Nudo Es todo punto de la red en que concurren tres o más conductores.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Nudo Es todo punto de la red en que concurren tres o más conductores."

Transcripción

1 ltos Rgls Kirhho Un iruito, n gnrl, stá ormo por un onjunto rsistnis y gnrors..m. ontos un orm ritrri, mnr qu no simpr s posil sustituir los onjuntos rsistnis por sus quivlnts, y qu no suln str onts n sri o n prllo. GUSTAV ROBERT KIRCHHOFF ( , ísio lmán nio n Prusi, nunió ls rgls qu llvn su nomr y qu prmitn lulr ls intnsis qu iruln por los irnts lmntos un r onutors. Es priso stlr, nts plir sts rgls un r, los siguints onptos: Nuo Es too punto l r n qu onurrn trs o más onutors. Mll Es too iruito qu pu sr rorrio prtino un nuo y volvino él sin psr os vs por un mismo onutor. Un ls rgls Kirhho s rir los nuos, y l otr ls mlls. Rgl los nuos Un nuo s l simpl unión vrios onutors y n él no hy ningún lmnto pz lmnr o rtnr rg létri. Por onsiguint, En uni timpo, l nti rg qu llg un nuo s igul l nti rg qu sl él, y pusto qu l rg qu irul por uni timpo s lo qu s in omo intnsi un orrint létri, L sum ls intnsis qu llgn un nuo s igul l sum ls intnsis qu sln él. Si s onsirn positivs ls intnsis qu llgn un nuo, y ngtivs ls qu sln él, l sum lgrái ls intnsis onurrnts n un nuo s nul. ΣI i = 0 [4.12-1] L ly los nuos s un onsuni l prinipio onsrvión l rg. Si n un r hy n nuos, son linlmnt inpnints n 1 nuos. Si s pli ih ly l nuo nésimo, s otin un uión qu s ominión linl ls n 1 uions ntriors y, por tnto, no s váli pr rsolvr l prolm. Rgl ls mlls Si s lul, plino l ly Ohm gnrliz, l irni potnil ntr os nuos onsutivos un mll V V i = Σε i I ΣR i y s sumn ls uions otnis, s nuln ls irnis potnil, on lo qu rsult [4.12-2] Σε = ΣI i R i [4.12-3] L rgl ls mlls, omo onsuni qu s l ly Ohm gnrliz, s l prinipio gnrl onsrvión l nrgí plio un iruito létrio. [Vés, Cpítulo Furz ltromotriz.p, pígr 11.3] Apliión ls rgls Kirhho Ls rgls Kirhho s pun plir un r siguino os métoos: I Métoo nuos y mlls S ominz por signr rm l r, omprni ntr os noos onsutivos, un intnsi orrint létri n l sntio irulión qu rmos oportuno. S pli l ly los nuos n 1 nuos. Ruérs qu si s pli ih ly l nuo nésimo s otin un uión qu s un ominión linl ls n 1 uions ntriors y no s váli pr rsolvr l prolm. A ontinuión s pli l rgl ls mlls un lls pr sriir l primr mimro l uión [4.12-3], rorrino l mll n un sntio ritrrio. En l sum lgrái ls..m. los gnrors qu vmos nontrno n nustro rorrio s onsirn positivs qulls..m. qu tinn prouir orrint n iho sntio, y ngtivs, n so ontrrio. Hy qu tnr n unt qu no onsirmos l sntio n qu irul l orrint qu hymos signo, sino l sntio n qu tin prouir orrint ih..m.., s ir, l sntio n qu prouirí orrint si stuvis ont ll sol n l mll.

2 2 ltos S vulv rorrr ih mll pr sriir l sum lgrái l sguno mimro l uión ], multiplino l intnsi trmo omprnio ntr os nuos onsutivos por l rsistni totl iho trmo, onsirno positivs ls intnsis uyo sntio oini on l rorrio l mll, y ngtivs, n so ontrrio. Los vlors ls rsistnis s onsirn simpr númros positivos. S pli l rgl ls mlls ls rstnts tnino n unt qu no tos son inpnints. Un mll s inpnint ls qu y s hyn utilizo, si n ll intrvin lgún onutor qu no hy ormo prt ls mlls ntriors. D st orm s vn sriino ls uions ls mlls hst ompltr, junto on ls uions los n 1 nuos, tnts uions omo inógnits hy n l r. Si l rsolvr l sistm uions, lgun intnsi rsult sr ngtiv, signii qu su sntio s ontrrio l qu hmos supusto, pro no hy qu volvr plntr l prolm. S h onstr sí n l rspust inl. Y si ih intnsi intrvin n lgún álulo postrior, s sustituy mntnino l signo ngtivo. Ejmplo Vmos lulr ls intnsis n rm l iruito l igur, y l irni potnil ntr los nuos y. Los puntos,, y, no son nuos sino simpls rrnis pr por nominr ls mlls áilmn- Comnzmos por inir, por mio un lh, l intnsi l orrint n rm l r, n l sntio qu rmos onvnint. Aplimos l rgl los nuos, tnino n unt qu los os nuos, y, sólo uno llos s inpnint. Elgimos l nuo : 4 Ω + = [1] S pu ompror qu si plimos l rgl los nuos l nuo, l uión qu s otin s l mism: = + 6 Ω 3 Ω D moo qu tnmos un uión y trs inógnits:,. Es nsrio, por tnto, ompltr l sistm uions plino l rgl ls mlls os lls. En l r hy trs mlls: l ----, l ---- y l Esogmos ls os primrs y vmos rorrrls, prtino un nuo, n l sntio ontrrio l ls gujs l rloj. Est sntio s ritrrio, y no s nsrio rorrr ls os mlls n l mismo sntio. Mll ---- Esriimos n primr lugr, prtino l nuo, l sum lgrái ls urzs ltromotris orrsponint l primr mimro l uión [4.12-3]. L primr..m. qu nontrmos n nustro rorrio s l. Est...m.., si stuvir ll sol n l mll prouirí orrint n l sntio hi, s ir, n l ontrrio l qu rorrmos l mll, por tnto, s ngtiv. Sguimos rorrino l mll, y ontinuión nontrmos l..m.. Est...m.., si stuvir ll sol n l mll prouirí orrint n l sntio hi, s ir, n l mismo sntio n qu rorrmos l mll, por tnto, s positiv. Por onsiguint, l sum lgrái ls urzs ltromotris st mll s: =. Σε = = [2] Rorrmos nuvmnt l mll, prtino l nuo, pr sriir l sum lgrái l sguno mimro l uión [4.12-3]. L primr intnsi qu nontrmos n nustro rorrio s, uyo sntio s ontrrio l rorrio l mll, por tnto, s ngtiv, y multipli por to l rsistni qu rorr s hst, rsult (2+4. Sguimos rorrino l mll, y ontinuión nontrmos l intnsi, uyo sntio s l mismo qu l rorrio l mll, por tnto, s positiv, y multipli por to l rsistni qu rorr s, psno por y hst,hst, rsult (1+2. En onsuni, l sum lgrái l sguno mimro l uión [4.12-3] s ΣIR = ( (1+ 2 = Sustituyno [2] y [3] n l uión [4.12-3], s otin pr st mll l uión [3]

3 ltos 3 S rpit l mismo proso pr l siguint mll: Mll = [4] Esriimos n primr lugr, prtino l nuo, l sum lgrái ls urzs ltromotris orrsponint l primr mimro l uión [4.12-3]. L primr..m. qu nontrmos n nustro rorrio s l. Est...m.., si stuvir ll sol n l mll prouirí orrint n l sntio hi, s ir, n l ontrrio l rorrio l mll, por tnto, s ngtiv. Sguimos rorrino l mll, y ontinuión nontrmos l..m.. Est...m.., si stuvir ll sol n l mll prouirí orrint n l sntio hi, s ir, n l mismo sntio n qu rorrmos l mll, por tnto, s positiv. Por onsiguint, l sum lgrái ls urzs ltromotris st mll s: 3+15= 12 V. Σε = = 12 V [5] Rorrmos nuvmnt l mll, prtino l nuo, pr sriir l sum lgrái l sguno mimro l uión [4.12-3]. L primr intnsi qu nontrmos n nustro rorrio s, uyo sntio s l mismo qu l rorrio l mll, por tnto, s positiv, y multipli por to l rsistni qu rorr s hst, trvés y, rsult (6+3. Sguimos rorrino l mll, y ontinuión nontrmos l intnsi, uyo sntio s l mismo qu l rorrio l mll, por tnto, s positiv, y multipli por to l rsistni qu rorr s hst, rsult (4+2. En onsuni, l sum lgrái l sguno mimro l uión [4.12-3] pr st mll s ΣIR =( (4 + 2 = Sustituyno [5] y [6] n l uión [4.12-3], s otin pr st mll l uión [6] Ls uions [1], [4] y [7] ormn l sistm uy soluión, un vz simpliio y rsulto, s 12V = = = = 12 = 3 A = 1 A El signo ngtivo l intnsi ini qu irul n sntio ontrrio l qu hmos supusto, s ir hi. S pu sguir otro métoo pr plir ls rgls Kirhho II Métoo ls mlls En st métoo no intrvinn los nuos. S supon qu mll s rorri por un sol intnsi n l sntio irulión qu rmos oportuno. Mll ---- I 1 I 2 4 Ω 6 Ω 3 Ω Vmos suponr qu l mll ---- s rorri por l intnsi I 1 n sntio ontrrio l ls gujs l rloj, Esriimos n primr lugr, prtino l nuo, l sum lgrái ls urzs ltromotris orrsponint l primr mimro l uión [4.12-3]. L primr..m. qu nontrmos n nustro rorrio s l. Est...m.., si stuvir ll sol n l mll prouirí orrint n l sntio hi, s ir, n l ontrrio l qu rorrmos l mll, por tnto, s ngtiv. Sguimos rorrino l mll, y ontinuión nontrmos l..m.. Est...m.., si stuvir ll sol n l mll prouirí orrint n l sntio hi, s ir, n l mismo sntio n qu rorrmos l mll, por tnto, s positiv. [7] [8] [9]

4 4 ltos Por onsiguint, l sum lgrái ls urzs ltromotris st mll s: =. Σε = = [10] Hst quí hmos sguio los mismos psos pr sriir l primr mimro l uión [4.12-3], qu n l métoo ntrior, pro l rorrr nuvmnt l mll, prtino l nuo, pr sriir l sum lgrái l sguno mimro l uión [4.12-3], hy un irni importnt: Dmos tnr n unt qu l trmo - s rorrio simultánmnt por ls intnsis I 1 I 2, y omo l intnsi I 1 s positiv, por sr l mismo sntio qu l rorrio l mll, I 2, ngtiv, por sr sntio opusto, l intnsi nt qu rorr st trmo s l irni I 1 I 2 ms intnsis, y multipli por to l rsistni qu rorr s hst, rsult (2+4(I 1 I 2 Sguimos rorrino l mll, y ontinuión nontrmos l trmo --- qu s rorrio solmnt por l intnsi I 1, qu multipli por to l rsistni l trmo --- qu rorr rsult (1+2I 1. En onsuni, l sum lgrái l sguno mimro l uión [4.12-3] s, pr st mll ΣIR =(2 + 4(I 1 I 2 +(1+ 2I 1 = 6(I 1 I 2 + 3I 1 = 9I 1 6I 2 [11] Sustituyno [10] y [11] n l uión [4.12-3], s otin pr st mll ----, l uión Mll = 9I 1 6I 2 [12] Esriimos n primr lugr, prtino l nuo, l sum lgrái ls urzs ltromotris orrsponint l primr mimro l uión [4.12-3]. L primr..m. qu nontrmos n nustro rorrio s l. Est...m.., si stuvir ll sol n l mll prouirí orrint n l sntio hi, s ir, n l ontrrio l rorrio l mll, por tnto, s ngtiv. Sguimos rorrino l mll, y ontinuión nontrmos l..m.. Est...m.., si stuvir ll sol n l mll prouirí orrint n l sntio hi, s ir, n l mismo sntio n qu rorrmos l mll, por tnto, s positiv. Por onsiguint, l sum lgrái ls urzs ltromotris st mll s: 3+15= 12 V. Σε = = 12 V [13] Siguino un rzonminto nálogo l qu hmos utilizo pr sriir l sum lgrái l sguno mimro l uión [4.12-3], l mll ntrior, l rorrr nuvmnt st mll, prtino l nuo, nontrmos l trmo ---, qu s rorrio solmnt por l intnsi I 2, qu s hor positiv porqu su sntio s l mismo qu l rorrio l mll, y multipli por to l rsistni iho trmo rsult (6+3I 2. A ontinuión nontrmos. l trmo - qu s rorrio simultánmnt por ls intnsis I 1 I 2, pro hor, I 1 s ngtiv por su sr su sntio ontrrio l rorrio l mll y l intnsi nt qu rorr st trmo s l irni I 2 I 1 ms intnsis, y multipli por to l rsistni qu rorr s hst, rsult (2+4(I 2 I 1 En onsuni, l sum lgrái l sguno mimro l uión [4.12-3] s, pr st mll ΣIR =(6 + 3I 2 +(2 + 4(I 2 I 1 = 9I 2 + 6(I 2 I 1 = 15I 2 [14] Sustituyno [13] y [14] n l uión [4.12-3], s otin pr st mll l uión Ls uions [12], [15] ormn l sistm uy soluión, un vz simpliio y rsulto, s 12 = 15I 2 [15] 15 = 9I 1 6I 2 12 = 15I 2 I ' 1 = 3 A I ' 2 Ls intnsis qu iruln por ls irnts rms l iruito son: Rm -: L intnsi s l irni ntr I 2 I 1, y pusto qu s I 2 > I 1, l orrint rsultnt s 1 A y irul hi, rsulto qu onur on l otnio por l primr métoo [16] [17]

5 ltos 5 Rm ---: Por st rm irul solmnt l intnsi I 1 = 3 A, qu s l intnsi qu hmos nomino n l métoo ntrior. Rm ---: Por st rm irul solmnt l intnsi I 2, qu s l intnsi qu hmos nomino n l métoo ntrior. Como pu vrs, s otinn los mismos rsultos on mos métoos. Dirni potnil ntr los nuos y Ahor stmos n oniions lulr ih irni potnil plino l ly gnrl Ohm [Vés, Cpítulo Furz ltromotriz.p, pígr 11.3]: I ΣR i = Σε i (V V i Pr llo, utilizmos l igur y los rsultos otnios on l primr métoo, on ojto prtir l uso ih ly pliánol un ls trs rms l iruito. Rm ---: (1+ 2 = 30 (V 4 Ω Dspjno y sustituyno = 3 A V = = 21 V Rm -: (4 + 2 = 15 (V Dspjno y sustituyno = 1 A [18] 6 Ω 3 Ω V = 15 6 = 15 6( 1 = 21 V [19] Ruérs qu l intnsi irul, n rli, n sntio opusto l inio n l igur. Rm ---: (6 + 3 = 3 (V V Dspjno y sustituyno V = = = 21 V [20] Como s vint, s otin l mismo rsulto pr l irni potnil, ulquir qu s l rm utiliz pr su álulo.

En un grafo se puede recorrer la información de diferentes maneras para llegar de un punto a otro.

En un grafo se puede recorrer la información de diferentes maneras para llegar de un punto a otro. CAMINOS Y CIRCUITOS En un grfo s pu rorrr l informión ifrnts mnrs pr llgr un punto otro. Cmino Ciruito (Cilo) Ciruito simpl longitu n Cmino simpl longitu n ulquir suni noos n l qu pr son ynts. Es un mino

Más detalles

MÉTODO INDUCTIVO. Capítulo TRILCE

MÉTODO INDUCTIVO. Capítulo TRILCE pítulo É V l É V r lys prtir l osrvión los hhos, mint l gnrlizión l omportminto osrvo; n rli, lo qu rliz s un spi gnrlizión, sin qu por mio l lógi pu onsguir un mostrión ls its lys o onjunto onlusions.

Más detalles

Números Racionales 1. INTRODUCCIÓN

Números Racionales 1. INTRODUCCIÓN Númros Rionls Título: Númros Rionls Trgt: PROFESORES DE MATEMÁTICAS Asigntur: Mtmátis Autor: Emilin Oliván Clz Lini n Mtmátis Prosor Mtmátis n Euión Sunri 1 INTRODUCCIÓN En l ominio intgri (DI) los númros

Más detalles

FACTORIZACIÓN. Capítulo TRILCE

FACTORIZACIÓN. Capítulo TRILCE TRILCE Cpítulo FACTORIZACIÓN Ftorizr un polinomio s somponrlo n os o más polinomios llmos ftors, tl moo qu, l multiplirlos, s otng l polinomio originl. Ejmplo : y ( y)( y) Ants ftorizr y ftorizo ftors

Más detalles

Minimización por el método de QUINE-McCLUSKEY

Minimización por el método de QUINE-McCLUSKEY Minimizión por l métoo QUINE-MCLUSKEY S tinn os forms srrollr l métoo Quin-MClusky: on un ominión inri y un ominión iml. Ams forms s srrollrán mint os jmplos, rsptivmnt. Cominión BINARIA. S l funión: F(A,

Más detalles

SEMEJANZA DE TRIÁNGULOS

SEMEJANZA DE TRIÁNGULOS IES ÉLAIOS Curso - Ruprión ª Evluión ÁREA: MATEMÁTICAS º ESO OPCIÓN B TEMAS,, 6 y 7 ACTIVIDADES DE RECUPERACIÓN DE LA ª EVALUACIÓN SEMEJANZA DE TRIÁNGULOS. S quir onstruir un prtrr on orm triángulo rtángulo.

Más detalles

(a+1)x+ay=3 (a+1)x+(a+1)y+(a+2)z=1 (a 2 +a)x+(a 2-1)y+(a 2-2a-8)z=2a+5. a 1. a+1. a+2 a 2-2a a+5 ~1 0. a=-1

(a+1)x+ay=3 (a+1)x+(a+1)y+(a+2)z=1 (a 2 +a)x+(a 2-1)y+(a 2-2a-8)z=2a+5. a 1. a+1. a+2 a 2-2a a+5 ~1 0. a=-1 EXTRAORDINARIO DE 4. PROBLEMA A. Estudi l siguint sistm d uions linls dpndint dl prámtro rl y rsuélvlo n los sos n qu s omptil: Aplimos l método d Guss: ~ + + + + + - 3 + --6 - -+3 (+)+y3 (+)+(+)y+(+)z

Más detalles

DESIGUALDADES E INECUACIONES VALOR ABSOLUTO

DESIGUALDADES E INECUACIONES VALOR ABSOLUTO TRILCE Cpítulo DESIGUALDADES E INECUACIONES VALOR ABSOLUTO DESIGUALDADES Torms l Dsigul Dfiniión S nomin sigul l omprión qu s stl ntr os prsions rls, mint los signos rlión >,

Más detalles

Reducción de. Estados equivalentes. Reducción de estados equivalentes. Ejemplo. Tabla de estados Mario Medina C. 1

Reducción de. Estados equivalentes. Reducción de estados equivalentes. Ejemplo. Tabla de estados Mario Medina C. 1 Ruión stos quivlnts Mrio Min. mriomin@u.l Ruión stos quivlnts Proso isño ntrior no sgur l númro mínimo stos Ruión númro stos Ru l númro lip-lops Ru l lógi ominionl Asignión vrils sto tmién pu ruir lógi

Más detalles

Matemáticas II Bloque VI Carlos Tiznado Torres

Matemáticas II Bloque VI Carlos Tiznado Torres Mtmátis II loqu VI rlos Tizno Torrs IRUNFERENI El írulo y l irunfrni son os ojtos gométrios qu hn llmo l tnión y hn sio l ojto stuio un grn númro mtmátios s timpos ntiguos, sino más grn utili práti pr

Más detalles

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 6. RELACIONES

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 6. RELACIONES MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO. RELACIONES DIAGRAMAS DE HASSE. AUTOR: JOSÉ ALFREDO JIMÉNEZ MURILLO AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Digrms Hss Un rlión R:A B s orn pril o prilmnt orn si

Más detalles

FUNCIONES DERIVABLES EN UN INTERVALO

FUNCIONES DERIVABLES EN UN INTERVALO DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.

Más detalles

B B B B B a) Siguiendo el orden establecido arriba, los subconjuntos se corresponden con los bloques

B B B B B a) Siguiendo el orden establecido arriba, los subconjuntos se corresponden con los bloques 4 Álgr Bool 4 Álgr Bool 1 Sn B = {0, 1} y f: B 4 B un funión lógi utro vrils,,, y. Si n B 4 sustituimos B por lguno sus suonjuntos no víos {0} o {1} o B s otinn suonjuntos B 4. Así tnmos qu {1} {0} {0}

Más detalles

DEPARTAMENTO DE MATEMÁTICAS Alumno/a 4º ESO Nº TRIGONOMETRIA 1º PARTE

DEPARTAMENTO DE MATEMÁTICAS Alumno/a 4º ESO Nº TRIGONOMETRIA 1º PARTE DEPRTMENTO DE MTEMÁTIS lumno/ 4º ESO Nº TRIGONOMETRI 1º PRTE 84 Introuión Un rinto poligonl simpr lo pomos iviir n triángulos. omo por jmplo Lo pomos iviir n triángulos D E F G H I J K L M N Ñ O P Q R

Más detalles

Distribución de corriente

Distribución de corriente Ensyo tipo sgún DN EN 439-1 Durnt un nsyo tipo sistm s rlizron los siguints nsyos n los sistms rrs RiLin, sí omo n omponnts montj rprsnttivos RiLin: Distriuión orrint Digrms rsistni l ortoiruito sgún EC

Más detalles

MÓDULO Nº5 COMPARADORES Y SUMADORES

MÓDULO Nº5 COMPARADORES Y SUMADORES MÓULO Nº OMPRORES Y SUMORES UNI: LÓGI OMINTORI TEMS: omprors. Sumors. OJETIVOS: Explir qu s un ompror y sus prinipls rtrístis. Explir qu s un sumor y sus prinipls rtrístis.. omprors: ESRROLLO E TEMS En

Más detalles

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A Dprtmnto Cinis Mtmátis ºA Euions, sistms inuions Colio Con Espin Prosor Ánl Fuiio Mrtínz EJERCICIOS DE REFUERZO DE ECUACIONES º ESO A Rsolvr ls siuints uions: - = - = + + = = + = + = - = - -=- - = - -

Más detalles

Examen de Introducción a la Investigación de Operaciones Fecha: 14 de Diciembre de 2010

Examen de Introducción a la Investigación de Operaciones Fecha: 14 de Diciembre de 2010 Emn Introuión l Invstigión Oprions Fh: 4 Diimr 00 INDICACIONES Durión l mn: 4 hrs. Esriir ls hojs un solo lo. Numrr ls hojs. Ponr nomr y éul inti n l ángulo suprior rho hoj. Esriir n l primr hoj l totl

Más detalles

Una ecuación tiene dos miembros 3x 2 + 5x = 3 (x-3) + 3

Una ecuación tiene dos miembros 3x 2 + 5x = 3 (x-3) + 3 TEMA : ECUACIONES CONCEPTO DE ECUACIÓN Un uión s un igul lgri qu solo s umpl pr irtos vlors trminos. A stos vlors qu hn irt l uión s ls llm soluions. 0 tin omo soluión X.. Un igul lgri qu s váli pr ulquir

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

Teoría Problemas Total

Teoría Problemas Total Not Prátis: Not Torí+ Pro: NOTA FNA: Funmntos Físios l nformáti º- ngnirí nformáti onvotori xtrorinri spil. TEOÍA 9 iimr 00 Apllios y Nomr: Soluión Grupo: Torí Prolms Totl A NOTA DE TEOÍA ONSTTUYE E 0

Más detalles

Es fácil ver que la criptoaritmética es un procedimiento de cifrar por sustitución y que la clave es una regla matemática.

Es fácil ver que la criptoaritmética es un procedimiento de cifrar por sustitución y que la clave es una regla matemática. TILC Cpítulo CIPTOITÉTIC L riptoritméti s un rt qu smpñó un importnt ppl n l snvolviminto l Histori. L riptoritméti no s más qu un jugo. No s s n qué épo s invntó; pro los fiionos ls vris omnzron intrsrs

Más detalles

TEMA 4: MONOMIOS Y POLINOMIOS MONOMIOS Es el producto de un número por una o varias letras. Todo monomio consta de varias partes.

TEMA 4: MONOMIOS Y POLINOMIOS MONOMIOS Es el producto de un número por una o varias letras. Todo monomio consta de varias partes. TEM : MONOMIOS Y OLINOMIOS MONOMIOS Es l prouto un númro por un o vris ltrs. Too monomio onst vris prts. El ro un monomio s l númro ltrs qu tin s lul sumno los ponnts ls ltrs. El ro l monomio ntrior srá.

Más detalles

Teoría Problemas Total

Teoría Problemas Total Not Prátis: Not orí+ Pro: NO FN: Funmntos Físios l nformáti º- ng. nf. onvotori xtrorinri. EOÍ sptimr 00 pllios y Nomr: Soluión Grupo: orí Prolms otl NO DE EOÍ ONSUYE E 0 % DE NO O DE EXMEN. D PEGUN DE

Más detalles

TRABAJO PRÁCTICO N 5 AÑO 2017 TEORÍA DE GRAFOS Y ÁRBOLES

TRABAJO PRÁCTICO N 5 AÑO 2017 TEORÍA DE GRAFOS Y ÁRBOLES Pr l grfo l Fig., trmin: TRABAJO PRÁCTICO N 5 AÑO 27 TEORÍA DE GRAFOS Y ÁRBOLES ) un mino - qu no s un rorrio; ) un rorrio qu no s un mino simpl; ) un mino simpl - ; ) un mino rro - qu no s un iruito;

Más detalles

Desarrollado por Ricardo Soto De Giorgis. Desarrollado por Ricardo Soto De Giorgis Representación de Grafos Matriz de Adyacencia

Desarrollado por Ricardo Soto De Giorgis. Desarrollado por Ricardo Soto De Giorgis Representación de Grafos Matriz de Adyacencia . Grfos Un grfo s un onjunto puntos y un onjunto líns llms rists o ros, un ls uls un un punto llmo noo o vérti on otro. S rprsntn l onjunto vértis un grfo o G por V G V G = {,,,, El onjunto ros por A G

Más detalles

CONTEO DE FIGURAS. Capítulo TRILCE T R I L C E 5 6

CONTEO DE FIGURAS. Capítulo TRILCE T R I L C E 5 6 TRILCE Cpítulo CONTEO DE FIGURAS INTRODUCCIÓN El srrollo l tnologí n los últimos ños, h sio rlmnt vrtiginoso, ls pizs, y omponnts los prtos mornos s hn ruio notlmnt su tmño y quirio un sin fin forms, puino

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

Determinantes D - 1 DETERMINANTES

Determinantes D - 1 DETERMINANTES Determinntes D - DETERMINNTES Determinnte e un mtri ur e oren os Definiión: D un mtri ur e oren os numero rel: Det (), se llm eterminnte e l El eterminnte e un mtri ur e oren os es igul l routo e los elementos

Más detalles

1.- Resolver utilizando el método de Gauss el siguiente sistema. 3.- Resuelve tres de las siguientes ecuaciones exponenciales y logaritmicas

1.- Resolver utilizando el método de Gauss el siguiente sistema. 3.- Resuelve tres de las siguientes ecuaciones exponenciales y logaritmicas Colo L Conpón EJERCICIOS REPASO PARA SEPTIEMBRE º BACHILLERATO-B 00-0 NOMBRE:.- Rsolvr utlzno l métoo Guss l unt stm. z z z 8.- Rsulv os ls unts uons 7.- Rsulv trs ls unts uons ponnls lortms lo lo 7 8

Más detalles

1ºC i 2ºC i 3ºC. Número de intervalos de tiempo (I) Nº de campanadas Nº de intervalos Tiempo 3 7

1ºC i 2ºC i 3ºC. Número de intervalos de tiempo (I) Nº de campanadas Nº de intervalos Tiempo 3 7 TRILCE Cpítulo CRONOETRÍA A. PROBLEAS SOBRE CAPANADAS O AFINES Cuno nos rfrimos un vnto qu impli un ión, omo mpns golps, onttos sguios vloi onstnt, mos onsirr qu l timpo trnsurrio s propimnt l los prioos

Más detalles

A puede expresarse como producto de matrices elementales

A puede expresarse como producto de matrices elementales TLLER GEOMETRÍ VECTORIL Y NLÍTIC FCULTD DE INGENIERÍ-UNIVERSIDD DE NTIOQUI - Profsor: Jim nrés Jrmillo Gonzálz jimj@onptoomputorsom Prt l mtril s tomo oumntos los profsors lrto Jrmillo Grimlo Ols En los

Más detalles

POTENCIA BASE EXPONENTE VALOR

POTENCIA BASE EXPONENTE VALOR TEMA POTENCIAS Y RADICALES CONCEPTO DE POTENCIA Un potni s un or rvi sriir un prouto oro por vrios tors iuls. = Los lntos qu onstitun un potni son L s l potni s l núro qu ultiplios por sí iso n st so l.

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

F U T S W W P V F W P V G U T S P V G F P V W P V P V W. nfec. G nfe C. Energía libre y fuerza electromotriz.

F U T S W W P V F W P V G U T S P V G F P V W P V P V W. nfec. G nfe C. Energía libre y fuerza electromotriz. nrgí libr y furz lctromotriz. Dsd un punto d vist trmodinámico, sbmos qu tmprtur constnt, l disminución d l nrgí libr d Hlmholtz, F (pr un procso rvrsibl), rprsnt l trbjo totl (W) hcho sobr los lrddors,

Más detalles

Aquauno Video 2 Plus

Aquauno Video 2 Plus Cont l progrmor l grifo. Aquuno Vio 2 Plus Pág. 1 Guí uso 3 START STOP RESET CANCEL 3 4 5 6 3 4 5 6 3 4 5 6 Cli! Pr Aquuno Vio 2 (ó.): 8454-8428 Pr Aquuno Vio 2 Plus (ó.): 8412 Ar l móulo progrmión, prsionno

Más detalles

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 5 de mayo de 2015

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 5 de mayo de 2015 Primr Pril Introuión l Invstigión Oprions Fh: 5 myo 2015 INDICACIONES Durión l pril: 3 hrs. Esriir ls hojs un solo lo. No s prmit l uso mtril ni lulor. Numrr ls hojs. Ponr nomr y númro éul n l ángulo suprior

Más detalles

4.3 Cuál es el número máximo de arcos que puede tener un grafo no dirigido sin ciclos? Y cuál será para un grafo dirigido acíclico (GDA)?

4.3 Cuál es el número máximo de arcos que puede tener un grafo no dirigido sin ciclos? Y cuál será para un grafo dirigido acíclico (GDA)? Tm. Grfos. Do un árol xpnsión, rsultnt un rorrio sor un grfo no irigio, qué tipo ros (prt los l árol) pun prr si l rorrio s un úsqu n profuni o un úsqu n nhur? Qué ros prrán si l rorrio (n profuni o n

Más detalles

TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras.

TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras. Alonso Fernánez Glián TEMA FRACCIONES Ls friones permiten trjr e mner simóli on nties no enters.. CONCEPTO DE FRACCIÓN Un frión es un expresión e l form numeror enominor ( 0) Represent el resulto e iviir

Más detalles

Estructuras de Datos. Grafos. Grafos. Grafos. Tema 1. Grafos. Definiciónes básicas: Definiciónes básicas:

Estructuras de Datos. Grafos. Grafos. Grafos. Tema 1. Grafos. Definiciónes básicas: Definiciónes básicas: Estruturs Dtos m 1. 1. Dfiniions ásis 2. Implmntions 3. Funions mnipulión 4. Rorrios Dfiniións ásis: L torí grfos: rm l mtmáti omintori muy útil n l soluión prolms prátios qu s formuln mnr nturl por mio

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES STER BDJOZ RUEB DE ESO (OGSE) UNIVERSIDD DE STI Y EÓN JUNIO - (RESUETOS por ntonio nguino) TEÁTIS II Tipo áio: hors inutos ritrios gnrls vluión l pru: S osrvrán funntlnt los siguints sptos: orrt utiliión

Más detalles

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES Intgrl indinid. gl d Brrow INTEGA DEFINIDA ÁEAS Y OUMENES siguint rgl, qu s s n l torm undmntl dl cálculo intgrl, rlcion l intgrl dinid con ls intgrls indinids prmit clculr ls intgrls dinids. intgrl dinid

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE CORRIENTE CONTINUA -1 er TRIMESTRE-. problemas:11, 12 y 14

SOLUCIONES DE LOS EJERCICIOS DE CORRIENTE CONTINUA -1 er TRIMESTRE-. problemas:11, 12 y 14 R= SOLUCONES DE LOS PROLEMS DE ELECTRCDD DE C.C. SOLUCONES DE LOS EJERCCOS DE CORRENTE CONTNU - er TRMESTRE-. prolems:, y ª ) Soluionremos este prolem por el método generl de nálisis por lzos ásios, omprondo

Más detalles

3,2. 2) Determina la ecuación ordinaria y el resto de los elementos de las elipses con las siguientes ecuaciones generales:

3,2. 2) Determina la ecuación ordinaria y el resto de los elementos de las elipses con las siguientes ecuaciones generales: REPASO EXAMEN SEMESTRAL MATEMATICAS GRUPO 0 TEMA: ELIPSE ) Dtrmin l uión orinri, uión gnrl y l rsto los lmntos ls lipss on los siguints lmntos: *Horizontl C, 7 V ', B, ) Dtrmin l uión orinri y l rsto los

Más detalles

También pueden descomponerse los segmentos en función de los vectores posición lo que da como resultado:

También pueden descomponerse los segmentos en función de los vectores posición lo que da como resultado: EL ÁLGER GEÉTRI EL ESPI Y TIEP 87 6. GEETRÍ EL TETRER Volmn l ttrro El volmn n ttrro s l st prt l volmn l prllpípo q lo ontin (vés igr 5.6). El volmn l prllpípo s igl l proto trior trs rists lsqir no prlls.

Más detalles

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES DE PRIMER Y SEGUNDO GRADO TRILCE Cpítulo 0 ECUACIONES DE PRIMER Y SEGUNDO GRADO Euions Son iguls oniionls, n ls qu l mnos istir un ltr llm inógnit : Ejmplo : - = 7 + Es un uión inógnit "". Soluión un uión Es l vlor o vlors l inógnit

Más detalles

UNIDAD 6 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 6 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Guix Mtátis II UNIDD DETERMINNTES.. DETERMINNTE DE ORDEN UNO. D un triz ur orn uno sri o in, oo l núro rl:. DETERMINNTE DE ORDEN DOS. D un triz ur orn os oo l núro rl: Ejplos:, s in l rinnt,

Más detalles

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris):

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris): Árol: iniión Árols inrios Árol (l ltín ror oris): Plnt prnn, trono lñoso y lvo, qu s rmii irt ltur l sulo. (otrs, vr Rl Ami Espñol ) Frno Guii Polno Esul Innirí Inustril Pontiii Univrsi Ctóli Vlpríso,

Más detalles

Ejercicios PSU. Guía Función inversa Bloque 32

Ejercicios PSU. Guía Función inversa Bloque 32 PROGRAMA EGRESADOS Guí Funión invrs Bloqu 32 Ejriios PSU A ontinuión, s prsntn los siguints jriios, los uls sugrimos rsponr l máimo posil y lugo, junto tu profsor(), rvisr tllmnt ls prgunts más rprsnttivs,

Más detalles

Analógicos ELECTROSÓN INSTRUMENTOS ANALÓGICOS CARACTERÍSTICAS GENERALES CM-04 EN60051, VDE 0410, BS-89, EN50081, EN50082, EN61010

Analógicos ELECTROSÓN INSTRUMENTOS ANALÓGICOS CARACTERÍSTICAS GENERALES CM-04 EN60051, VDE 0410, BS-89, EN50081, EN50082, EN61010 CRCTERÍSTICS GENERLES Norms EN0051, VDE 010, S-89, EN50081, EN5008, EN1010 Crtifiions ISO 9001:008 DER NORSKE VERITS, UREU VERITS Envolvnts IEC 155 x, 9x9, 1x1 MODULR (pr rril DIN) Esls Vlor finl sl DIN

Más detalles

JUEGOS DE INGENIO. Capítulo TRILCE. A. TRANSMISIONES H : Horario ; AH : Antihorario AH H. Como A es más grande que B, Entonces :

JUEGOS DE INGENIO. Capítulo TRILCE. A. TRANSMISIONES H : Horario ; AH : Antihorario AH H. Como A es más grande que B, Entonces : TRILCE Cpítulo 2 JUEGOS DE INGENIO. TRNSMISIONES : orrio ; : ntihorrio Como s más grn qu, Entons : mnos vults qu mos rorrn l mism nti ints Ls rus uis n un mismo j girn l mism vloi y n l mismo sntio Ejmplo

Más detalles

3A,,. Prueba que M es un subespacio

3A,,. Prueba que M es un subespacio .- Dtin os tis us X Y on tls qu: Y X Y X.- Estui l inpnni linl ls tis C.- Pu qu ls siguints tis son un s l spio vtoil ls tis us on.- S onsi l onjunto } R. Pu qu s un suspio vtoil.- Hll os tis us on os

Más detalles

Capítulo TRILCE SUCESIONES NUMÉRICAS

Capítulo TRILCE SUCESIONES NUMÉRICAS TILCE Cpítulo SUCESIONES Un susión s un onjunto orno lmntos (pun sr númros, ltrs, figurs o un ominión los sos ntriors), moo qu uno oup un lugr stlio, tl qu s pu istinguir l primro, l sguno, l trro y sí

Más detalles

1) Halla La ecuación del lugar geométrico de los puntos del plano cuya distancia a P(1,2) es doble que su distancia a Q(-1,8).

1) Halla La ecuación del lugar geométrico de los puntos del plano cuya distancia a P(1,2) es doble que su distancia a Q(-1,8). ÓNIS º BHILLERTO ) Hll L uión lugr gométrio los untos lno u istni P(,) s ol qu su istni Q(-,). ( R, P) ( R, Q) ( ) ( ) ( ) ( ) ( ) ) Enuntr l irunfrni irunsrit l triángulo vértis (-,); B(-,); (-,). lul

Más detalles

UNIDAD. Polígonos. Se dedica este tema al conocimiento de los polígonos y al estudio de sus construcciones, y se inicia haciendo tres consideraciones:

UNIDAD. Polígonos. Se dedica este tema al conocimiento de los polígonos y al estudio de sus construcciones, y se inicia haciendo tres consideraciones: UNI Polígonos ÍNIE E ONTENIOS 1. ONEPTOS ÁSIOS SORE TRIÁNGULOS.......................................... 58 2. ONSTRUIONES ELEMENTLES E TRIÁNGULOS................................... 59 2.1. ritrios igul

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti PROPUESTA A

I.E.S. Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti PROPUESTA A I.E.S. Mditrráno d Málg Junio Jun Crlos lonso Ginontti PROPUEST.- ( punto) S f() un función positiv n l intrvlo [ ] sí ( ) f pr. Si l ár itd por f() l j d bciss (j O) ls rcts s igul clcul l ár dl rcinto

Más detalles

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A IES Mditrráno d Málg Solución Junio Jun rlos lonso Ginontti OPIÓN - undo l ño 8 Bthovn scrib su Primr Sinoní su dd s di vcs mor qu l dl jovncito Frn Schubrt Ps l timpo s Schubrt quin compon su célbr Sinoní

Más detalles

26 EJERCICIOS de LOGARITMOS

26 EJERCICIOS de LOGARITMOS 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

Soluciones a los ejercicios, problemas y cuestiones Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios, problemas y cuestiones Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I Soluions los jriios prolms ustions Uni. El onjunto los númros rls Mtmátis plis ls inis Soils I NÚMEROS RIONLES E IRRIONLES. Hll l númro iml qu orrspon un ls siguints rions. omnt l rsulto: 0 00 0 0000 00

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE GALICIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE GALICIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ Mnguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE GLICI SEPTIEMRE - (RESUELTOS por ntonio Mnguino) MTEMÁTICS II Timpo máimo: hors minutos El lumno db rspondr solmnt los jrcicios d un d ls opcions

Más detalles

PROGRESIONES. Capítulo TRILCE. Progresión aritmética (P.A.) 3. Número de términos (n)

PROGRESIONES. Capítulo TRILCE. Progresión aritmética (P.A.) 3. Número de términos (n) TRILCE Cpítulo 7 PROGRESIONES Progrsió ritméti (PA) Es qull susió or l qu térmio, xpto l primro, s igul l térmio trior umto u vlor ostt llmo rzó l progrsió Rprstió u PA r r ( )r Númro térmios () r 4 Térmios

Más detalles

1º ITIS Matemática discreta Relación 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. ordenado por divisibilidad. Dibujar el diagrama de orden de A.

1º ITIS Matemática discreta Relación 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. ordenado por divisibilidad. Dibujar el diagrama de orden de A. º ITIS Mtmáti isrt Rlión 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. S A = {,2,3,4,6,8,9,2,8,24} orno por ivisiili. Diujr l irm orn A. 2. S X {,, } =. Diujr l irm orn (inlusión) ( X ). 3. S S = { 2,4,6,2,2} orno

Más detalles

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos lr I 1r. utrimstr 013 Práti 1 - onjuntos Si s un suonjunto un onjunto rrnil V, notrmos por l omplmnto rspto V. Por onvnión, si x s un númro rl positivo, x not l únio númro rl positivo uyo uro s x. 1. Do

Más detalles

Bajo petición, se pueden suministrar otros tipos de ganchos. La mayoría de los ganchos vienen suministrados con lengüeta de seguridad.

Bajo petición, se pueden suministrar otros tipos de ganchos. La mayoría de los ganchos vienen suministrados con lengüeta de seguridad. Gnhos Apliions Los nhos s utilizn n sistms lvión omo un onxión ntr l r y l l o n. Aln Vn Bst or un mpli m nhos, s nhos normls orjos ro l rono hst nhos irtorios ro lo, qu son tmplos y rvnios. Bjo ptiión,

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

UNIVERSIDAD DE LA RIOJA JUNIO lim

UNIVERSIDAD DE LA RIOJA JUNIO lim IES Mditrráno d Málg Emn Junio d Jun Crlos lonso Ginontti UNIVERSIDD DE L RIOJ JUNIO El lumno contstrá los jrcicios d un d ls dos propusts ( o ) qu s l ofrcn. Nunc dbrá contstr jrcicios d un propust jrcicios

Más detalles

Proyecciones ortogonales (diédricas y triédricas)

Proyecciones ortogonales (diédricas y triédricas) Proyccions ortogonls (diédrics y triédrics) Pro. Rúl F. ongiorno S dnominn proyccions ortogonls l sistm d rprsntción qu nos prmit diujr n dirnts plnos un ojto situdo n l spcio. undo hlmos d sistms d rprsntción

Más detalles

Hacia la universidad Álgebra lineal

Hacia la universidad Álgebra lineal Hi l universi Álger linel OPCIÓN A Soluionrio. Un mtriz ur A se llm ntisimétri uno su trspuest es igul su opuest. Otén l form generl e un mtriz A e oren que se ntisimétri. Clul A, A y A. Consieremos l

Más detalles

Algunos Algoritmos Sobre Gráficas

Algunos Algoritmos Sobre Gráficas Arturo Díz Pérz Algunos Algoritmos Sor Gráis Arturo Díz Pérz Sión Computión Dprtmnto Ingnirí Elétri CINVESTAV-IPN A. Instituto Politénio Nionl No. 08 Col. Sn Pro Ztno Méxio, D. F. CP 0700 Tl. ()747 800

Más detalles

Matrices y determinantes

Matrices y determinantes Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)

Más detalles

Cálculo II (0252) TEMA 3 INTEGRAL IMPROPIA. Semestre

Cálculo II (0252) TEMA 3 INTEGRAL IMPROPIA. Semestre Cálulo II (5) Smstr - TEMA 3 INTEGRAL IMPROPIA Smstr - Junio Dprtmnto d Mtmáti Aplid U.C.V. F.I.U.C.V. CÁLCULO II (5) Ls nots prsntds ontinuión tinn omo únio fin, l d prstr poyo l studint y filitr su ntndiminto

Más detalles

Tema 3. Guías de Onda y Líneas de Transmisión

Tema 3. Guías de Onda y Líneas de Transmisión Tm 3. Guís On Líns Trnsmisión 3. Inrouión 3. Soluions gnrls pr ons TM T TM 3.3 L guí plnos prllos 3.4 L guí rngulr 3.5 L guí on irulr 3.6 l bl oil 3.7 Líns plnrs 3.8 Comprión nr isinos ipos líns guís Bibliogrfí

Más detalles

, donde a y b son números cualesquiera.

, donde a y b son números cualesquiera. Mtemátis Mtries José Mrí Mrtínez Meino (SM, www.profes.net) MJ6 D l mtriz enuentr tos ls mtries P tles que P = P. Soluión: Se ese que Por tnto, ee umplirse que: Por tnto, P, one y son números ulesquier.

Más detalles

Problemas y preguntas de tipo test. Integrales indefinidas. 1. Calcula las siguientes integrales: b) dx = dx

Problemas y preguntas de tipo test. Integrales indefinidas. 1. Calcula las siguientes integrales: b) dx = dx Análisis Mmáio. Ingrls Prolms y prguns d ipo s Ingrls indfinids. Clul ls siguins ingrls: ) d ) d ) S sri l ingrndo omo s indi: d = d ) (sin ) d d os d) = d ln ) d = d 7 / 5 / / 7 / = d ) Ajusndo onsns:

Más detalles

0. x = 0. 0. x = b. x Solución:

0. x = 0. 0. x = b. x Solución: TEMA : ECUACIONES E INECUACIONES CONCEPTO DE ECUACIÓN Un uión s un igul lgri qu l umpln tn solo un sri númros qu son ls soluions. Es ir, Ls soluions un uión son los vlors qu n tomr ls ltrs pr qu l igul

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS EJERIIOS PROPUESTOS 0. Do l onjunto: = {4; 3; {6}; 8} y ls proposiions: * { 3} * { 4} * { 6} * { 6} * 8 * * * { 3 ; 8} Iniqu l númro proposiions vrrs: ) 7 ) 6 ) 5 ) 4 ) 3 0. Dos los onjuntos iguls: 3 ;

Más detalles

Soluciones a los ejercicios, problemas y cuestiones Unidad 2. Polinomios y fracciones algebraicas Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios, problemas y cuestiones Unidad 2. Polinomios y fracciones algebraicas Matemáticas aplicadas a las Ciencias Sociales I Soluios los jriios prolms ustios Ui oliomios rios lgris Mtmátis plis ls Ciis Soils I EJECICIOS SUMA ESTA Y MULTILICACIÓN DE OLINOMIOS Dos los poliomios Dtrmi si stá ruios si so ompltos ii su gro Clul trmi

Más detalles

TEMA 9. DETERMINANTES.

TEMA 9. DETERMINANTES. Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.

Más detalles

Función exponencial y logarítmica:

Función exponencial y logarítmica: MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)

Más detalles

MATRICES: un apunte teórico-práctico

MATRICES: un apunte teórico-práctico MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e

Más detalles

PROBLEMAS DE ÁLGEBRA DE MATRICES

PROBLEMAS DE ÁLGEBRA DE MATRICES Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese

Más detalles

ÁREAS DE REGIONES SOMBREADAS

ÁREAS DE REGIONES SOMBREADAS TILE pítulo 0 ÁE E EGIE E Ejplo º i s un uro lo y "" s ntro, ntons l ár l rgión sor s: soluión : or trslo rgions sors sí tnos qu l ár l rgión sor s un triángulo, qu s igul l urt prt l uro. so Ejplo º i

Más detalles

Deducción de las reglas de derivación. Partiendo de las derivadas de la función potencial, la función exponencial y la función seno, ( ) ( ) 1

Deducción de las reglas de derivación. Partiendo de las derivadas de la función potencial, la función exponencial y la función seno, ( ) ( ) 1 dmttmtics.wordprss.com Btriz d Otto Lópz Dducción d ls rgls d drivción Prtindo d ls drivds d l función potncil, l función ponncil l función sno, = R = f = =, f = sn = cos, f,, d ls rgls d drivción pr l

Más detalles

SOLUCIONES DE LIMITES

SOLUCIONES DE LIMITES SOLUCIONES DE LIMITES.. Ln Sustituyndo por obtnmos: INDETERMINADO Ln Como s trt d un indtrminción d tipo L Hopitl, plicmos dich rgl: Ln Ln Rsolvmos prt l it Ln INDETERMINACIÓN d tipo L Hopitl otr vz: 6Ln

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Cpít ulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Dfiniions Pvis: I. ÁNGULO EN POSICIÓN NORMAL Llmo tmién n posiión nóni o stán. Es quél ángulo tigonométio uo véti oini on l oign l sistm

Más detalles

ALELUYA. D A Bmi F#mi ALELUYA, ALELU ALELUYA G D A ALELUYA, ALELUYA. D A Bmi F#mi ALELUYA, ALELU ALELUYA, G D A D ALELUYA, ALELUUUYA SANTO

ALELUYA. D A Bmi F#mi ALELUYA, ALELU ALELUYA G D A ALELUYA, ALELUYA. D A Bmi F#mi ALELUYA, ALELU ALELUYA, G D A D ALELUYA, ALELUUUYA SANTO NTR UNTS VS --0 1---3-3-3 1---5-5 1 3 0 --1---3---5-5-5---3---6-6---3---5---1 UNTS VS SINO NIÑO T R ON MIS VRSOS T I QU T MB //POO POO ON L TIMPO mi OLVINOM TI mi POR MINOS QU S LJN M PRI// HOY H VULTO

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - S - 59 7 Mtemátis ISSN: 988-79X 6 MTRICES. MTRIZ INVERS. DETERMINNTES. plino ls propiees e los eterminntes y sin utilizr l regl e Srrus, lulr rzonmente ls ríes e l euión polinómi. Enunir ls propiees

Más detalles

DERIVABILIDAD.. Intuitivamente: cuando no presenta saltos en ese punto. Toda función derivable en un punto, es continua en ese punto.

DERIVABILIDAD.. Intuitivamente: cuando no presenta saltos en ese punto. Toda función derivable en un punto, es continua en ese punto. ERIVABILIA.... inir unción continu n un punto. inir unción drivbl n un punto. s posibl ponr un jmplo d un unción qu n s: ) Continu y drivbl. b) rivbl y no continu. c) Continu y no drivbl. y s continu n

Más detalles

Matemáticas Discretas Tc1003 Teoría de Grafos. Teoría de Grafos

Matemáticas Discretas Tc1003 Teoría de Grafos. Teoría de Grafos Mtmátis Disrts Torí Gros OBJETIVO Torí Gros Uni Tm utm Ojtivos VIII Torí Gros 7.1 Diniions 7.2 Trytoris y iruitos Eulr 7.3 Trytoris y iruitos Hmilton 7.4 Árols Dinir ronor un ro pr stlr l soluión un prolm.

Más detalles

MATEMÁTICAS MATERIAL DE REFUERZO 1º E.S.O. Soluciones: a) 14 b) 16 c) 2 d) 5 e) 4. Soluciones: a) 10 b) 18 c) 27 d) 29 e) 10 f) 11

MATEMÁTICAS MATERIAL DE REFUERZO 1º E.S.O. Soluciones: a) 14 b) 16 c) 2 d) 5 e) 4. Soluciones: a) 10 b) 18 c) 27 d) 29 e) 10 f) 11 MATEMÁTICAS MATERIAL DE REFUERZO º E.S.O Primr vluión. Clul ( 0 7 ( 8 0 ( 7 ( 7 8 [( ( ( ] [( 8 ( ( ] ( [ ( 8 ( ] [( 0 8 ( ] ( 0. Clul ( ( ( ( ( 8 ( ( ( ( ( ( ( 8 ( ( ( ( ( 0 ( 0 ( ( ( 8 ( ( ( 0 8 ( (

Más detalles

ACTIVIDADES FINALES EJERCICIOS. trino grau fernández. x lím. lím. lím. lím. sen x 1. x 1. lím x 0 sen x x. lím. x lím. sen x. x arcsen x lím 11.

ACTIVIDADES FINALES EJERCICIOS. trino grau fernández. x lím. lím. lím. lím. sen x 1. x 1. lím x 0 sen x x. lím. x lím. sen x. x arcsen x lím 11. L Í M I T E S th ls ACTIVIDADES FINALES EJERCICIOS Ln tg sn sn [ ( )] 5 sn 6 cotg 7 sn sn 8 9 sn rcsn sn b sn sn cotg 5 sn cos 6 sn 7 n 8 Ln 9 Ln trino gru frnándz th ls 5 Clculr pr qu s cumpl: π Ln tg

Más detalles

1 Álgebra de matrices

1 Álgebra de matrices Álgr d mtrics Págin Vuls intrncinls I = B C B B B B Págin A t 7 = ; B t = ; C t = ; 7 7 7 D t = ; E t = 7 ; F t = 7 Pr jml, X =. Págin E = Págin 7 A C = ; A D = 7 B A = ; C B = D C = ; D D = 7 Págin ridd

Más detalles

= 0 ' = 0 ' Fracciones equivalentes (productos cruzados iguales): c. Fracción generatriz:

= 0 ' = 0 ' Fracciones equivalentes (productos cruzados iguales): c. Fracción generatriz: Dprtmto Mtmátis http://www.olgiovirggri.org/so/mt.htm Aritméti. ARITMÉTICA... Cojutos umérios. I Númros tros: úmros turls Númros riols: os juto o sus opustos (úmros imls prióios gtivos). Númros turls:

Más detalles

CARRETONES y transbordadores

CARRETONES y transbordadores CARRETONES y trnsorors irionl trí sor ríls trí sor ríls orrint Crrtons irionls trí, sor ríls trí, sor ríls létrios. 2 Los rrtons GH prmitn l moviminto too tipo rgs nivl l sulo n too tipo inustris y pr

Más detalles

INTEGRALES IMPROPIAS

INTEGRALES IMPROPIAS INTEGRALES IMPROPIAS INDICE.- Integrles impropis de primer espeie....- Integrles impropis de segund espeie.- Integrles impropis del tipo C... 8 4.- Criterios de omprión 8.- Biliogrfi 0 DEFINICION DE INTEGRALES

Más detalles

34 EJERCICIOS de LOGARITMOS

34 EJERCICIOS de LOGARITMOS EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles