teledetección lección 2 1 sumario 2 Fuentes de radiación. El cuerpo negro. Leyes de la radiación. Terminología radiométrica. fuentes de radiación 3 Energía radiante: es la energía transportada por una onda electromagnética.

Más detalles

RADIACIÓN SOLAR PRÁCTICA 3 COMPRENSIÓN DEL ESPECTRO ELECTROMAGNÉTICO EN LA REGIÓN DEL ESPECTRO SOLAR

RADIACIÓN SOLAR PRÁCTICA 3 COMPRENSIÓN DEL ESPECTRO ELECTROMAGNÉTICO EN LA REGIÓN DEL ESPECTRO SOLAR PRÁCTICA 3 RADIACIÓN SOLAR COMPRENSIÓN DEL ESPECTRO ELECTROMAGNÉTICO EN LA REGIÓN DEL ESPECTRO SOLAR Esta práctica fue elaborada con recursos del Fondo CONACyT-SENER, a través del proyecto 260155 Laboratorio

Más detalles

ONDAS ELECTROMAGNÉTICAS TEMA 4

ONDAS ELECTROMAGNÉTICAS TEMA 4 ONDAS ELECTROMAGNÉTICAS TEMA 4 1 n n n n Unidades básicas en Física Unidades básicas en el Sistema Internacional Tiempo : 1 segundo [s] Longitud : 1 metro [m] Masa : 1 kilogramo [kg] Energía : 1 julio

Más detalles

N i,m e ( χ i,m. kt ) (4.1)

N i,m e ( χ i,m. kt ) (4.1) 4.3. Excitación térmica. Formula de Boltzmann # Intensidad de una línea depende de ( al menos en sentido cualitativo): Número de átomos del elemento en el estado de ionización correspondiente Número de

Más detalles

Física Estadística. Tercer curso del Grado en Física. J. Largo & J.R. Solana. Departamento de Física Aplicada Universidad de Cantabria

Física Estadística. Tercer curso del Grado en Física. J. Largo & J.R. Solana. Departamento de Física Aplicada Universidad de Cantabria Tercer curso del Grado en Física largoju at unican.es J. Largo & J.R. Solana solanajr at unican.es Departamento de Física Aplicada Universidad de Cantabria Indice I equilibrio Densidad de La radiación

Más detalles

Tema 7.- Principios de fotoquímica

Tema 7.- Principios de fotoquímica Tema 7.- Principios de fotoquímica Introducción La rama de la química que estudia las transformaciones de las moléculas producidas por la absorción de energía electromagnética Muchas especies en la atmósfera

Más detalles

T = Al sustituir el valor de la longitud de onda para la que la energía radiada es máxima, l máx, se obtiene: = 1379 K 2, m

T = Al sustituir el valor de la longitud de onda para la que la energía radiada es máxima, l máx, se obtiene: = 1379 K 2, m 2 Física cuántica Actividades del interior de la unidad. Calcula la temperatura de un ierro al rojo vivo para el cual l máx = 2, µm. Para calcular la temperatura que solicita el enunciado, aplicamos la

Más detalles

Cuerpo negro. Un cuerpo que absorbe toda la radiación que incide en él se llama Cuerpo Negro Ideal(CNI). R =σt 4

Cuerpo negro. Un cuerpo que absorbe toda la radiación que incide en él se llama Cuerpo Negro Ideal(CNI). R =σt 4 Equilibrio térmico Cuando luz incide sobre un cuerpo, parte de ésta es reflejada y otra parte es absorbida por el cuerpo. La luz absorbida aumenta la energía interna del cuerpo, aumentando su temperatura.

Más detalles

Tema 2: Propiedades y medición de la radiación electromagnética

Tema 2: Propiedades y medición de la radiación electromagnética Tema 2: Propiedades y medición de la radiación electromagnética Espectro de la radiación electromagnética Conceptos básicos para la medición: Densidad de flujo Luminosidad Intensidad Brillo superficial

Más detalles

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS Partícula Masa (g) Carga (Coulombs) Carga unitaria Electrón 9.10939 10-28 -1.6022 10-19 -1 Protón 1.67262 10-24 +1.6022 10-19 +1 Neutrón 1.67493 10-24 0

Más detalles

El electromagnetismo es una característica asociada las partículas cargadas eléctricamente.

El electromagnetismo es una característica asociada las partículas cargadas eléctricamente. El electromagnetismo es una característica asociada las partículas cargadas eléctricamente. La interacción electromagnética se describe en términos de dos campos : El campo eléctrico E y el campo magnético

Más detalles

Balance Global de Energía

Balance Global de Energía Balance Global de Energía Balance de energía 1a Ley de la Termodinámica El balance básico global se establece entre la energía proveniente del sol y la energía regresada al espacio por emisión de la radiación

Más detalles

67.31 Transferencia de Calor y Masa

67.31 Transferencia de Calor y Masa Índice general 6. Radiación 3 6.1. Introducción........................................... 3 6.1.1. El mecanismo físico de la radiación.......................... 3 6.1.2. Cuerpo Negro, Leyes de Radiación..........................

Más detalles

METEOROLOGÍA GENERAL. Práctica 2: Radiación. a) Qué es la radiación? b) En qué se diferencia de otras formas de transmisión de energía?

METEOROLOGÍA GENERAL. Práctica 2: Radiación. a) Qué es la radiación? b) En qué se diferencia de otras formas de transmisión de energía? METEOROLOGÍA GENERAL Práctica 2: Radiación Ejercicio 1 a) Qué es la radiación? b) En qué se diferencia de otras formas de transmisión de energía? Ejercicio 2 Ubique dentro del siguiente gráfico las distintas

Más detalles

Ejercicio 1. Ejercicio 2. Ejercicio 3.

Ejercicio 1. Ejercicio 2. Ejercicio 3. Ejercicio 1. Suponiendo que la antena de una espacio de radio de 10 [kw] radia ondas electromagnéticas esféricas. Calcular el campo eléctrico máximo a 5 [km] de la antena. Ejercicio 2. La gente realiza

Más detalles

Física, Materia y Radiación

Física, Materia y Radiación Física, Materia y Radiación La Física a finales del s. XIX Las leyes fundamentales de la física parecen claras y sólidas: Las leyes del movimiento de Newton Las leyes de Maxwell de la electrodinámica Los

Más detalles

Introducción a las Ciencias de la Atmósfera y los Océanos

Introducción a las Ciencias de la Atmósfera y los Océanos Introducción a las Ciencias de la Atmósfera y los Océanos Calentando la Tierra y la Atmósfera M. Elizabeth Castañeda 2011 Energía a es la habilidad para realizar trabajo (empujar, tirar, levantar) sobre

Más detalles

El tiempo para resolver este examen es de 2 horas. Escriba su nombre completo y el número de problema en cada hoja

El tiempo para resolver este examen es de 2 horas. Escriba su nombre completo y el número de problema en cada hoja Instrucciones : El examen consta de 5 problemas Se considerarán los 4 mejores resueltos. El tiempo para resolver este examen es de 2 horas. Conteste cada problema en una hoja nueva. Escriba su nombre completo

Más detalles

Física moderna. José Mariano Lucena Cruz Física 2 o Bachillerato

Física moderna. José Mariano Lucena Cruz Física 2 o Bachillerato José Mariano Lucena Cruz chenalc@gmail.com Física 2 o Bachillerato Radiación térmica Todo cuerpo, no importa a la temperatura que se encuentre, es fuente de radiación térmica. (Emite energía en forma de

Más detalles

Determinación de la constante de Rydberg

Determinación de la constante de Rydberg Determinación de la constante de Rydberg Gustav Robert Kirchhoff (1824-1887) En termodinámica, la ley de Kirchhoff de la radiación térmica, es un teorema de carácter general que equipara la emisión y absorción

Más detalles

Teoría cuántica y la estructura electrónica de los átomos. Capítulo 7

Teoría cuántica y la estructura electrónica de los átomos. Capítulo 7 Teoría cuántica y la estructura electrónica de los átomos Capítulo 7 Propiedades de las ondas Longitud de onda (λ) es la distancia que existe entre dos puntos idénticos en una serie de ondas. Amplitud:

Más detalles

Clase 4:Radiación del cuerpo, efecto fotoeléctrico y modelos atómicos

Clase 4:Radiación del cuerpo, efecto fotoeléctrico y modelos atómicos Clase 4:Radiación del cuerpo, efecto fotoeléctrico y modelos atómicos El experimento de Millikan Determina la carga del electrón 1.602 x 10-19 C Atomizador de gotas de aceite Fuente de Rayos X (ioniza

Más detalles

FÍSICA CUÁNTICA. Física de 2º de Bachillerato

FÍSICA CUÁNTICA. Física de 2º de Bachillerato FÍSICA CUÁNTICA Física de º de Bachillerato Física Cuántica Insuficiencia de la Física Clásica Teoría de la Radiación Térmica Radiación del Cuerpo Negro Efecto fotoeléctrico Teoría de Einstein Los espectros

Más detalles

TEMA 13. Fundamentos de física cuántica

TEMA 13. Fundamentos de física cuántica TEMA 13. Fundamentos de física cuántica 1. Limitaciones de la física clásica Física clásica Mecánica (Newton) + Electrodinámica (Maxwell) + Termodinámica (Clausius-Boltzmann) Estas tres ramas explicaban

Más detalles

GEOGRAFIA FISICA GENERAL. UD4: La atmósfera. Balance de la radiación terrestre

GEOGRAFIA FISICA GENERAL. UD4: La atmósfera. Balance de la radiación terrestre GEOGRAFIA FISICA GENERAL UD4: La atmósfera. Balance de la radiación terrestre La Atmósfera es una mezcla de gases que rodean la tierra unida a ella por la atracción gravitatoria. El 97% de la atmósfera

Más detalles

CÁTEDRA CLIMATOLOGÍA Y FENOLOGÍA AGRÍCOLAS FACULTAD DE AGRONOMÍA Y ZOOTECNIA U.N.T.

CÁTEDRA CLIMATOLOGÍA Y FENOLOGÍA AGRÍCOLAS FACULTAD DE AGRONOMÍA Y ZOOTECNIA U.N.T. CÁTEDRA CLIMATOLOGÍA Y FENOLOGÍA AGRÍCOLAS FACULTAD DE AGRONOMÍA Y ZOOTECNIA U.N.T. RADIACIÓN DEFINICIÓN La RADIACIÓN es un proceso físico, por medio de la cual se transmite energía, en forma de ondas

Más detalles

radiación Transferencia de Calor p. 1/1

radiación Transferencia de Calor p. 1/1 Transferencia de Calor p. 1/1 radiación la radiación térmica corresponde a la parte del espectro electromagnético con logitudes de onda por encima del bajo UV y el visible hasta las microondas... Transferencia

Más detalles

Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas. INTRODUCCIÓN a las CIENCIAS de la ATMÓSFERA

Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas. INTRODUCCIÓN a las CIENCIAS de la ATMÓSFERA Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas INTRODUCCIÓN a las CIENCIAS de la ATMÓSFERA Práctica 2 : ENERGÍA, CALOR, RADIACIÓN SOLAR Y TERRESTRE. Definiciones, ecuaciones

Más detalles

Unidad 1 Estructura atómica de la materia. Teoría cuántica

Unidad 1 Estructura atómica de la materia. Teoría cuántica Unidad 1 Estructura atómica de la materia. Teoría cuántica 1.El átomo y la constitución de la materia DALTON NO ACEPTADO POR LOS FÍSICOS que creían en la idea de que los átomos se encontraban como disueltos

Más detalles

Modelo de Thomson Modelo de Rutherford. Estructura atómica. José Mariano Lucena Cruz 10 de mayo de 2010

Modelo de Thomson Modelo de Rutherford. Estructura atómica. José Mariano Lucena Cruz 10 de mayo de 2010 José Mariano Lucena Cruz chenalc@gmail.com 10 de mayo de 2010 Propiedades periódicas Aquellas cuyo valor se puede estimar según la posición que ocupen los elementos en la tabla periódica. Estas son: Tamaño

Más detalles

El primer paso para investigar la evolución de galaxias es comprender las propiedades actuales de esas galaxias. Galaxias Elípticas

El primer paso para investigar la evolución de galaxias es comprender las propiedades actuales de esas galaxias. Galaxias Elípticas El primer paso para investigar la evolución de galaxias es comprender las propiedades actuales de esas galaxias. Galaxias Elípticas Familia que agrupa varias clases de galaxias cd: masivas y luminosas,

Más detalles

Astrofísica del Sistema Solar. Atmósferas planetarias

Astrofísica del Sistema Solar. Atmósferas planetarias Astrofísica del Sistema Solar Atmósferas planetarias UNLP 2do. Semestre 2016 Introducción Una atmósfera es la región gaseosa más externa de un objeto. Hay atmósferas en planetas, planetas enanos, satélites

Más detalles

La radiación electromagnética.

La radiación electromagnética. La radiación electromagnética. En la teoría de electrodinámica se ha encontrado que cuando un campo eléctrico cambia con el tiempo produce un cambio magnético y viceversa. Ondas u ondas electromagnéticas?

Más detalles

Principios de la termodinámica

Principios de la termodinámica Física aplicada a procesos naturales Tema I.- Balance de Energía: Primer principio de la Termodinámica. Lección 1. Principios de la termodinámica Equilibrio térmico. Define el método de medida de la temperatura

Más detalles

ESTRELLAS. d = DISTANCIAS. Temas a discutir: Andrea Sánchez, versión 2008

ESTRELLAS. d = DISTANCIAS. Temas a discutir: Andrea Sánchez, versión 2008 ESTRELLAS Andrea Sánchez, versión 008 Instituto de ísica - Dpto. de Astronomía, 318 andrea@fisica.edu.uy, 696593, 0991187 Temas a discutir: Distancia, Luminosidad, Temperatura, Radio, Masa Espectros composición

Más detalles

(( )) Tema 5: Técnicas espectroscópicas: Espectrofotometría. visible Infrarrojo. Ultravioleta. Espectro de emisión de los cuerpos en equilibrio

(( )) Tema 5: Técnicas espectroscópicas: Espectrofotometría. visible Infrarrojo. Ultravioleta. Espectro de emisión de los cuerpos en equilibrio Tema 5: Técnicas espectroscópicas: Espectrofotometría 0 22 Hz Frecuencia 0 4 Hz 0 3 Hz γ X UV IR micro radio Rayos γ (gamma) λ < pm Rayos X pm-0nm Visible 400-800nm Ultravioleta 0-400 nm Longitud de onda

Más detalles

02/06/2014. Química Plan Común

02/06/2014. Química Plan Común Química Plan Común Limitaciones del Modelo Atómico de Rutherford Según el modelo atómico de Rutherford, los electrones se mueven en órbitas circulares y tienen una aceleración normal. Pero según los principios

Más detalles

FÍSICA CUÁNTICA. máx = 2, mk/ T

FÍSICA CUÁNTICA. máx = 2, mk/ T FÍSICA CUÁNTICA A finales del siglo XIX, la física clásica, con sus leyes de la mecánica de Newton y la teoría electromagnética de Maxwell, parecía suficiente para explicar todos los fenómenos naturales.

Más detalles

Astronomía. Ayudantía 11 Prof. Jorge Cuadra Ayudante: Paulina González

Astronomía. Ayudantía 11 Prof. Jorge Cuadra Ayudante: Paulina González Astronomía Ayudantía 11 Prof. Jorge Cuadra Ayudante: Paulina González 1.- Cuales de las siguientes propiedades son necesarias para determinar la distancia a una estrella? : (Mas de una puede ser correcta)

Más detalles

PRINCIPIOS DE ASTROFÍSICA

PRINCIPIOS DE ASTROFÍSICA PRINCIPIOS DE ASTROFÍSICA Concepto: ASTROFÍSICA Se refiere al estudio de la física del universo. Originalmente se denomina la parte teórica de dicho estudio como la necesidad de dar explicación física

Más detalles

Mediendo las estrellas: distancias, luminosidades, temperaturas, tamaños, espectros

Mediendo las estrellas: distancias, luminosidades, temperaturas, tamaños, espectros Mediendo las estrellas: distancias, luminosidades, temperaturas, tamaños, espectros estrellas con luminosidades diferentes se pueden aparecer iguales! > distancia es necesaria para saber los parametros

Más detalles

Radiometría y Fotometría: Conceptos básicos

Radiometría y Fotometría: Conceptos básicos Radiometría y Fotometría: Conceptos básicos Este tema tiene un carácter más profesional que el resto de los temas del programa, tanto de esta asignatura como del resto de asignaturas del área de Óptica

Más detalles

La Atmósfera: Es un sistema que evoluciona y es infinitamente variable, con una estructura compleja en todas las escalas de espacio y tiempo.

La Atmósfera: Es un sistema que evoluciona y es infinitamente variable, con una estructura compleja en todas las escalas de espacio y tiempo. BOLILLA 1 LA ATMOSFERA TERRESTRE 1. INTRODUCCION La Atmósfera: Es un sistema que evoluciona y es infinitamente variable, con una estructura compleja en todas las escalas de espacio y tiempo. El hombre

Más detalles

FACULTAD DE INGENIERIA. DIVISION DE CIENCIAS BASICAS UNAM. (27 DE ENERO 2014). Estrategia de Planeación del Modelo Atómico de Bohr

FACULTAD DE INGENIERIA. DIVISION DE CIENCIAS BASICAS UNAM. (27 DE ENERO 2014). Estrategia de Planeación del Modelo Atómico de Bohr FACULTAD DE INGENIERIA. DIVISION DE CIENCIAS BASICAS UNAM. (27 DE ENERO 2014). Estrategia de Planeación del Modelo Atómico de Bohr PROFESOR. DR. RAMIRO MARAVILLA GALVAN MODELOS EN LA ENSEÑANZA. EL MODELO

Más detalles

FUNCIÓN PROTECTORA (FILTRO)

FUNCIÓN PROTECTORA (FILTRO) Ciencias de la Tierra y del Medio Ambiente TEMA 2 ATMÓSFERA 1 TEMA 2: FUNCIÓN PROTECTORA Y REGULADORA DE LA ATMÓSFERA. Efecto protector de la ionosfera y de la ozonosfera. El efecto invernadero. Conceptos

Más detalles