Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 9 Eje temático: F. E. y M.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 9 Eje temático: F. E. y M."

Transcripción

1 Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 9 Eje temático: F. E. y M. Contenido: Análisis de las características de los cuerpos que se generan al girar sobre un eje, un triángulo rectángulo, un semicírculo y un rectángulo. Construcción de desarrollos planos de conos y cilindros rectos. Intenciones didácticas: Que los alumnos identifiquen características de los cuerpos de revolución. Consigna: Organizados en equipos, realicen lo siguiente: a) Recorten en cartulina las siguientes figuras geométricas. 6 cm 6 cm 4 cm 4 cm 3 cm b) Peguen cada figura en un popote como se indica y giren lo más rápido que puedan.

2 c) Los cuerpos que se generan de la manera anterior reciben el nombre de sólidos de revolución porque se obtienen al hacer girar una figura geométrica alrededor de un eje. Dibujen los sólidos de revolución que obtuvieron y anoten el nombre de cada uno. d) Analicen los cuerpos que se generan y completen la siguiente tabla: Cuerpo formado por el rectángulo triángulo semicírculo Número de caras curvas Número de caras planas Número total de caras e) El lado de la figura que genera el cuerpo geométrico recibe el nombre de generatriz. Completa la siguiente tabla anotando las medidas que se piden, algunas casillas no podrán llenarse. Cuerpo formado por el rectángulo triángulo semicírculo Altura Radio Generatriz Consideraciones previas: Para trabajar este desafío se requiere que los estudiantes tengan sus instrumentos geométricos, cartulina, tijeras, pegamento y tres popotes. Al realizar los giros con las figuras geométricas indicadas, se espera que los estudiantes concluyan que se genera un cilindro, un cono y una esfera. Dibujarlos no es sencillo pues se trata de representar en un plano un cuerpo de tres dimensiones, no espere que todos los alumnos lo hagan de manera óptima.

3 Con respecto a las características indicas del inciso d) será muy interesante observar lo que entienden los alumnos por caras planas y caras curvas, un error común es considerar que el círculo es una cara curva porque tiene lados curvos. Se espera que los alumnos identifiquen dos caras planas en el cilindro (bases circulares) y una cara curva lateral (un rectángulo). Para la pirámide observarán que tiene una cara curva (la base) y una cara curva lateral (un sector circular). Mientas que la esfera está formada por una sola cara curva. Cúspide Generatriz Altura Base Cara plana (base) Cara curva También es importante identifiquen las dimensiones de las figuras que se genera, esto lo harán al completar la tabla del inciso e). En la puesta en común ponga especial énfasis en que los alumnos identifiquen que en el caso del cilindro, la generatriz y la altura coinciden, no así en el caso del cono en la que la altura siempre es menor que la generatriz. Para seguir explorando la manera de generar sólidos de revolución puede plantear a los alumnos: Qué cuerpo geométrico se genera al trasladar un círculo de un plano a otro paralelo? Podría generarse un cono usando, en lugar de un triángulo rectángulo, un triángulo isósceles?, Argumenta tu respuesta. Podría generarse un cilindro colocando el popote en otra parte del rectángulo en lugar de uno de sus lados? Argumenta tu respuesta Qué cuerpo se genera si se hace girar un alambre con la siguiente forma?

4 Cuánto debe medir la parte inclinada del alambre si se desea que el cuerpo generado tenga un radio de 3 cm y una altura de 4 cm? Observaciones posteriores: 1. Cuáles fueron los aspectos más exitosos de la sesión? 2. Cuáles cambios considera que deben hacerse para mejorar el plan de clase? 3. Por favor, califique el plan de clase con respecto a su claridad y facilidad de uso para usted. Muy útil Útil Uso limitado Pobre

5 Plan de clase (2/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 9 Eje temático: F. E. y M. Contenido: Análisis de las características de los cuerpos que se generan al girar sobre un eje, un triángulo rectángulo, un semicírculo y un rectángulo. Construcción de desarrollos planos de conos y cilindros rectos. Intenciones didácticas: Que los alumnos construyan cilindros a partir del trazo de su desarrollo plano. Consigna: Organizados en equipos, realicen lo siguiente: a) Entre todos discutan la manera en que pueden trazar un molde para construir un lapicero cilíndrico con las siguientes medidas. 9 cm 8 cm b) Cada uno trace el molde para su lapicero en cartulina o cartón grueso y decórenlo a su gusto. Consideraciones previas: Para trabajar este desafío se requiere que los estudiantes tengan sus instrumentos geométricos, cartulina, tijeras y pegamento. El principal propósito de esta actividad es que los alumnos descubran la manera de trazar moldes o desarrollos planos para construir un cilindro. En este caso se trata de un cilindro en el que una de sus bases quedará sin tapa. La actividad requiere que los estudiantes sepan trazar rectángulos y círculos. La cara lateral del cilindro corresponde a un rectángulo, se espera que los estudiantes no ten que la altura de este rectángulo es la altura del cilindro que se desea construir. La determinación de la base del rectángulo involucra que los alumnos:

6 Observen que la base del rectángulo debe embonar perfectamente con el círculo que es la base del cilindro, por lo tanto su medida es la medida del perímetro del círculo que es la base. Sepan que el perímetro del círculo se calcula con la fórmula. Si no recuerdan esta fórmula y se la preguntan puede apoyarlos proporcionándosela. Puede seguir profundizando en el tema planteando: El desarrollo plano que hicieron solo requirió un círculo, si se necesitaran las dos bases cómo quedaría el desarrollo plano? Si les dijeran que las medidas del rectángulo que forma la cara lateral son las siguientes: 5 cm 7 cm El desarrollo plano corresponde al cilindro dibujado? Si tienes dudas, cálcalo y trata de armar el cilindro.

7 Es probable que en este último problema los estudiantes crean, erróneamente, que el cilindro no quedará recto sino inclinado. Para que salgan de su error invítelos a que calquen el molde para que observen que sí se construye el cilindro recto. Observaciones posteriores: 1. Cuáles fueron los aspectos más exitosos de la sesión? 2. Cuáles cambios considera que deben hacerse para mejorar el plan de clase? 3. Por favor, califique el plan de clase con respecto a su claridad y facilidad de uso para usted. Muy útil Útil Uso limitado Pobre

8 Plan de clase (3/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 9 Eje temático: F. E. y M. Contenido: Análisis de las características de los cuerpos que se generan al girar sobre un eje, un triángulo rectángulo, un semicírculo y un rectángulo. Construcción de desarrollos planos de conos y cilindros rectos. Intenciones didácticas: Que los alumnos construyan cilindros a partir del trazo de su desarrollo plano. Consigna 1: Organizados en equipos, realicen lo siguiente: a) Consigan un cono de papel de los que se usan para tomar agua. Anoten las medidas del cono. diámetro = generatriz = altura = b) Corten el cono por la generatriz y extiendan la figura que resulta. Recuerden que esa figura se llama sector circular. Utilicen la herramienta que consideren necesaria para medir lo que se pide y anoten las medidas. Medida del arco que abarca el ángulo central = Ángulo central = Radio del sector circular =

9 Analicen las medidas que anotaron en los dos incisos anteriores y respondan: Cuál medida del sector circular corresponde a la generatriz del cono? Si conocen el radio de la base y la altura del cono, qué teorema pueden aplicar para calcular la generatriz? Cuál medida del sector circular corresponde al perímetro del círculo que forma la base del cono? Si conocen la medida del arco de un sector circular, cómo calcular la medida del ángulo central? Consigna 2: Trabajen en equipo. Discutan la manera en que pueden trazar un molde o desarrollo plano para construir un cono con las medidas que se muestran a continuación. 5 cm 9 cm Cada uno trace en cartulina el desarrollo plano y construya el cono pedido. Consideraciones previas. Para trabajar este desafío se requiere que los estudiantes tengan sus instrumentos geométricos, cartulina, tijeras, pegamento y un cono de papel para tomar agua. Determinar las medidas del desarrollo plano de un cono es una tarea compleja. La Consigna 1 tiene el propósito de que los alumnos empiecen a relacionar las medidas del cono con las del desarrollo plano. Algunas de estas medidas aparecen directamente en ambos y otras están presentes de manera implícita.

10 Para trazar el sector circular que forma la cara lateral del cono se requieren dos datos: radio del sector circular y medida del ángulo central. El radio del sector circular mide lo mismo que la generatriz del cono. Si se dan las medidas de la altura y el radio de la base, la generatriz se puede calcular aplicando el teorema de Pitágoras. generatriz (hipotenusa) altura (cateto) radio (cateto) Por ejemplo, si el radio mide 3 cm y la altura mide 10 cm, se tiene que la medida aproximada de la generatriz es = que es, aproximadamente, 10.4 cm. Para el ángulo central del sector circular se puede razonar de la siguiente manera: El perímetro del círculo de la base debe medir lo mismo que el arco del sector circular.

11 El perímetro del círculo de radio 3cm que es la base es, aproximadamente, cm. Esto implica que el arco que se requiere del sector circular es cm. Si se trazara el círculo completo de radio 10.4 cm, el perímetro sería, aproximadamente, 32.7 cm. Entonces se establece la proporción: Para el ángulo de 360º se tienen 32.7 cm De cuánto será el ángulo si solo se quiere un arco de cm? Haciendo cuentas se obtiene, aproximadamente, 207.7º. Observaciones posteriores: 1. Cuáles fueron los aspectos más exitosos de la sesión? 2. Cuáles cambios considera que deben hacerse para mejorar el plan de clase? 3. Por favor, califique el plan de clase con respecto a su claridad y facilidad de uso para usted. Muy útil Útil Uso limitado Pobre

Plan de clase (1/2) Escuela: Fecha: Profesor: (a):

Plan de clase (1/2) Escuela: Fecha: Profesor: (a): Plan de clase (1/2) Escuela: Fecha: Profesor: (a): Curso: Matemáticas 9 Eje temático: FE y M Contenido: 9.5.2 Análisis de las secciones que se obtienen al realizar cortes a un cilindro o a un cono recto.

Más detalles

Plan de clase (1/2) Escuela: Fecha: Profesor (a):

Plan de clase (1/2) Escuela: Fecha: Profesor (a): Plan de clase (1/2) Escuela: Fecha: Profesor (a): Curso: Matemáticas 7 Eje temático: FE y M Contenido: 7.5.5 Uso de las fórmulas para calcular el perímetro y el área del círculo en la resolución de problemas.

Más detalles

Plan de clase (1/3) Escuela: Fecha: Profr(a).:

Plan de clase (1/3) Escuela: Fecha: Profr(a).: Plan de clase (1/3) Escuela: Fecha: Profr(a).: Curso: Matemáticas 8 Eje temático: FEyM Contenido: 8.2.4 Justificación de las fórmulas para calcular el volumen de cubos, prismas y pirámides rectos. Intenciones

Más detalles

Casos especiales Plan de clase (1/4) Escuela: Fecha: Profesor (a):

Casos especiales Plan de clase (1/4) Escuela: Fecha: Profesor (a): Casos especiales Plan de clase (1/4) Escuela: Fecha: Profesor (a): Curso: Matemáticas 3 Secundaria Eje temático: FEyM Contenido: 9.1.2 Construcción de figuras congruentes o semejantes (triángulos, cuadrados

Más detalles

Para el carpintero Plan de clase (1/2) Escuela: Fecha: Profesor (a):

Para el carpintero Plan de clase (1/2) Escuela: Fecha: Profesor (a): Para el carpintero Plan de clase (1/2) Escuela: Fecha: Profesor (a): Curso: Matemáticas 1 Secundaria Eje temático: FEyM Contenido: 7.1.6 Trazo de triángulos y cuadriláteros mediante el uso del juego de

Más detalles

Cuadrados y círculos Plan de clase (1/5) Escuela: Fecha: Profesor (a):

Cuadrados y círculos Plan de clase (1/5) Escuela: Fecha: Profesor (a): Cuadrados y círculos Plan de clase (1/5) Escuela: Fecha: Profesor (a): Curso: Matemáticas 2 Secundaria Eje temático: FE y M Contenido: 8.1.5 Resolución de problemas que impliquen el cálculo de áreas de

Más detalles

Plan de clase (1/2) Escuela: Fecha: Profesor (a):

Plan de clase (1/2) Escuela: Fecha: Profesor (a): Plan de clase (1/2) Escuela: Fecha: Profesor (a): Curso: Matemáticas 8 Eje temático: F E y M Contenido: 8.5.3 Construcción de figuras simétricas respecto de un eje, análisis y explicitación de las propiedades

Más detalles

Triángulos que se forman Plan de clase (1/3) Escuela: Fecha: Profr. (a):

Triángulos que se forman Plan de clase (1/3) Escuela: Fecha: Profr. (a): Triángulos que se forman Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 2 Secundaria Eje temático: FEyM Contenido: 8.3.3 Formulación de una regla que permita calcular la suma de los

Más detalles

ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS REGULARES ESFERA

ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS REGULARES ESFERA ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS POLIEDROS REGULARES Tetraedro ( 4 triángulos equiláteros) Hexaedro o cubo( 6 cuadrados) Octaedro( 8 triángulos equiláteros) Dodecaedro ( 12

Más detalles

Escalas con enteros Plan de clase (1/2) Escuela: Fecha: Profr. (a):

Escalas con enteros Plan de clase (1/2) Escuela: Fecha: Profr. (a): Escalas con enteros Plan de clase (1/2) Escuela: Fecha: Profr. (a): Curso: Matemáticas 7 secundaria Eje temático: MI Contenido: 7.2.7 Identificación y resolución de situaciones de proporcionalidad directa

Más detalles

No importa la letra Plan de clase (1/3) Escuela: Fecha: Prof. (a): Contenido: Explicitación y uso del Teorema de Pitágoras.

No importa la letra Plan de clase (1/3) Escuela: Fecha: Prof. (a): Contenido: Explicitación y uso del Teorema de Pitágoras. No importa la letra Plan de clase (1/3) Escuela: Fecha: Prof. (a): Curso: Matemáticas 3 Secundaria Eje temático: FEM Contenido: 9.2.5 Explicitación y uso del Teorema de Pitágoras. Intención didáctica:

Más detalles

Qué característica tienen? Plan de clase (1/3) Escuela: Fecha: Profr. (a):

Qué característica tienen? Plan de clase (1/3) Escuela: Fecha: Profr. (a): Qué característica tienen? Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 2 Secundaria Eje temático: FEyM Contenido: 8.3.4 Análisis y explicitación de las características de los polígonos

Más detalles

CUERPOS GEOMÉTRICOS. 2º E.S.O. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS

CUERPOS GEOMÉTRICOS. 2º E.S.O. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS CUERPOS GEOMÉTRICOS. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO 2º E.S.O. DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS Determinación de puntos: DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS Determinación de una recta:

Más detalles

MATEMÁTICAS (GEOMETRÍA)

MATEMÁTICAS (GEOMETRÍA) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA) GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 8 / 07 / 15 Guía Didáctica 3-2 Desempeños: * Reconoce y clasifica

Más detalles

Plan de Clase (1/3) Caja Largo Ancho Alto Volumen A 3 dm 2 dm 4 dm 24 dm 3 B 6 dm 2 dm 4 dm C 3 dm 6 dm 4 dm D 6 dm 4 dm 8 dm E 9 dm 6 dm 12 dm

Plan de Clase (1/3) Caja Largo Ancho Alto Volumen A 3 dm 2 dm 4 dm 24 dm 3 B 6 dm 2 dm 4 dm C 3 dm 6 dm 4 dm D 6 dm 4 dm 8 dm E 9 dm 6 dm 12 dm Plan de Clase (1/3) Escuela: Fecha: Profesor (a): Curso: Matemáticas 7 Eje temático: MI Contenido: 7.5.6 Resolución de problemas de proporcionalidad múltiple. Intenciones didácticas: Que los alumnos Identifiquen

Más detalles

MATEMÁTICAS 2º DE ESO LOE

MATEMÁTICAS 2º DE ESO LOE MATEMÁTICAS º DE ESO LOE TEMA XII: POLIEDROS Y CUERPOS REDONDOS Poliedros: o Elementos. o Tipos. Poliedros regulares. Cubos. Prismas: elementos, clases. Pirámides: elementos, clases. Áreas laterales y

Más detalles

CUERPOS DE REVOLUCIÓN

CUERPOS DE REVOLUCIÓN PROPÓSITOS: Identificar los cuerpos redondos o de revolución. Resolver problemas, donde se aplique el volumen y área de cuerpos de revolución. CUERPOS DE REVOLUCIÓN Existen cuerpos geométricos que no tienen

Más detalles

PLAN DE CLASE (1/4) Escuela: Fecha: Profesor (a):

PLAN DE CLASE (1/4) Escuela: Fecha: Profesor (a): PLAN DE CLASE (1/4) Escuela: Fecha: Profesor (a): Curso: Matemáticas 8 Eje temático: F E y M Contenido: 8.5.4 Cálculo de la medida de ángulos inscritos y centrales, así como de arcos, el área de sectores

Más detalles

Con las letras se hace lo mismo Plan de clase (1/4) Escuela: Fecha: Profr(a).

Con las letras se hace lo mismo Plan de clase (1/4) Escuela: Fecha: Profr(a). Con las letras se hace lo mismo Plan de clase (1/4) Escuela: Fecha: Profr(a). Curso: Matemáticas 2 secundaria Eje temático: SN y PA Contenido: 8.2.2 Resolución de problemas que impliquen adición y sustracción

Más detalles

Cuáles son las condiciones? Plan de clase (1/6) Escuela: Fecha: Profr. (a):

Cuáles son las condiciones? Plan de clase (1/6) Escuela: Fecha: Profr. (a): Cuáles son las condiciones? Plan de clase (1/6) Escuela: Fecha: Profr. (a): Curso: Matemáticas 3 secundaria Eje temático: FEyM Contenido: 9.1.3 Explicitación de los criterios de congruencia y semejanza

Más detalles

Qué movimiento hizo? Plan de clase (1/3) Escuela: Fecha: Profr. (a):

Qué movimiento hizo? Plan de clase (1/3) Escuela: Fecha: Profr. (a): Qué movimiento hizo? Plan de clase (1/3) Escuela: _ Fecha: Profr. (a): Curso: Matemáticas 3 Secundaria Eje temático: FEyM Contenido: 9.2.3 Construcción de diseños que combinan la simetría axial y central,

Más detalles

TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales

TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales TEMA 7 Las formas y las medidas que nos rodean 1. Introducción 1.1. Qué es la geometría? Es una rama de la matemática que se ocupa del estudio de las propiedades de las figuras geométricas en el plano

Más detalles

Cuánto aumenta? Plan de clase 1/4. Escuela: Fecha: Prof.(a):

Cuánto aumenta? Plan de clase 1/4. Escuela: Fecha: Prof.(a): Cuánto aumenta? Plan de clase 1/4 Escuela: Fecha: Prof.(a): Curso: Matemáticas 2 Secundaria Eje temático: FE y M Contenido: 8.2.5 Estimación y cálculo del volumen de cubos, prismas y pirámides rectos o

Más detalles

Ámbito científico tecnológico

Ámbito científico tecnológico Dirección Xeral de Educación, Formación Profesional e Innovación Educativa Educación secundaria para personas adultas Ámbito científico tecnológico Educación a distancia semipresencial Módulo Unidad didáctica

Más detalles

MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN

MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN Concepto de Poliedro Definiremos como poliedro a un cuerpo geométrico tridimensional que encierra un espacio limitado. La palabra proviene de

Más detalles

Dónde está la incógnita? Plan de clase (1/2) Escuela: Fecha: Profr. (a):

Dónde está la incógnita? Plan de clase (1/2) Escuela: Fecha: Profr. (a): Dónde está la incógnita? Plan de clase (1/2) Escuela: Fecha: Profr. (a): Curso: Matemáticas 1 secundaria Eje temático: FEyM Contenido: 7.3.5 Resolución de problemas que impliquen calcular el perímetro

Más detalles

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo

Más detalles

Plan de clase (1/3) a) Los siguientes triángulos son semejantes. Calcula la medida del lado que falta en cada uno, sin medir:

Plan de clase (1/3) a) Los siguientes triángulos son semejantes. Calcula la medida del lado que falta en cada uno, sin medir: Plan de clase (1/3) Escuela: Fecha: Prof. (a): Curso: Matemáticas 9 Eje temático: F. E. y M. Contenido: 9.3.3 Resolución de problemas geométricos mediante el teorema de Tales. Intención didáctica. Que

Más detalles

Móviles Plan de clase (1/3) Escuela: Fecha: Profesor (a):

Móviles Plan de clase (1/3) Escuela: Fecha: Profesor (a): Móviles Plan de clase (1/3) Escuela: Fecha: Profesor (a): Curso: Matemáticas 3 Secundaria Eje temático: MI Contenido: 9.1.5 Representación tabular y algebraica de relaciones de variación cuadrática, identificadas

Más detalles

FICHA TEMA 9: CUERPOS GEOMETRICOS NOMBRE Y APELLIDOS: Ejercicio nº 1.-Escribe el nombre de cada uno de los elementos de este poliedro:

FICHA TEMA 9: CUERPOS GEOMETRICOS NOMBRE Y APELLIDOS: Ejercicio nº 1.-Escribe el nombre de cada uno de los elementos de este poliedro: FICHA TEMA 9: CUERPOS GEOMETRICOS CURSO: 2 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº 2.- Cuáles de las siguientes figuras

Más detalles

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas.

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS CUERPOS GEOMÉTRICOS.- Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. Clasificamos, en el siguiente esquema, los cuerpos geométricos: POLIEDROS.-

Más detalles

Cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS PRISMAS PIRÁMIDES CILINDROS CONOS ESFERAS

Cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS PRISMAS PIRÁMIDES CILINDROS CONOS ESFERAS UNIDAD DIDÁCTICA CUERPOS GEOMÉTRICOS 1. CUERPOS GEOMÉTRICOS En nuestro entorno observamos continuamente objetos de diversas formas: pelotas, botes, cajas, pirámides, etc. Todos estos objetos son cuerpos

Más detalles

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA 1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1 GUÍ DE EJERCITCIÓN VNZD Cuerpos geométricos Programa Entrenamiento Desafío GUICEN02MT22-16V1 Matemática Una semiesfera tiene un área total de 4π cm 2. Si se corta por la mitad, de manera de formar dos

Más detalles

FIGURAS DEL ESPACIO. ÁREAS Y VOLÚMENES

FIGURAS DEL ESPACIO. ÁREAS Y VOLÚMENES POLIEDROS : Cuerpo sólido limitado por polígonos, llamados caras; en la que algunas de las caras confluyen en líneas rectas, llamadas aristas; y algunas de las aristas confluyen en puntos,llamados vértices.

Más detalles

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS SOLUCIONES MINIMOS º ESO TEMA 8 CUERPOS GEOMÉTRICOS Ejercicio nº 1.- Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº.- Cuáles de las siguientes figuras son poliedros? Por

Más detalles

De manteles largos Plan de clase (1/2) Escuela: Fecha: Profesor (a):

De manteles largos Plan de clase (1/2) Escuela: Fecha: Profesor (a): De manteles largos Plan de clase (1/2) Escuela: Fecha: Profesor (a): Curso: Matemáticas 1 Secundaria Eje temático: SNyPA Contenido: 7.1.5 Explicación del significado de fórmulas geométricas, al considerar

Más detalles

RECTAS, PLANOS EN EL ESPACIO.

RECTAS, PLANOS EN EL ESPACIO. COMUNICACIÓN MATEMÁTICA: Grafica rectas, planos y sólidos geométricos en el espacio RESOLUCIÓN DE PROBLEMAS Resuelve problemas geométricos que involucran rectas y planos en el espacio. Resuelve problemas

Más detalles

Qué tipo de variación? Plan de clase (1/3) Escuela: Fecha: Prof. (a):

Qué tipo de variación? Plan de clase (1/3) Escuela: Fecha: Prof. (a): Qué tipo de variación? Plan de clase (1/3) Escuela: Fecha: Prof. (a): Curso: Matemáticas 2 secundaria Eje temático: MI Contenido: 8.2.6 Identificación y resolución de situaciones de proporcionalidad inversa

Más detalles

Geometría del espacio

Geometría del espacio Áreas y volumenes de cuerpos geométricos Un poliedro es un cuerpo geométrico que está limitado por cuatro o más polígonos. Los elementos de un poliedro son: Caras del poliedro: son los polígonos que lo

Más detalles

Representación algebraica Plan de clase (1/8) Escuela: Fecha: Profr. (a):

Representación algebraica Plan de clase (1/8) Escuela: Fecha: Profr. (a): Representación algebraica Plan de clase (1/8) Escuela: Fecha: Profr. (a): Curso: Matemáticas 2 Secundaria Eje temático: SN y PA Contenido: 8.3.2 Resolución de problemas multiplicativos que impliquen el

Más detalles

Programa Entrenamiento MT-22

Programa Entrenamiento MT-22 Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8

Más detalles

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea

Más detalles

3. A partir de las características observadas en las figuras construidas, completar la tabla siguiente:

3. A partir de las características observadas en las figuras construidas, completar la tabla siguiente: Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 7 Eje temático: FE y M Contenido: 7.3.4 Construcción de polígonos regulares a partir de distintas informaciones (medida de un lado, del

Más detalles

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS.

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. Resumen AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO EN ÉSTE ARTÍCULO, SE ESTUDIAN LOS CUERPOS

Más detalles

CUERPOS EN EL ESPACIO

CUERPOS EN EL ESPACIO CUERPOS EN EL ESPACIO 1. Poliedros. 2. Fórmula de Euler. 3. Prismas. 4. Paralelepípedos. Ortoedros. 5. Pirámides. 6. Cuerpos de revolución. 6.1. Cilindros. 6.2. Conos. 6.3. Esferas. 6.4. Coordenadas geográficas.

Más detalles

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides.

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. a) b) c) Prisma es un poliedro que tiene por caras dos bases

Más detalles

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras.

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras. CLASIFICASION DE CUERPOS GEOMETRICOS 1 2 Cuerpos Geométrico s Ángulo diedro: es el ángulo formado por dos caras del poliedro. El ángulo formado por tres o más caras que concurren en un vértice, se denomina

Más detalles

14 CUERPOS GEOMÉTRICOS. VOLÚMENES

14 CUERPOS GEOMÉTRICOS. VOLÚMENES EJERCICIOS PARA ENTRENARSE Poliedros 14.33 Calcula la suma de los ángulos de las caras que concurren en un vértice de los poliedros regulares. Qué observas? TETRAEDO: En un vértice concurren tres triángulos

Más detalles

CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio.

CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio. CUERPOS GEOMÉTRICOS 07 Comprende que son los cuerpos geométricos e identifica las partes que los componen. En Presentación de Contenidos recuerdan qué son los polígonos para comprender cómo se forman los

Más detalles

Productos elevados Plan de clase (1/3) Escuela: Fecha: Profesor (a):

Productos elevados Plan de clase (1/3) Escuela: Fecha: Profesor (a): Productos elevados Plan de clase (1/) Escuela: Fecha: Profesor (a): Curso: Matemáticas Secundaria Eje temático: SN y PA Contenido: 8.1. Cálculo de productos y cocientes de potencias enteras positivas de

Más detalles

IES FONTEXERÍA MUROS. 14-II-2014 Nombre y apellidos:.

IES FONTEXERÍA MUROS. 14-II-2014 Nombre y apellidos:. IES FONTEXERÍA MUROS MATEMÁTICAS º E.S.O-A (Desdoble 1) 1º Examen (ª Evaluación) 14-II-014 Nombre y apellidos:. 1. Completa las siguientes definiciones: a) Un poliedro es un cuerpo geométrico tridimensional

Más detalles

OBJETIVO 1 CONOCER LOS POLIEDROS Y DIFERENCIAR LOS POLIEDROS REGULARES NOMBRE: CURSO: FECHA:

OBJETIVO 1 CONOCER LOS POLIEDROS Y DIFERENCIAR LOS POLIEDROS REGULARES NOMBRE: CURSO: FECHA: OJETIVO 1 CONOCER LOS POLIEDROS Y DIERENCIR LOS POLIEDROS REGULRES NOMRE: CURSO: ECH: CONCEPTO DE POLIEDRO Vértice Un poliedro es un cuerpo geométrico cuyas caras son polígonos. Los elementos del poliedro

Más detalles

SOLUCIONARIO Cuerpos redondos

SOLUCIONARIO Cuerpos redondos SOLUCIONARIO Cuerpos redondos SGUICEG07EM2-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Cuerpos redondos Ítem Alternativa 1 E 2 D A 4 C 5 C 6 D 7 B 8 D 9 B 10 D 11 B 12 C 1 B 14 B 15 A 16 C 17 A 18 E 19 D

Más detalles

EJERCICIOS de ÁREAS y VOLÚMENES 3º ESO

EJERCICIOS de ÁREAS y VOLÚMENES 3º ESO EJERCICIOS de ÁREAS y VOLÚMENES 3º ESO FICHA 1: Teorema de Pitágoras 1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, cuando proceda): a) Hallar

Más detalles

CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS)

CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede

Más detalles

Cálculos rápidos Plan de clase (1/4) Escuela: Fecha: Profr. (a):

Cálculos rápidos Plan de clase (1/4) Escuela: Fecha: Profr. (a): Cálculos rápidos Plan de clase (1/4) Escuela: Fecha: Profr. (a): Curso: Matemáticas 2 Secundaria Eje temático: MI Contenido: 8.1.6 Resolución de problemas diversos relacionados con el porcentaje, como

Más detalles

MYP (MIDDLE YEARS PROGRAMME)

MYP (MIDDLE YEARS PROGRAMME) MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa

Más detalles

IDEAS PREVIAS. 1. Planos paralelos. 2.Planos perpendiculares

IDEAS PREVIAS. 1. Planos paralelos. 2.Planos perpendiculares IDEAS PREVIAS 1. Planos paralelos..planos perpendiculares .Planos oblicuos. CUERPO GEOMÉTRICO Un Sólido o Cuerpo Geométrico es una figura geométrica de tres dimensiones (largo, ancho y alto), que ocupa

Más detalles

Uso no comercial 12.4 CUERPOS REDONDOS

Uso no comercial 12.4 CUERPOS REDONDOS 1.4 CUERPOS REDONDOS Designamos en general como cuerpos redondos el conjunto de puntos del espacio obtenido cuando una figura gira alrededor de una recta, de tal forma que cada punto de la figura conserva,

Más detalles

GEOMETRÍA. Convexos Llano (Plano) Cóncavo Giro. Consecutivos Adyacentes Diedro Complementario Suplementario

GEOMETRÍA. Convexos Llano (Plano) Cóncavo Giro. Consecutivos Adyacentes Diedro Complementario Suplementario GEOMETRÍA Angulo.- Es la abertura comprendida entre dos rectas que se encuentran en un punto. Estas rectas se llaman lados del ángulo, y el punto de encuentro se denomina vértice. Un ángulo suele designarse

Más detalles

CUERPOS. Poliedros: Aquellos cuerpos geométricos totalmente limitados por polígonos, como por ejemplo, el prisma, la pirámide; etc.

CUERPOS. Poliedros: Aquellos cuerpos geométricos totalmente limitados por polígonos, como por ejemplo, el prisma, la pirámide; etc. CUERPOS Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede calcular el volumen del mismo

Más detalles

Un poliedro es un cuerpo geométrico que tiene todas sus caras planas y formadas por polígonos.

Un poliedro es un cuerpo geométrico que tiene todas sus caras planas y formadas por polígonos. CUERPOS GEOMÉTRICOS Los cuerpos geométricos son figuras geométricas tridimensionales (tienen alto, ancho y largo) que ocupan un lugar en el espacio. 1. POLIEDROS. 1.1. DEFINICIÓN. Un poliedro es un cuerpo

Más detalles

INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS

INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS Sep. 18 de 2015 Señores Estudiantes grados Novenos El siguiente trabajo ya lo estamos realizando en clase, pero los datos que a continuación aparecen son refuerzo para terminar las figuras geométricas

Más detalles

En busca de resultados Plan de clase (1/4) Escuela: Fecha: Profesor (a):

En busca de resultados Plan de clase (1/4) Escuela: Fecha: Profesor (a): En busca de resultados Plan de clase (1/4) Escuela: Fecha: Profesor (a): Curso: Matemáticas 3 Secundaria Eje temático: SNyPA Contenido: 9.1.1 Resolución de problemas que impliquen el uso de ecuaciones

Más detalles

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p ilindro y tronco de cilindro 1. En el gráfico se muestra un cilindro recto de base circular, además, T es punto de contacto de la recta PT en la superficie cilíndrica. Si PT=15 y P=8, calcule la distancia

Más detalles

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos

Más detalles

Autor: 2º ciclo de E.P.

Autor: 2º ciclo de E.P. 1 Autor: 2º ciclo de E.P. Una línea recta es una línea que no tiene principio ni fin. Una semirrecta es una línea que tiene principio pero no tiene final. o Un punto divide a una recta en dos semirrectas.

Más detalles

Objetivos de aprendizaje. Introducción

Objetivos de aprendizaje. Introducción DESCUBRIENDO MEDIDAS A PARTIR DE LA FORMA Resolución de problemas relacionados con formas cónicas Objetivos de aprendizaje 1. Desarrollar procesos de solución de situaciones problema relacionadas con la

Más detalles

Plan de clase (1/3) Escuela: Fecha: Profr. (a):

Plan de clase (1/3) Escuela: Fecha: Profr. (a): Plan de clase (1/3) Intenciones didácticas: Que los alumnos obtengan un valor aproximado de π al establecer la razón entre Con base en esto justifiquen la fórmula para calcular el perímetro del círculo

Más detalles

Cómo se expresa? Plan de clase (1/2) Escuela: Fecha: Profesor (a):

Cómo se expresa? Plan de clase (1/2) Escuela: Fecha: Profesor (a): Cómo se expresa? Plan de clase (/) Escuela: Fecha: Profesor (a): Curso: Matemáticas secundaria Eje temático: SN PA Contenido: 8.. Resolución de problemas que impliquen adición sustracción de monomios.

Más detalles

EJERCICIOS DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO. 2ª PARTE

EJERCICIOS DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO. 2ª PARTE EJERCICIOS DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO. 2ª PARTE CURSO 2015/2016 NOMBRE: IES ALCARRIA BAJA. MONDÉJAR UNIDAD 5. LENGUAJE ALGEBRAICO 1º) Traduce a lenguaje algebraico los siguientes enunciados:

Más detalles

RX 3º SECUNDARIA 08 ECUACIONES CUADRÁTICAS: FACTORIZACIÓN

RX 3º SECUNDARIA 08 ECUACIONES CUADRÁTICAS: FACTORIZACIÓN RX 3º SECUNDARIA 08 ECUACIONES CUADRÁTICAS: FACTORIZACIÓN FACTORIZAR X 2 + BX = 0 1. En un bazar se montó un puesto de cojines bordados, típicos de Chiapas. En el puesto se ofrece una promoción para los

Más detalles

Aplica la regla Plan de clase (1/3) Escuela: Fecha: Profesor (a):

Aplica la regla Plan de clase (1/3) Escuela: Fecha: Profesor (a): Aplica la regla Plan de clase (1/3) Escuela: Fecha: Profesor (a): Curso: Matemáticas 7 Eje temático: SN y PA Contenido: 7.1.4 Construcción de sucesiones de números o de figuras a partir de una regla dada

Más detalles

COLEGIO CRISTIANA FERNÁNDEZ DE MERINO Trípoli No. 112, Col. Portales, México, D. F. Tel ,

COLEGIO CRISTIANA FERNÁNDEZ DE MERINO Trípoli No. 112, Col. Portales, México, D. F. Tel , COLEGIO CRISTIANA FERNÁNDEZ DE MERINO Trípoli No. 112, Col. Portales, México, D. F. Tel. 5604-3628, 5605-1509 MATEMATICAS TERCER GRADO SECCIÓN SECUNDARIA TRABAJO PARA REALIZAR EN CLASE CURSO 2015-2016

Más detalles

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de

Más detalles

ELEMENTOS DE GEOMETRÍA

ELEMENTOS DE GEOMETRÍA LONGITUDES Y ÁREAS. 1. Perímetro y área. 1.1. Medidas del rectángulo. 1.2. Medidas del cuadrado. 1.3. Medidas del rombo. 1.4. Medidas del romboide. 1.5. Medidas de un paralelogramo cualquiera. 1.6. Medidas

Más detalles

Elementos del cilindro

Elementos del cilindro Definición de cilindro Un cilindro es un cuerpo geométrico engendrado por un rectángulo que gira alrededor de uno de sus lados. Desarrollo del cilindro Elementos del cilindro Eje Es el lado fijo alrededor

Más detalles

Tema # 2 Objetivo 1. Análisis de las propiedades de la rotación y de la traslación de figuras. Actividad # 1

Tema # 2 Objetivo 1. Análisis de las propiedades de la rotación y de la traslación de figuras. Actividad # 1 Tema # 2 Objetivo 1. Análisis de las propiedades de la rotación y de la traslación de figuras. Actividad # 1 Intenciones didácticas: Que los alumnos comprendan que al trazar el simétrico de una figura,

Más detalles

b) El cuadrado de un número es igual a ese número menos ¼. Qué número es?

b) El cuadrado de un número es igual a ese número menos ¼. Qué número es? Plan de clase (1/3) Escuela: Fecha: Profr(a).: Curso: Matemáticas 9 Eje temático: SNyPA Contenido: 9.3.1 Resolución de problemas que implican el uso de ecuaciones cuadráticas. Aplicación de la fórmula

Más detalles

Geometría. Cuerpos Geométricos. Trabajo

Geometría. Cuerpos Geométricos. Trabajo Geometría Cuerpos Geométricos Trabajo CUERPOS GEOMÉTRICOS 1. Clasifique los cuerpos geométricos. Dos grupos de sólidos geométricos del espacio presentan especial interés: 1.1. Poliedros: Aquellos cuerpos

Más detalles

ELEMENTOS DE UN POLIEDRO. PRINCIPALES POLIEDROS REGULARES

ELEMENTOS DE UN POLIEDRO. PRINCIPALES POLIEDROS REGULARES OBJETIVO 1 ELEMENTOS DE UN POLIEDRO. PRINCIPALES POLIEDROS REGULARES NOMBRE: CURSO: ECHA: CONCEPTO DE POLIEDRO Vértice Arista Cara Un poliedro es un cuerpo geométrico cuyas caras son polígonos. Los elementos

Más detalles

Caminos rectos Plan de clase (1/3) Escuela: Fecha: Profesor (a):

Caminos rectos Plan de clase (1/3) Escuela: Fecha: Profesor (a): Caminos rectos Plan de clase (/3) Escuela: Fecha: Profesor (a): Curso: Matemáticas Secundaria Eje temático: SN y PA Contenido: 7..2 Representación de números fraccionarios y decimales en la recta numérica

Más detalles

MATEMÁTICAS Y SU DIDÁCTICA

MATEMÁTICAS Y SU DIDÁCTICA MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se

Más detalles

11Soluciones a los ejercicios y problemas

11Soluciones a los ejercicios y problemas Soluciones a los ejercicios y problemas PÁGINA 9 Pág. P R A C T I C A D e s a r r o l l o s y á r e a s Dibuja el desarrollo plano y calcula el área total de los siguientes cuerpos geométricos: a) b) cm

Más detalles

Figura plana Área Ejemplo Cuadrado. Área =

Figura plana Área Ejemplo Cuadrado. Área = ersión: Septiembre 01 Áreas y volúmenes Por Sandra Elvia Pérez Márquez Áreas de figuras planas Las aplicaciones de las figuras planas requieren, por lo general, conocer (o calcular) dos características

Más detalles

Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos

Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos Cierto, mires por donde mires no podrás dejar de ver cuerpos geométricos de todo tipo. Por eso es importante

Más detalles

La circunferencia es una curva plana y cerrada, cuyos puntos equidistan de otro punto interior llamado centro.

La circunferencia es una curva plana y cerrada, cuyos puntos equidistan de otro punto interior llamado centro. Geometría y Trigonometría Circunferencia 6. CIRCUNFERENCIA 6.1 Definición y notación de una circunferencia La circunferencia es una curva plana y cerrada, cuyos puntos equidistan de otro punto interior

Más detalles

CONOCER Y DIFERENCIAR LOS POLIEDROS REGULARES

CONOCER Y DIFERENCIAR LOS POLIEDROS REGULARES OJETIVO 1 CONOCER Y DIERENCIR LOS POLIEDROS REGULRES NOMRE: CURSO: ECH: CONCEPTO DE POLIEDRO Vértice Un poliedro es un cuerpo geométrico cuyas caras son polígonos. Los elementos del poliedro son: Caras:

Más detalles

Cuerpos geométricos. Volúmenes

Cuerpos geométricos. Volúmenes 4 uerpos geométricos. Volúmenes. Poliedros Un poliedro es un cuerpo geométrico limitado por cuatro o más polígonos planos. Los elementos de un poliedro son: aras: son los polígonos que lo delimitan. ristas:

Más detalles

A 2 TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO TEOREMA DE PITÁGORAS:

A 2 TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO TEOREMA DE PITÁGORAS: TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS ELEMENTOS CLASIFICACIÓN TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO A b h A b a A perímetro apotema A r TEOREMA DE PITÁGORAS: a b c 1 POLÍGONOS

Más detalles

Guía 15 A. Exploremos sólidos. 1. Busquen con sus compañeros pitillos o palitos, greda, plastilina o gomitas y construyan los siguientes sólidos.

Guía 15 A. Exploremos sólidos. 1. Busquen con sus compañeros pitillos o palitos, greda, plastilina o gomitas y construyan los siguientes sólidos. Guía 15 A Construyamos algunos sólidos Exploremos sólidos Trabaja en grupo 1. Busquen con sus compañeros pitillos o palitos, greda, plastilina o gomitas y construyan los siguientes sólidos. A B C D E F

Más detalles

Cuál es la solución? Plan de clase (1/4) Escuela: Fecha: Profr.(a): Curso: Matemáticas 3 Secundaria Eje temático: SNyPA

Cuál es la solución? Plan de clase (1/4) Escuela: Fecha: Profr.(a): Curso: Matemáticas 3 Secundaria Eje temático: SNyPA Cuál es la solución? Plan de clase (1/4) Escuela: Fecha: Profr.(a): Curso: Matemáticas 3 Secundaria Eje temático: SNyPA Contenido: 9.2.1 Uso de ecuaciones cuadráticas para modelar situaciones y resolverlas

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGIN 212 Recorta en cartulina cada una de estas figuras y sujétalas en palillos de dientes. Sosteniendo el palillo entre los dedos y soplando en el lateral, qué ves en cada caso? Triángulo ono

Más detalles

Trabajo de Investigación Cuerpos Geométricos

Trabajo de Investigación Cuerpos Geométricos Saint George s College Área de Matemáticas y sus Aplicaciones Tercera Unidad Trabajo de Investigación Cuerpos Geométricos Integrantes: -Stefan Jercic -Ignacio Larrain -Cristian Majluf Curso: 10 E Profesora:

Más detalles

PERÍMETROS ÁREAS - VOLÚMENES

PERÍMETROS ÁREAS - VOLÚMENES ERÍMETROS ÁREAS - VOLÚMENES 1.- OLÍGONOS olígono: arte del plano limitada por una línea poligonal cerrada. Lado: Segmento que une dos vértices consecutivos. En un polígono el número de lados y el número

Más detalles

MATERIAL PARA LOS ESTUDIANTES ACTIVIDAD 1: REDES PARA ARMAR PRISMAS RECTOS

MATERIAL PARA LOS ESTUDIANTES ACTIVIDAD 1: REDES PARA ARMAR PRISMAS RECTOS MATERIAL PARA LOS ESTUDIANTES ATIVIDAD 1: REDES PARA ARMAR PRISMAS RETOS A Una red es una figura plana con la cual se puede armar un cuerpo geométrico determinado. Por ejemplo, la figura de la derecha

Más detalles

Unidad 8 Áreas y Volúmenes

Unidad 8 Áreas y Volúmenes Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros

Más detalles

EXAMEN A: Ejercicio nº 1.- Página 1 de 25 Indica el valor de los ángulos señalados en cada figura: Ejercicio nº 2.- La siguiente figura es una esfera de centro C y radio 3 unidades. Cómo definirías dicha

Más detalles

12 CUERPOS DE REVOLUCIÓN

12 CUERPOS DE REVOLUCIÓN 1 CUERPOS DE REVOLUCIÓN EJERCICIOS 1 Cuáles de los siguientes objetos tienen forma de cilindro? a) Tubo de escape. b) CD. c) Plátano. d) Queso. e) Tiza. f) Barril. a), d) y e). Un cilindro tiene 5 cm de

Más detalles