Componentes Electrónicos. Prácticas - Laboratorio. Práctica 2: Diodos

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Componentes Electrónicos. Prácticas - Laboratorio. Práctica 2: Diodos"

Transcripción

1 Prácticas Laboratorio Práctica 2: Diodos Ernesto Ávila Navarro

2 Práctica 2: Diodos (Montaje y medida en laboratorio) Índice: 1. Material de prácticas 2. Medida de las características del diodo 2.2. Diodo de unión pn 2.3. Diodo zener 3. El diodo como componente en un circuito en continua 4. Circuitos recortadores de señal 5. Circuito convertidor de tensión alterna en continua 5.1. Circuito rectificador de media onda 5.2. Filtrado capacitivo de la señal rectificada 5.3. Estabilización de la señal filtrada con diodo zener 1

3 En esta práctica se abordará el montaje y medida de circuitos con diodos de unión pn. Para ello utilizaremos el instrumental disponible en los laboratorios de electrónica básica: Fuentes de tensión. Multímetros digitales (voltímetro y amperímetro). Generador de señal (senoidal, cuadrada, triangular). Osciloscopio En el primer apartado se medirán las características principales de los diodos: Tensión de codo (V ) y resistencia dinámica (R f ) en diodos. Tensión de codo (V ), tensión zener (V z ), resistencia dinámica (R f ) y resistencia en zona zener (R z ) para los diodos zener. Una vez conocidas las características de los diodos, pasaremos a realizar el montaje de distintos circuitos de aplicación de diodos, tanto de continua como de alterna. En todos los casos se medirán las principales variables de los circuitos (tensión, corriente). 1. Material de prácticas El material necesario para el desarrollo de la práctica es el siguiente: Placa de inserción. Resistencias: 1 ; 47 ; 1k ; 1k2 ; 3k3. Condensadores electrolíticos: 1 F; 1 F. Diodo rectificador: 2 diodos. Diodo zener: 1 diodo zener de 5.1V. 2

4 2. Medida de las características del diodo 2.1. Diodo de unión pn El objetivo de este apartado es la obtención de los principales parámetros del diodo, que nos permite obtener los modelos de funcionamiento del mismo, la tensión de codo (V ) y la resistencia dinámica (R f ). Para ello, considere el circuito de la figura 1. R1 Figura 1. Circuito con diodo a) Diseñe el valor de la resistencia R1, conectada en serie con el diodo, para que a la máxima tensión de la fuente V in, que en nuestro caso será de 7 voltios, la potencia disipada por el diodo sea inferior a 8mW y la potencia disipada por la resistencia R1 sea menor a 2mW. Considere que la tensión de codo del diodo es de.7v. P D < 8mW R1 >... P R1 < 2mW R1 >... Resistencia seleccionada R1 =... b) Monte el circuito de la figura 1, con la resistencia seleccionada en el apartado a). Haciendo uso de los multímetros que dispone en su puesto de trabajo, rellene la siguiente tabla: Tensión de entrada Tensión del diodo Intensidad del diodo V in = 1V V D = I D = V in = 3V V D = I D = V in = 5V V D = I D = V in = 7V V D = I D = c) A la vista de los resultados de la tabla anterior, determine el valor experimental de la tensión de codo del diodo y de su resistencia dinámica. Comente los resultados. V =. R f =.. 3

5 2.2. Diodo zener En este apartado obtendremos los parámetros principales de un diodo zener. Para ello, utilizaremos el circuito de la figura 2. Dz R1 Figura 2. Circuito con diodo zener a) Diseñe el valor de la resistencia del circuito, R1, para que la máxima potencia disipado por la misma no supere los 2mW y que la máxima potencia disipada por el diodo zener no supere los 8mW. Para los valores extremos de la tensión de entrada, consulte la tabla del apartado siguiente. Considere que la tensión de codo del diodo es.7v y que la tensión zener del mismo es 5.1V Diodo en directa: P D < 8mW R1 >... Diodo en zona zener: P D < 8mW R1 >... P R1 < 2mW R1 >... Resistencia seleccionada R1 =... b) Monte el circuito de la figura 2, con la resistencia seleccionada en el apartado anterior. Rellene la siguiente tabla Tensión de entrada Tensión del diodo Intensidad del diodo V in = 8V V D = I D = V in = 7V V D = I D = V in = 6V V D = I D = V in = 5V V D = I D = V in = 1V V D = I D = V in = 3V V D = I D = V in = 5V V D = I D = c) Con los resultados de la tabla anterior obtenga los siguientes parámetros del diodo zener. Comente los resultados. V = R f =.. V z = R z = 4

6 3. El diodo como componente en un circuito en continua En este apartado evaluaremos el funcionamiento del diodo como dispositivo en un circuito de continua. Para ello, monte el circuito de la figura 3. 1k D1 D2 4V 3.3k Figura 3. Circuito de continua con diodo Rellene la siguiente tabla: Tensión entrada Intensidad diodo 1 Intensidad diodo 2 Estado de los diodos Diodo 1 Diodo 2 V in = 1V I D1 = I D2 = V = V in = 1V I D1 = I D2 = V = V in = 3V I D1 = I D2 = V = V in = 5V I D1 = I D2 = V = V in = 7V I D1 = I D2 = V = V in = 9V I D1 = I D2 = V = V in = 11V I D1 = I D2 = V = Tensión salida Determine para qué valor de tensión de entrada conmuta cada uno de los diodos entre los estados OFF y ON. Diodo 1 conmutación OFF/ON: V in = Diodo 2 conmutación OFF/ON: V in = 5

7 4. Circuitos recortadores de señal En este apartado se analizarán tres circuitos recortadores de señal con diferentes tipos de señal de entrada (senoidal, cuadrada, triangular). Ejemplo 1. Considere el circuito recortador de la siguiente figura. Monte el circuito en la placa de pruebas. 2V 1k Figura 4. Circuito recortador de señal. Ejemplo 1. La señal de entrada es una onda cuadrada de 6 voltios de amplitud y 1kHz de frecuencia. Conecte directamente el generador de señal al osciloscopio (medida en vacio) y ajuste la señal de entrada a los valores indicados. Una vez ajustada, conecte el generador de funciones al circuito. Visualice en el osciloscopio la señal de entrada y la salida del circuito. Represéntelas indicando los valores máximos y mínimos de cada una de las señales. Justifique los resultados. 6

8 Ejemplo 2. Monte el circuito recortador de la figura 5. 1k 2V Figura 5. Circuito recortador de señal. Ejemplo 2. La señal de entrada es una onda triangular de 6 voltios de amplitud y 1kHz de frecuencia. Represente las tensiones de entrada y de salida del circuito, indicando los valores máximos y mínimos de cada una de estas señales. Justifique los resultados. 7

9 Ejemplo 3. Considere el circuito recortador mostrado en la figura 6. La tensión de entrada, en este caso, es una señal senoidal de 6 voltios de amplitud y frecuencia de 1kHz. Ajuste esta tensión con el generador de señal y el osciloscopio en vacio y posteriormente conecte el generador al circuito. 2V 1k Figura 6. Circuito recortador de señal. Ejemplo 3. Represente las tensiones de entrada y de salida del circuito, indicando los valores máximos y mínimos de cada una de estas señales. Justifique los resultados. 8

10 5. Circuito convertidor de tensión alterna en tensión continua En este apartado se analizará el comportamiento de un circuito convertidor AC/DC. Para ello, montaremos en la placa de inserción cada uno de los subsistemas que forman el circuito convertidor y mediremos las tensiones que se obtienen en cada una de ellas, calculando los distintos parámetros característicos de este tipo de convertidores Circuito rectificador de media onda Monte en la placa el circuito rectificador de media de la figura 7. La tensión de entrada del circuito (que en el esquema general del convertidor se correspondería con la salida del transformador) es una señal senoidal de 1 voltios de amplitud y una frecuencia de 5Hz. Ajuste la salida del generador de funciones para obtener esta tensión y alimente el circuito. 1.2k Figura 7. Circuito rectificador de media onda. Con la ayuda del osciloscopio, represente la tensión de entrada y la de salida del circuito, indicando los valores más representativos de ambas, especialmente los valores de pico. 9

11 5.2. Filtrado capacitivo de la señal rectificada Para realizar el filtrado paso bajo de la señal rectificada, se añade un condensador electrolítico, tal y como se indica en la figura 8. C 1.2k Figura 8. Filtrado capacitivo de la señal rectificada. Conecte un condensador de 1 F. Represente las tensiones de entrada y salida en el osciloscopio y dibújelas en la siguiente gráfica. Con la ayuda de los cursores del osciloscopio obtenga el rizado de la señal de salida y su valor medio. V r = V m = 1

12 Conecte ahora un condensador de 1 F y repita los pasos del punto anterior. V r = V m = Justifique las diferencias entre los resultados obtenidos para una capacidad de 1 F y la capacidad de 1 F. Indique las ventajas e inconvenientes de utilizar un valor u otro de capacidad 11

13 5.3. Estabilización de la señal filtrada con diodo zener El último paso para obtener una señal continua es la estabilización de la tensión de salida de la etapa de filtrado, para reducir el rizado de la señal. La forma más sencilla de estabilizar esta tensión es mediante el uso de un diodo zener. Considere el circuito de la figura 9, donde a la etapa de filtrado (con condensador de 1 F) se ha añadido un diodo zener de 5.1V de tensión zener. 47 Dz C 1.2k Figura 9. Circuito convertidor AC/DC con estabilizado de señal con zener. Monte el circuito de la figura anterior y represente las señales de entrada y salida del mismo en la siguiente gráfica. Indique los valores máximos y mínimos de ambas tensiones. Justifique los resultados obtenidos. 12

LABORATORIO DE FÍSICA

LABORATORIO DE FÍSICA LABORATORIO DE FÍSICA OBJETIVO DE LA PRÁCTICA Fuente de c.c. MATERIAL Analizar el comportamiento y funcionamiento de diferentes diodos (silicio, germanio y Zener). Efecto válvula. Efecto rectificador.

Más detalles

ELECTRONICA GENERAL. Tema 3. Circuitos con Diodos.

ELECTRONICA GENERAL. Tema 3. Circuitos con Diodos. Tema 3. Circuitos con Diodos. 1.- En los rectificadores con filtrado de condensador, se obtiene mejor factor de ondulación cuando a) la capacidad del filtro y la resistencia de carga son altas b) la capacidad

Más detalles

Experimento 4: Circuitos Recortadores y Sujetadores con Diodos

Experimento 4: Circuitos Recortadores y Sujetadores con Diodos Tecnológico de Costa Rica I Semestre 2012 Escuela de Ingeniería Electrónica Laboratorio de Electrónica Analógica Profesor: Ing. Javier Pérez R. I Experimento 4: Circuitos Recortadores y Sujetadores con

Más detalles

Circuitos rectificadores con diodos

Circuitos rectificadores con diodos Circuitos rectificadores con diodos Práctica 3 Índice General 3.1. Objetivos................................ 29 3.2. Introducción teórica.......................... 29 3.3. Ejercicios Propuestos..........................

Más detalles

elab 3D Práctica 2 Diodos

elab 3D Práctica 2 Diodos UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TECNICA SUPERIOR DE INGENIERIA Y SISTEMAS DE TELECOMUNICACIÓN elab 3D Práctica 2 Diodos Curso 2013/2014 Departamento de Sistemas Electrónicos y de Control 1. Introducción

Más detalles

ANÁLISIS DE UN CARGADOR DE MÓVIL

ANÁLISIS DE UN CARGADOR DE MÓVIL ANÁLISIS DE UN CARGADOR DE MÓVIL Rectificador de corriente Videotutorial de la práctica A. DESCRIPCIÓN En esta práctica analizaremos el funcionamiento de un cargador de un móvil, que cumple una doble función,

Más detalles

Componentes Electrónicos. Prácticas - PSPICE. Práctica 5: Amplificadores Operacionales

Componentes Electrónicos. Prácticas - PSPICE. Práctica 5: Amplificadores Operacionales "#$%&'()*&+,-#.+#'(/$0%+*(%(&#%( *0*.%.,%"(&%#,.+#*"( %'(%(8%#.*&*9:'(&%#,.+#'(( Prácticas - PSPICE Práctica : Amplificadores Operacionales PRÁCTICA COMPLETA "#$%&'()*+,-.-*-##( Práctica : Amplificadores

Más detalles

OBJETIVOS CONSULTA PREVIA. La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias.

OBJETIVOS CONSULTA PREVIA. La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias. OBJETIVOS 1. Analizar y experimentar con un regulador de tensión a base de diodos Zener. 2. Medir los valores más importantes de los rectificadores monofásicos de media onda, onda completa con tap central

Más detalles

Practica 3.- Aplicaciones del diodo de unión.

Practica 3.- Aplicaciones del diodo de unión. Practica 3.- Aplicaciones del diodo de unión. A.- Objetivos. Estudiar varias aplicaciones del diodo de unión como son el diodo como circuito recortador, rectificador con filtro y doblador de tensión con

Más detalles

Componentes Electrónicos. Prácticas - PSPICE. Práctica 5: Amplificadores Operacionales

Componentes Electrónicos. Prácticas - PSPICE. Práctica 5: Amplificadores Operacionales "#$%&'()*&+,-#.+#'(/$0%1+*1(%(&#3%( 4*50*.%.,%"(&%#,16.+#*"( 71%'(%(8%#.*&*9:'(&%#,16.+#'(( Prácticas - PSPICE Práctica 5: Amplificadores Operacionales APARTADOS OBLIGATORIOS DE LA PRÁCTICA "#$%&'()*+,-.-*-##(

Más detalles

LABORATORIO DE ELEMENTOS DE ELECTRONICA

LABORATORIO DE ELEMENTOS DE ELECTRONICA Práctica 7 Diodos y sus aplicaciones 7.2.3 Utilice el programa simulador para probar los circuitos de la Figura 7.2.2. Para cada uno, indique el tipo de circuito de que se trata y obtenga la gráfica de

Más detalles

DE UN MEDIDOR DE AC. Existen diversos tipos de medidores que se pueden emplear en medir magnitudes eléctricas alternas. Se pueden clasificar en:

DE UN MEDIDOR DE AC. Existen diversos tipos de medidores que se pueden emplear en medir magnitudes eléctricas alternas. Se pueden clasificar en: PRÁCTICA 1. DISEÑO Y RESPUESTA EN FRECUENCIA 1 Objetivo. DE UN MEDIDOR DE AC Diseñar y construir un voltímetro elemental de corriente alterna utilizando un puente rectificador de media onda y otro de onda

Más detalles

PRÁCTICA 10. EMISOR COMÚN Y COLECTOR COMÚN

PRÁCTICA 10. EMISOR COMÚN Y COLECTOR COMÚN PRÁCTICA 10. EMISOR COMÚN Y COLECTOR COMÚN 1. Objetivo El objetivo de la práctica es comprobar experimentalmente la amplificación de dos monoetapas con un transistor BJT (emisor común y colector común)

Más detalles

Experimento 6: Transistores MOSFET como conmutadores y compuertas CMOS

Experimento 6: Transistores MOSFET como conmutadores y compuertas CMOS Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Profesores: Ing. Sergio Morales, Ing. Pablo Alvarado, Ing. Eduardo Interiano Laboratorio de Elementos Activos II Semestre 2006 I Experimento

Más detalles

Circuitos Electrónicos Digitales Práctica 1 Introducción al laboratorio de circuitos

Circuitos Electrónicos Digitales Práctica 1 Introducción al laboratorio de circuitos Circuitos Electrónicos Digitales Práctica 1 Introducción al laboratorio de circuitos Grado en Ingeniería Informática: Ingeniería del Software 2010/2011 Objetivos Repasar los conceptos de circuitos eléctricos

Más detalles

CONTENIDO PRESENTACIÓN. Capítulo 1 COMPONENTES SEMICONDUCTORES: EL DIODO... 1

CONTENIDO PRESENTACIÓN. Capítulo 1 COMPONENTES SEMICONDUCTORES: EL DIODO... 1 CONTENIDO PRESENTACIÓN Capítulo 1 COMPONENTES SEMICONDUCTORES: EL DIODO... 1 1.1 INTRODUCCIÓN...1 1.2 EL DIODO...2 1.2.1 Polarización del diodo...2 1.3 CARACTERÍSTICAS DEL DIODO...4 1.3.1 Curva característica

Más detalles

REPUBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDADD PEDAGOGICA EXPERIMENTAL LIBERTADOR INSTITUTO PEDAGOGICO DE BARQUISIMETO LUIS BELTRAN PRIETO FIGUEROA

REPUBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDADD PEDAGOGICA EXPERIMENTAL LIBERTADOR INSTITUTO PEDAGOGICO DE BARQUISIMETO LUIS BELTRAN PRIETO FIGUEROA REPUBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDADD PEDAGOGICA EXPERIMENTAL LIBERTADOR INSTITUTO PEDAGOGICO DE BARQUISIMETO LUIS BELTRAN PRIETO FIGUEROA DEPARTAMENTO DE CIENCIAS NATURALES PROGRAMA DE FISICA

Más detalles

1.- La señal de salida v o en t = 5ms. a) -60V b) 60V c) 75V d) -75V. 2.- La señal de salida v o en t = 15ms. a) -60V b) 60V c) 75V d) -75V

1.- La señal de salida v o en t = 5ms. a) -60V b) 60V c) 75V d) -75V. 2.- La señal de salida v o en t = 15ms. a) -60V b) 60V c) 75V d) -75V A. A.1.- En el circuito de la figura los diodos son ideales. La señal de entrada v i es sinusoidal de 50 Hz de frecuencia y 100 V de amplitud. En el primer semiperiodo v i es positiva. Calcular: 1.- La

Más detalles

Construcción de una fuente de tensión continua. 1. Diodo - Rectificación de media onda y filtro con un condensador

Construcción de una fuente de tensión continua. 1. Diodo - Rectificación de media onda y filtro con un condensador , E9 Construcción de una fuente de tensión continua Jonathan Estévez Fernández, Natalia del Valle Navarro Facultad de Ciencias Físicas, Universidad Complutense, 28040 Madrid, España (Trabajo experimental

Más detalles

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION. Electrónica I. Guía 2 1

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION. Electrónica I. Guía 2 1 Electrónica I. Guía 2 1 DIODO DE UNION Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). Objetivos generales

Más detalles

Electrónica Analógica Conocimientos previos Práctica 1

Electrónica Analógica Conocimientos previos Práctica 1 APELLIDOS:...NOMBRE:... APELLIDOS:...NOMBRE:... 1.- MANEJO DE LOS VOLTIMETROS Y AMPERIMETROS DEL SIMULADOR. CIRCUITO SERIE. Dado el circuito de la figura, realizar los cálculos necesarios para determinar

Más detalles

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION Electrónica I. Guía 1 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). DIODO DE UNION Objetivos generales Identificar

Más detalles

PRACTICA Nº 2 CARACTERISTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA. 1.-Explique como opera el osciloscopio en la modalidad X-Y.

PRACTICA Nº 2 CARACTERISTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA. 1.-Explique como opera el osciloscopio en la modalidad X-Y. UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRONICOS I EC1177 PRACTICA Nº 2 CARACTERISTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA OBJETIVO Familiarizar al estudiante

Más detalles

ELECTRONICA GENERAL Y APLICADA-FACULTAD DE INGENIERIA. UNCuyo - Ing. Roberto HAARTH

ELECTRONICA GENERAL Y APLICADA-FACULTAD DE INGENIERIA. UNCuyo - Ing. Roberto HAARTH Página1 OBJETIVOS Comprender el concepto de rectificación y filtrado de una fuente de alimentación de energía eléctrica. Reconocer las características y parámetros de rectificación de media onda y onda

Más detalles

BJT como amplificador en configuración de emisor común con resistencia de emisor

BJT como amplificador en configuración de emisor común con resistencia de emisor Práctica 9 BJT como amplificador en configuración de emisor común con resistencia de emisor Índice General 9.1. Objetivos................................ 73 9.2. Introducción teórica..........................

Más detalles

CURSO: SEMICONDUCTORES UNIDAD 2: RECTIFICACIÓN - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. RECTIFICACIÓN SIMPLE

CURSO: SEMICONDUCTORES UNIDAD 2: RECTIFICACIÓN - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. RECTIFICACIÓN SIMPLE CURSO: SEMICONDUCTORES UNIDAD 2: RECTIFICACIÓN - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. RECTIFICACIÓN SIMPLE Rectificación, es el proceso de convertir los voltajes o tensiones y corrientes alternas

Más detalles

Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 2

Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 2 Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 2 CARACTERÍSTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA

Más detalles

CIRCUITOS RECTIFICADORES

CIRCUITOS RECTIFICADORES Electrónica I. Guía 2 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). CIRCUITOS RECTIFICADORES Objetivos generales

Más detalles

Componentes Electrónicos. Prácticas - PSPICE. Práctica 1: Diodos

Componentes Electrónicos. Prácticas - PSPICE. Práctica 1: Diodos "#$%&'()*&+,-#.+#'(/$0%1+*1(2%(&#3%( 4*50*.%.,%"(&%#,16.+#*"( 71%'(2%(8%#.*&*9:'(&%#,16.+#'(( Prácticas - PSPICE Práctica 1: Diodos APARTADOS OBLIGATORIOS DE LA PRÁCTICA "#$%&'()*+,-.-*-##( Práctica 1:

Más detalles

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ELECTRÓNICA Y BIOMÉDICA

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ELECTRÓNICA Y BIOMÉDICA UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ELECTRÓNICA Y BIOMÉDICA CICLO: I/215 GUIA DE LABORATORIO #8 Nombre de la Practica: Circuitos Rectificadores de Onda Lugar de Ejecución: Fundamentos

Más detalles

Laboratorio Problemas introductorios Circuitos en corriente continua

Laboratorio Problemas introductorios Circuitos en corriente continua Laboratorio 66.02 Problemas introductorios Circuitos en corriente continua 1) Para el circuito de la figura, determine: a) Tensión en cada componente. b) Corriente en cada componente. c) Resistencia equivalente.

Más detalles

DIE UPM. Se dispone de una etapa amplificadora conectada a una resistencia de carga R L de valor 1KΩ en paralelo con un condensador C L.

DIE UPM. Se dispone de una etapa amplificadora conectada a una resistencia de carga R L de valor 1KΩ en paralelo con un condensador C L. UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES UPM DIE DEPARTAMENTO DE AUTOMÁTICA, INGENIERÍA ELECTRÓNICA E INFORMÁTICA INDUSTRIAL DIVISIÓN DE INGENIERÍA ELECTRÓNICA

Más detalles

intensidad de carga. c) v 1 = 10 V, v 2 = 5 V. d) v 1 = 5 V, v 2 = 5 V.

intensidad de carga. c) v 1 = 10 V, v 2 = 5 V. d) v 1 = 5 V, v 2 = 5 V. 1. En el circuito regulador de tensión de la figura: a) La tensión de alimentación es de 300V y la tensión del diodo de avalancha de 200V. La corriente que pasa por el diodo es de 10 ma y por la carga

Más detalles

Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 3

Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 3 Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 3 DIODO ZENER, RECTIFICADOR DE ONDA COMPLETA Y REGULADOR CON ZENER

Más detalles

PRÁCTICA 1. AMPLIFICADORES MONOETAPA CON BJT

PRÁCTICA 1. AMPLIFICADORES MONOETAPA CON BJT PRÁCTICA 1. AMPLIFICADORES MONOETAPA CON BJT 1. Objetivo El objetivo de la práctica es comprobar experimentalmente la amplificación de dos monoetapas con un transistor BJT (emisor común y colector común)

Más detalles

Experimento 3: Circuitos Rectificadores con y sin Filtro

Experimento 3: Circuitos Rectificadores con y sin Filtro Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Profesores: Dr.-Ing. Pablo Alvarado M., Dipl.-Ing. Eduardo Interiano S. Laboratorio de Elementos Activos I Semestre 2005 I Objectivo

Más detalles

Laboratorio Integrador y Diferenciador con AO

Laboratorio Integrador y Diferenciador con AO Objetivos Laboratorio Integrador y Diferenciador con AO El propósito de este práctico es comprender el funcionamiento de un integrador y de un diferenciador construido con un LM741. Textos de Referencia

Más detalles

LABORATORIO_02: Aplicaciones con diodo.

LABORATORIO_02: Aplicaciones con diodo. LABORATORIO_02: Aplicaciones con diodo. CURSO : ELECTRONICA ANALOGICA INSTRUCTOR : RAUL ROJAS REATEGUI DURACIÓN : 02 SEMANAS 1.- CRITERIOS DE EVALUACION Criterios de evaluación de individual en el Taller

Más detalles

TEMA 3 CIRCUITOS CON DIODOS

TEMA 3 CIRCUITOS CON DIODOS TEMA 3 CIRCUITOS CON DIODOS TTEEMAA 33: :: CCi irrccuui ittooss ccoon dioodooss 11 1) En cuál de las siguientes aplicaciones emplearía el diodo zéner? a) Rectificador de media onda. c) Regulador de tensión.

Más detalles

PRÁCTICA 3 CIRCUITOS CON DIODOS.

PRÁCTICA 3 CIRCUITOS CON DIODOS. Labatiio de Ellectróniica PRÁCTICA 3 CIRCUITOS CON DIODOS. PPrrááccttiiccaa 33: :: Ciirrccuiittoss ccon diioss 1 LLaabbo raatto riio dee EElleec cttr ró ón niic caa LLu uiiss R Ru ubbiio o PPeeñ ñaa CIRCUITOS

Más detalles

Práctica 6: Amplificadores de potencia

Práctica 6: Amplificadores de potencia Práctica 6: Amplificadores de potencia 1. Introducción. En esta práctica se estudian los circuitos de salida básicos, realizados con transistores bipolares, empleados en amplificadores de potencia. Los

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II INTEGRADOR, DERIVADOR Y RECTIFICADOR DE ONDA CON AMPLIFICADORES OPERACIONALES LAURA MAYERLY ÁLVAREZ JIMENEZ (20112007040) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN En esta práctica de laboratorio

Más detalles

PRÁCTICA 4. Polarización de transistores en emisor/colector común

PRÁCTICA 4. Polarización de transistores en emisor/colector común PRÁCTICA 4. Polarización de transistores en emisor/colector común 1. Objetivo El objetivo de la práctica es comprobar experimentalmente la polarización de un transistor y la influencia de distintos parámetros

Más detalles

CARACTERISTICAS DE LOS DIODOS DE PROPÓSITO GENERAL CIRCUITOS RECTIFICADORES DE MEDIA ONDA Y ONDA COMPLETA

CARACTERISTICAS DE LOS DIODOS DE PROPÓSITO GENERAL CIRCUITOS RECTIFICADORES DE MEDIA ONDA Y ONDA COMPLETA UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LABORATORIO DE ELECTRÓNICA EC2014 PRACTICA Nº 1 CARACTERISTICAS DE LOS DIODOS DE PROPÓSITO GENERAL CIRCUITOS RECTIFICADORES DE MEDIA ONDA Y ONDA

Más detalles

9. SIMULACIONES CON PSPICE

9. SIMULACIONES CON PSPICE En este capítulo, con la ayuda del programa de simulación PSPICE, se realizará la simulación de los dos tipos de convertidores cc-cc básicos: el convertidor elevador y el convertidor reductor. Debido a

Más detalles

Experimento 3: Circuitos rectificadores con y sin filtro

Experimento 3: Circuitos rectificadores con y sin filtro Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Profesores: Ing. Johan Carvajal, Ing. Adolfo Chaves, Ing. Eduardo Interiano, Ing. Francisco Navarro Laboratorio de Elementos Activos

Más detalles

Laboratorio 4 Fuente no regulada y regulada

Laboratorio 4 Fuente no regulada y regulada Laboratorio 4 Fuente no regulada y regulada Jeison David Mateus González, Wilmer Ferney Romero Avellaneda, Ovalle Triana Ángel Daniel Corporación Unificada Nacional de Educación Superior CUN Ingeniería

Más detalles

Objetivo general. Objetivos específicos. Materiales y equipo CIRCUITOS RECTIFICADORES. Electrónica I. Guía 3 1 / 9

Objetivo general. Objetivos específicos. Materiales y equipo CIRCUITOS RECTIFICADORES. Electrónica I. Guía 3 1 / 9 Electrónica I. Guía 3 1 / 9 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). CIRCUITOS RECTIFICADORES

Más detalles

1 Tablero maestro 1 Tarjeta de circuito impreso EB Multímetro 1 Osciloscopio 1 Generador de funciones Tabla 1.1. Materiales y equipo.

1 Tablero maestro 1 Tarjeta de circuito impreso EB Multímetro 1 Osciloscopio 1 Generador de funciones Tabla 1.1. Materiales y equipo. Contenido Facultad: Estudios Tecnologicos Escuela: Electronica y Biomedica Asignatura: Electrónica de Potencia Curvas de operación del PUT y Osciladores de Relajación. Objetivos Específicos Analizar el

Más detalles

Electrónica Analógica

Electrónica Analógica Prácticas de Electrónica Analógica 2º urso de Ingeniería de Telecomunicación Universidad de Zaragoza urso 1999 / 2000 PATIA 1. Amplificador operacional. Etapas básicas. Entramos en esta sesión en contacto

Más detalles

LABORATORIOS DE: DISPOSITIVOS DE ALMACENAMIENTO Y DE ENTRADA/SALIDA. MEMORIAS Y PERIFÉRICOS.

LABORATORIOS DE: DISPOSITIVOS DE ALMACENAMIENTO Y DE ENTRADA/SALIDA. MEMORIAS Y PERIFÉRICOS. LABORATORIOS DE: DISPOSITIVOS DE ALMACENAMIENTO Y DE ENTRADA/SALIDA. MEMORIAS Y PERIFÉRICOS. OBJETIVO DE LA PRÁCTICA. PRÁCTICA #2 EL AMPLIFICADOR OPERACIONAL Hacer la comprobación experimental de la función

Más detalles

PRÁCTICA PD5 Fuentes de Poder de CD

PRÁCTICA PD5 Fuentes de Poder de CD elab, Laboratorio Remoto de Electrónica ITESM, Depto. de Ingeniería Eléctrica PRÁCTICA PD5 Fuentes de Poder de CD OBJETIVO Entender el funcionamiento de los circuitos rectificadores de media onda y onda

Más detalles

Laboratorio de Electrónica

Laboratorio de Electrónica Listado de materiales: Trabajo Práctico: ectificadores 4 Diodos 1N4001 1 esistencia de 1 KΩ/ ½W Preset 1 KΩ 1 Puente ectificador Integrado. 1 esistencia de 3,9 KΩ/ ½W Cables y herramientas básicas. 1 esistencia

Más detalles

Caracterización de componentes pasivos

Caracterización de componentes pasivos Laboratorio de Caracterización de Dispositivos Electrónicos INGENIERÍA DE TELECOMUNICACIÓN Departamento de Electrónica Universidad de Alcalá PRÁCTICA 2 Caracterización de componentes pasivos Curso 2009-2010

Más detalles

Práctica No 0: Parte C El Osciloscopio y el Generador de Señales

Práctica No 0: Parte C El Osciloscopio y el Generador de Señales Universidad Nacional Experimental del Táchira. Departamento de Ingeniería Electrónica. Núcleo de Instrumentación y Control. Bioinstrumentación I Revisada por: Prof. Rafael Volcanes, Prof. Lisbeth Román.

Más detalles

INDICE Capitulo 1. Magnitudes Electrónicas y Resolución de Circuitos de cc Capitulo 2. Capacidad e Inductancia. Comportamiento en cc

INDICE Capitulo 1. Magnitudes Electrónicas y Resolución de Circuitos de cc Capitulo 2. Capacidad e Inductancia. Comportamiento en cc INDICE Prólogo XI Capitulo 1. Magnitudes Electrónicas y Resolución de Circuitos de 1 cc 1.1. Introducción 1 1.2. Magnitudes más relevantes del circuito electrónico 2 1.2.1. Tensión eléctrica 2 1.2.2. Intensidad

Más detalles

Tema: Tiristores. Objetivos. Recomendaciones. Introducción. Radiología. GUÍA 01 Pág. 1

Tema: Tiristores. Objetivos. Recomendaciones. Introducción. Radiología. GUÍA 01 Pág. 1 Tema: Tiristores Facultad Escuela Lugar de Ejecución : Ingeniería. : Biomédica : Laboratorio de Biomédica Objetivos SCR Determinar las características de un Tiristor Conectar el SCR para que conduzca en

Más detalles

MEDIDA DE CONSTANTES DIELÉCTRICAS

MEDIDA DE CONSTANTES DIELÉCTRICAS Laboratorio de Física General (Electricidad y Magnetismo) MEDIDA DE CONSTANTES DIELÉCTRICAS Fecha: 0/10/013 1. Objetivo de la práctica Medida de la constante dieléctrica del aire (muy similar a la del

Más detalles

FUENTES DE ALIMENTACION CONMUTADA INSTRUCTOR RAUL ROJAS REATEGUI

FUENTES DE ALIMENTACION CONMUTADA INSTRUCTOR RAUL ROJAS REATEGUI FUENTES DE ALIMENTACION CONMUTADA INSTRUCTOR RAUL ROJAS REATEGUI CLASIFICACIÓN 1. SEGÚN LA TECNOLOGIA UTILIZADA a. Fuente Lineal. Utilizan un transformador para disminuir el voltaje de línea (120 o 220V).

Más detalles

Figura 1 Figura 2. b) Obtener, ahora, un valor más preciso de V D para la temperatura T a. V AA

Figura 1 Figura 2. b) Obtener, ahora, un valor más preciso de V D para la temperatura T a. V AA DODOS. Se desea diseñar el circuito de polarización de un diodo emisor de luz (LED) de arseniuro de galio (GaAs) conforme a la figura. La característica - del LED se representa en la figura, en la que

Más detalles

AÑO DE LA INTEGRACIÓN NACIONAL Y EL RECONOCIMIENTO DE NUESTRA DIVERSIDAD

AÑO DE LA INTEGRACIÓN NACIONAL Y EL RECONOCIMIENTO DE NUESTRA DIVERSIDAD AÑO DE LA INTEGRACIÓN NACIONAL Y EL RECONOCIMIENTO DE NUESTRA DIVERSIDAD UNIVERSIDAD NACIONAL SAN LUIS GONZAGA DE ICA FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA

Más detalles

Como Don Bosco educador, ofrezcamos a los jóvenes el Evangelio de la alegría mediante la pedagogía de la bondad. Guía de Ejercicios

Como Don Bosco educador, ofrezcamos a los jóvenes el Evangelio de la alegría mediante la pedagogía de la bondad. Guía de Ejercicios Guía de Ejercicios Curso 3 D Módulo: MACCE Profesor: Mitchell Cifuentes Berríos I Responda si las siguientes afirmaciones son verdaderas o falsas. 1 V Un rectificador de media onda básico se compone de

Más detalles

PRACTICA Nº 7 AMPLIFICADORES CON TRANSISTORES BIPOLARES

PRACTICA Nº 7 AMPLIFICADORES CON TRANSISTORES BIPOLARES UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LAB. CIRCUITOS ELECTRONICOS I EC1181 PRACTICA Nº 7 AMPLIFICADORES CON TRANSISTORES BIPOLARES OBJETIVO Familiarizar al estudiante con el diseño y

Más detalles

Oscar Ignacio Botero H. Diana Marcela Domínguez P. SIMULADOR PROTEUS MÓDULO. VIRTUAL INSTRUMENTS MODE: (Instrumentos virtuales)

Oscar Ignacio Botero H. Diana Marcela Domínguez P. SIMULADOR PROTEUS MÓDULO. VIRTUAL INSTRUMENTS MODE: (Instrumentos virtuales) SIMULADOR PROTEUS MÓDULO VIRTUAL INSTRUMENTS MODE: (Instrumentos virtuales) En éste modo se encuentran las siguientes opciones 1. VOLTÍMETROS Y AMPERÍMETROS (AC Y DC) Instrumentos que operan en tiempo

Más detalles

PRÁCTICA 3. OSCILOSCOPIOS HM 604 Y HM 1004 (III): TEST DE COMPONENTES Y MODULACIÓN EN FRECUENCIA.

PRÁCTICA 3. OSCILOSCOPIOS HM 604 Y HM 1004 (III): TEST DE COMPONENTES Y MODULACIÓN EN FRECUENCIA. PRÁCTICA 3. OSCILOSCOPIOS HM 604 Y HM 1004 (III): TEST DE COMPONENTES Y MODULACIÓN EN FRECUENCIA. 3.1.- Objetivos: Realización de test de componentes activos y pasivos para obtener, a partir de la curva

Más detalles

Laboratorio de Electrónica de Potencia

Laboratorio de Electrónica de Potencia Laboratorio de Electrónica de Potencia Práctica 4 Nombre: No. Cédula: Convertidores DC-AC: Inversores Objetivo General: Utilizar el OrCAD para simular y analizar circuitos inversores, tanto monofásicos

Más detalles

EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 7A PRÁCTICA Nº 7 MEDICIONES EN CORRIENTE ALTERNA (AC)

EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 7A PRÁCTICA Nº 7 MEDICIONES EN CORRIENTE ALTERNA (AC) EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 7A PRÁCTICA Nº 7 MEDICIONES EN CORRIENTE ALTERNA (AC) CONCEPTO SOBRE EL VALOR EFICAZ (RAIZ MEDIA CUADRÁTICA) ROOT MEAN SQUARE (RMS) El valor

Más detalles

PRÁCTICA 1 INTRODUCCIÓN AL LABORATORIO DE ELECTRÓNICA.

PRÁCTICA 1 INTRODUCCIÓN AL LABORATORIO DE ELECTRÓNICA. PRÁCTICA 1 INTRODUCCIÓN AL LABORATORIO DE ELECTRÓNICA. PPrrááccttiiccaa 11: :: IInttrroducccciión aall llaabborraattorriio dee eellccttrróniiccaa 1 INTRODUCCIÓN AL LABORATORIO DE ELECTRÓNICA MATERIAL:

Más detalles

Práctica 4. LABORATORIO

Práctica 4. LABORATORIO Práctica 4. LABORATORIO Electrónica de Potencia Convertidor DC/DC Cúk 1. Diagrama de Bloques En esta práctica, el alumnado debe implementar un convertidor DC/DC tipo Cúk. En la Fig1 se muestra el diagrama

Más detalles

PRÁCTICA Nº1. DIODOS. 1.- Toma un diodo rectificador 1N4007 y realiza el montaje de la figura 1 utilizando una fuente de continua.

PRÁCTICA Nº1. DIODOS. 1.- Toma un diodo rectificador 1N4007 y realiza el montaje de la figura 1 utilizando una fuente de continua. PRÁCTICA Nº1. DIODOS CURVA CARACTERÍSTICA DEL DIODO. 1.- Toma un diodo rectificador 1N4007 y realiza el montaje de la figura 1 utilizando una fuente de continua. Figura 1. Montaje eléctrico para polarizar

Más detalles

Índice general. 3. Resistencia eléctrica Introducción Resistividad de los conductores Densidad de corriente...

Índice general. 3. Resistencia eléctrica Introducción Resistividad de los conductores Densidad de corriente... Índice general 1. Principios fundamentales de la electricidad...1 1.1 Introducción...1 1.2 Principios fundamentales de la electricidad...1 1.2.1 Moléculas, átomos y electrones...2 1.3 Estructura del átomo...3

Más detalles

PRÁCTICA Nº 2: MANEJO DE INSTRUMENTOS PARA DC

PRÁCTICA Nº 2: MANEJO DE INSTRUMENTOS PARA DC PRÁCTICA Nº 2: MANEJO DE INSTRUMENTOS PARA DC Se inician las prácticas de laboratorio con dos sesiones dedicadas al análisis de algunos circuitos DC con un doble propósito: comprobar algunos de los circuitos

Más detalles

Experimento 5: Transistores BJT como interruptores: Multivibradores

Experimento 5: Transistores BJT como interruptores: Multivibradores Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Profesores: Ing. Sergio Morales, Ing. Pablo Alvarado, Ing. Eduardo Interiano Laboratorio de Elementos Activos II Semestre 2006 I Experimento

Más detalles

FUENTE DE ALIMENTACION DE ONDA COMPLETA

FUENTE DE ALIMENTACION DE ONDA COMPLETA FUENTE DE ALIMENTACION DE ONDA COMPLETA I. OBJETIVOS Definición de una fuente de baja tensión. Análisis de tensión alterna y continúa en dicha fuente. Partes básicas de una fuente de baja tensión. Contrastación

Más detalles

Parcial_1_Curso.2012_2013. Nota:

Parcial_1_Curso.2012_2013. Nota: Parcial_1_Curso.2012_2013. 1. El valor medio de una señal ondulada (suma de una señal senoidal con amplitud A y una señal de componente continua de amplitud B) es: a. Siempre cero. b. A/ 2. c. A/2. d.

Más detalles

PRACTICA Nº 1: APLICACIONES DEL AMPLIFICADOR OPERACIONAL

PRACTICA Nº 1: APLICACIONES DEL AMPLIFICADOR OPERACIONAL PRACTICA Nº 1: APLICACIONES DEL AMPLIFICADOR OPERACIONAL El objetivo de esta práctica es la medida en el laboratorio de distintos circuitos con el amplificador operacional 741. Analizaremos aplicaciones

Más detalles

Índice analítico Capítulo 1 Conceptos y análisis de circuitos básicos en corriente alterna Resistencia puramente óhmica

Índice analítico Capítulo 1 Conceptos y análisis de circuitos básicos en corriente alterna Resistencia puramente óhmica Índice analítico Capítulo 1 Conceptos y análisis de circuitos básicos en corriente alterna... 1 1.1 Resistencia puramente óhmica... 1 1.2 La bobina en corriente alterna. Reactancia inductiva (XL)... 1

Más detalles

DIODOS Y TRANSISTORES.

DIODOS Y TRANSISTORES. INSTITUTO TECNOLÓGICO DE MORELIA Práctica. 1.0.0. DIODOS Y TRANSISTORES. Caracterización de el diodo. Cliente: Ingeniería Electrónica. Autor: Ing. Miguel.Angel Mendoza Mendoza. 26 de Agosto del 2015 Practica:

Más detalles

Boletín de problemas de DIODOS

Boletín de problemas de DIODOS Boletín de problemas de DIODOS Nota: Todos los circuitos siguientes han sido simulados en el entorno Micro-cap 10.0.9.1 Evaluation Version. 1.- Calcular el valor de la corriente y tensión del diodo rectificador

Más detalles

PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II

PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional (op-amp), en particular de tres de sus montajes típicos que

Más detalles

Práctica 2: Amplificador operacional I

Práctica 2: Amplificador operacional I Práctica 2: Amplificador operacional I 1. Introducción. En esta práctica se estudian varios circuitos típicos de aplicación de los amplificadores operacionales, caracterizados por utilizar realimentación

Más detalles

AVERÍAS DE UNA FUENTE DE ALIMENTACIÓN LINEAL

AVERÍAS DE UNA FUENTE DE ALIMENTACIÓN LINEAL AVERÍAS DE UNA FUENTE DE ALIMENTACIÓN LINEAL Tensión de red baja (V1) Tensión de red alta (V1) Cable de red en circuito abierto Fusible de entrada o c.a. en circuito abierto Interruptor en circuito abierto

Más detalles

Medida de la característica estática de un diodo

Medida de la característica estática de un diodo Práctica 4 Medida de la característica estática de un diodo Índice General 4.1. Objetivos................................ 39 4.2. Introducción teórica.......................... 40 4.3. Medida de la Característica

Más detalles

REPÚBLICA BOLIVARIANA DE VENEZUELA 1 UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO LUIS CABALLERO MEJÍAS

REPÚBLICA BOLIVARIANA DE VENEZUELA 1 UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO LUIS CABALLERO MEJÍAS EPÚBLICA BOLIVAIANA E VENEZUELA 1 1.-Para cada uno de los siguientes circuitos determine la característica de transferencia (v o vs. v s ). Indique todas las pendientes y voltajes de interés. Escoja el

Más detalles

PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR

PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional, en particular de tres de sus

Más detalles

Práctica Nº 4 - Aplicaciones del Amplificador Operacional con realimentación

Práctica Nº 4 - Aplicaciones del Amplificador Operacional con realimentación Práctica Nº 4 - Aplicaciones del Amplificador Operacional con realimentación Objetivos - Estudiar el AO en configuraciones de amplificador inversor, amplificador no inversor e integrador. - Comparar los

Más detalles

PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II

PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional, en particular de tres de sus montajes típicos que son como

Más detalles

A.1. El diodo. - pieza básica de la electrónica: unión de un semiconductor de tipo p y otro de tipo n es un elemento no lineal

A.1. El diodo. - pieza básica de la electrónica: unión de un semiconductor de tipo p y otro de tipo n es un elemento no lineal A.1.1. Introducción A.1. El diodo - pieza básica de la electrónica: unión de un semiconductor de tipo p y otro de tipo n es un elemento no lineal A.1.2. Caracterización del diodo - al unirse la zona n

Más detalles

FUENTES DE ALIMENTACION

FUENTES DE ALIMENTACION Electrónica y Dispositivos FUENTES DE AIMENTACION a generación y distribución de la energía eléctrica, se realiza utilizando corriente alterna Mientras que la mayoría de los circuitos y dispositivos electrónicos

Más detalles

Laboratorio 4: Circuito de control de potencia con Triac

Laboratorio 4: Circuito de control de potencia con Triac Electrónica y Automatización 05 Laboratorio 4: Circuito de control de potencia con Triac En este laboratorio se analizará un circuito capaz de excitar un Triac mediante pulsos de ancho variable sincronizados

Más detalles

Práctica 4 Detector de ventana

Práctica 4 Detector de ventana Práctica 4 Detector de ventana Objetivo de la práctica Analizar el comportamiento de un detector de ventana Al terminar esta práctica, el discente será capaz de: Comprender el funcionamiento de un circuito

Más detalles

Facultad de Ingeniería. Escuela de Electrónica. Asignatura Electrónica Industrial. Tema: Circuito cicloconvertidor. GUÍA 8 Pág. Pág. 1 I. OBJETIVOS.

Facultad de Ingeniería. Escuela de Electrónica. Asignatura Electrónica Industrial. Tema: Circuito cicloconvertidor. GUÍA 8 Pág. Pág. 1 I. OBJETIVOS. Tema: Circuito cicloconvertidor. Facultad de Ingeniería. Escuela de Electrónica. Asignatura Electrónica Industrial. I. OBJETIVOS. Implementar diferentes circuitos de inversores utilizando SCR S de potencia.

Más detalles

EL AMPLIFICADOR CON BJT

EL AMPLIFICADOR CON BJT 1 Facultad: Estudios Tecnologicos. Escuela: Electrónica. Asignatura: Electronica Analogica Discresta. EL AMPLIFICADOR CON BJT Objetivos específicos Determinar la ganancia de tensión, corriente y potencia

Más detalles

Experimento 5: Transistores BJT como interruptores

Experimento 5: Transistores BJT como interruptores I Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Profesores: Dr.-Ing. Pablo Alvarado M., Dipl.-Ing. Eduardo Interiano S. Laboratorio de Elementos Activos I Semestre 2005 Objectivo

Más detalles

Formato para prácticas de laboratorio

Formato para prácticas de laboratorio Fecha de efectividad: Febrero de 2011 Formato para prácticas de laboratorio CARRERA Ingeniero en Computación PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE 2003-1 5039

Más detalles

Fuentes de alimentación. Lineales

Fuentes de alimentación. Lineales Fuentes de alimentación Lineales Regulador integrado 7805 Diagrama en bloques Mediciones Diagrama en bloques Fuente de alimentación lineal Fuente no regulada ni estabilizada Fuente regulada y estabilizada

Más detalles

PRINCIPIOS FUNDAMENTALES DE ELECTRÓNICA 2º BAHC.

PRINCIPIOS FUNDAMENTALES DE ELECTRÓNICA 2º BAHC. PRINCIPIOS FUNDAMENTALES DE ELECTRÓNICA 2º BAHC. ÍNDICE 16.- PRINCIPIOS FUNDAMENTALES DE LA ELECTRÓNICA (2º BACHILLERATO) 1 16.1.- OBJETIVOS 1 16.2.- CONTENIDOS Y TEMPORALIZACIÓN 1 16.3.- CRITERIOS DE

Más detalles

GANANCIA EN CIRCUITOS AMPLIFICADORES. LAURA MAYERLY ÁLVAREZ JIMÉNEZ ( ) MARÍA ALEJANDRA MEDINA OSPINA ( ) RESUMEN

GANANCIA EN CIRCUITOS AMPLIFICADORES. LAURA MAYERLY ÁLVAREZ JIMÉNEZ ( ) MARÍA ALEJANDRA MEDINA OSPINA ( ) RESUMEN GANANCIA EN CIRCUITOS AMPLIFICADORES. LAURA MAYERLY ÁLVAREZ JIMÉNEZ (20112007038) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN Observar la amplificación del transistor mediante un análisis y diseño

Más detalles

Laboratorio 1. Circuitos en serie y en paralelo en corriente alterna

Laboratorio 1. Circuitos en serie y en paralelo en corriente alterna Laboratorio 1. Circuitos en serie y en paralelo en corriente alterna Objetivos: 1. Comprobar experimentalmente la validez de los cálculos teóricos, por medio del análisis de un circuito RL en serie y de

Más detalles

Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos:

Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos: Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia Fecha: 20-12-2011 Nombre y apellidos: Duración: 2h DNI: Elegir la opción correcta

Más detalles