VELOCIDAD Y ACELERACION. RECTA TANGENTE.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "VELOCIDAD Y ACELERACION. RECTA TANGENTE."

Transcripción

1 VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t) = 3 cos t i + 4 sen t j. (a) Las componentes del vector de posición son x(t) = 1, y(t) = 4t 2, z(t) = 3t 2. Como 4z + 3y = 0, la trayectoria describe la recta 4z + 3y = 0 en el plano x = 1. Los vectores velocidad y aceleración son: v (t) = (0, 8t, 6t); a (t) = (0, 8, 6). Resulta que a (t) = 10, de modo que el movimiento es rectilíneo y uniformemente acelerado. (b) En este caso, x(t) = 3 cos t, y(t) = 4 sen t, de modo que se verifica la ecuación (x/3) 2 + (y/4) 2 = 1, la cual representa una elipse en el plano XY. Los vectores velocidad y aceleración son: v (t) = ( 3 sen t, 4 cos t); a (t) = ( 3 cos t, 4 sen t). Como a (t) = r (t), se trata de una trayectoria elíptica con aceleración centrípeta. 4. Se considera la curva dada por su vector de posición r (t) = (t sen t) i +(1 cos t) j + 4 sen(t/2) k, y el punto P = ovr(π). (a) Determinar los vectores velocidad y aceleración en el punto P. (b) Expresar T y N en función de i, j, k y a (π) como combinación lineal de T y N. (c) Determinar la curvatura en P. (a) Los vectores velocidad y aceleración vienen dados por v (t) = r (t) = (1 cos t, sen t, 2 cos(t/2)) a (t) = r (t) = (sen t, cos t, sen(t/2)). Al sustituir en el punto P, obtenemos v (π) = (2, 0, 0) y a (π) = (0, 1, 1). 1

2 (b) Como v (t) = (1 cos t) 2 + sen 2 t + 4 cos 2 (t/2) = 2, entonces ( 1 cos t T =, sen t ) 2 2, cos(t/2). Para calcular el vector unitario normal utilizamos la fórmula N = T / T. Como entonces ( sen t T = 2, cos t 2, sen(t/2) ), T = sen2 (t/2), 2 2 ( sen t N = 1 + sen2 (t/2), cos t 1 + sen2 (t/2), sen(t/2) ). 1 + sen2 (t/2) Al sustituir en el punto P, obtenemos los vectores T (π) = (1, 0, 0) y N (π) = (0, 1/ 2, 1/ 2). Para expresar el vector aceleración en función de T y N, derivamos en la expresión v = v T. Resulta que a = v T + v T = v T + v T N. Sustituyendo los valores obtenidos, tenemos que a (π) = 2( T + N ). (c) Si utilizamos la fórmula de la curvatura κ(t) = T / r, se obtiene fácilmente que κ(π) = 2/4. 5. Determinar los vectores velocidad y aceleración del movimiento descrito por la curva dada por el vector de posición r (t) = (e t, e t, ln t) en el punto correspondiente a t = 1. Calcular la curvatura de dicha curva en el punto dado. Las derivadas sucesivas del vector de posición nos dan los vectores velocidad y aceleración: v (t) = r (t) = (e t, e t, 1/t) = v (1) = (e, e 1, 1), a (t) = r (t) = (e t, e t, 1/t 2 ) = a (1) = (e, e 1, 1). Para calcular la curvatura utilizaremos la fórmula κ(t) = r (t) r (t) r (t) 3. Así pues, como r (1) r (1) = i j k e e 1 1 e 1 e 1 1 = (0, 2e, 2). resulta: κ(1) = 4e2 + 4 (e 2 + e 2 + 1) 3/2. 2

3 6. Encontrar la recta tangente a la hélice cilíndrica descrita por las ecuaciones paramétricas x = cos t, y = sen t, z = t/2, con t R, en el punto (0, 1, π/4). Observamos en primer lugar que el punto dado corresponde al valor t = π/2. Como la curva está descrita por la parametrización f(t) = (cos t, sen t, t/2), su derivada es f (t) = ( sen t, cos t, 1/2), de modo que el vector director de la recta tangente es f (π/2) = ( 1, 0, 1/2). Por tanto, la recta tangente a la curva en (0, 1, π/4) tiene por ecuación r (λ) = (0, 1, π/4) + λ( 1, 0, 1/2), λ R. 7. Dada la hélice r (t) = (a cos wt, a sen wt, bwt), con w > 0, probar que la recta tangente forma un ángulo constante con el eje Z cuyo coseno es b a. Además los vectores 2 +b2 velocidad y aceleración tienen longitud constante y v a a v 3 = a 2 + b 2. El vector director de la recta tangente a la curva r (t) en un punto P (x 0, y 0, z 0 ) = r (t 0 ) es r (t 0 ) = ( aw sen wt 0, aw cos wt 0, bw) y r (t 0 ) = w a 2 + b 2. Como el vector unitario en la dirección del eje Z es k = (0, 0, 1), el ángulo entre estos vectores se calcula mediante el producto escalar r (t 0 ) k cos α = r (t 0 ) b = k a2 + b. 2 Por otra parte, como v (t) = r (t) = ( aw sen wt, aw cos wt, bw), entonces a (t) = r (t) = ( aw 2 cos wt, aw 2 sen wt, 0). Además, v (t) a (t) = i j k aw sen wt aw cos wt bw aw 2 cos wt aw 2 sen wt 0 = (abw 3 sen wt, abw 3 cos wt, a 2 w 3 ). Así pues, la curvatura de la hélice viene dada por v a v 3 = a2 b 2 w 6 + a 4 w 6 w 3 (a 2 + b 2 ) 3 = a a 2 + b 2. 3

4 8. Sea c un vector unitario fijo. El vector posición r (t) de una partícula verifica c r (t) = e 2t, para todo t, y su vector velocidad v (t) forma un ángulo constante ϑ con c (0 < ϑ < π/2). (a) Demostrar que la velocidad en t es v = 2e2t cos ϑ. (b) Calcular a (t) v (t) en función de t y ϑ. (a) Por una parte, c v (t) = c v cos ϑ = v cos ϑ. Por otra parte, si derivamos los dos miembros de la igualdad c r (t) = e 2t, obtenemos que c r (t) = 2e 2t. En definitiva, 2e 2t = v cos ϑ, de donde v = 2e2t cos ϑ. (b) Derivamos ahora los dos miembros de la igualdad v (t) v (t) = v 2 = a (t) v (t) + v (t) a (t) = 16e 4t cos 2 ϑ = a (t) v (t) = 8e4t cos 2 ϑ. 4e4t cos 2 ϑ : 9. Una partícula de masa unidad se mueve en un plano mediante la ecuación r (t) = (x(t), y(t)); es atraída hacia el origen por una fuerza de magnitud igual a 4 veces su distancia al origen. En el instante t = 0, la posición inicial es r (0) = (4, 0) y el vector velocidad inicial es v (0) = (0, 6). Determinar las componentes x(t), y(t) en función de t, hallar la ecuación cartesiana de la trayectoria e indicar la dirección del movimiento sobre la curva. De los datos del problema, sabemos que F (t) = k ( x(t), y(t)), (k > 0) y F (t) = 4 r (t), de modo que F (t) = ( 4x(t), 4y(t)). Por otra parte, como la partícula se supone de masa unidad, F (t) = a (t) = r (t) = (x (t), y (t)), lo que nos lleva al sistema de ecuaciones x (t) = 4x(t), y (t) = 4y(t), cuya solución general es x(t) = a 1 cos 2t + a 2 sen 2t, y(t) = b 1 cos 2t + b 2 sen 2t. A partir de las condiciones iniciales x(0) = 4, x (0) = 0, y(0) = 0, y (0) = 6, obtenemos en definitiva que la posición del móvil viene dada por el vector r (t) = (4 cos 2t, 3 sen 2t), lo que corresponde a la elipse x y2 = 1 recorrida en sentido antihorario. 9 4

5 10. Una partícula se mueve a lo largo de la elipse 3x 2 + y 2 = 1 con vector de posición r (t) = (f(t), g(t)). El movimiento es tal que la componente horizontal del vector velocidad en t es g(t). Cuál es el sentido del movimiento de la partícula, a favor o en contra de las agujas del reloj? Probar que la componente vertical del vector velocidad en t es proporcional a f(t). Si r (t) = (f(t), g(t)), entonces r (t) = (f (t), g (t)). Por hipótesis, f (t) = g(t). Por otra parte, como la partícula recorre la elipse 3x 2 + y 2 = 1, entonces 3f 2 (t) + g 2 (t) = 1. Al derivar respecto a t, obtenemos que 6f(t) f (t) + 2g(t) g (t) = 0 = ( 3f(t) + g (t)) g(t) = 0 = g (t) = 3f(t). De este modo, el vector velocidad es v (t) = ( g(t), 3f(t)) y el movimiento es contrario al de las agujas del reloj. 11. Una partícula sigue la trayectoria r (t) = (e t, e t, cos t) hasta que se sale por su tangente en t = 1. Dónde está en t = 2, si ninguna fuerza actúa sobre ella después de dejar la curva? Para determinar la recta tangente en t = 1 calculamos los vectores de posición y de velocidad para dicho valor de t. Así, r (1) = (e, e 1, cos 1), r (1) = (e, e 1, sen 1). La ecuación de la recta tangente es (x(t), y(t), z(t)) = (e, e 1, cos 1)+(t 1) (e, e 1, sen 1). En t = 2, la posición de la partícula es (x(2), y(2), z(2)) = (2e, 0, cos 1 sen 1). 5

Problemas resueltos del Boletín 1

Problemas resueltos del Boletín 1 Boletines de problemas de Matemáticas II Problemas resueltos del Boletín Problema. Dada la curva r (t) = t [0, π], parametrizarla naturalmente. ( (cos t + t sen t), (sen t t cos t), t ), con En primer

Más detalles

Prof. Jorge Rojo Carrascosa CINEMÁTICA

Prof. Jorge Rojo Carrascosa CINEMÁTICA CINEMÁTICA La cinemática estudia el movimiento de los cuerpos sin tener en cuenta las causas que los producen. Por tanto, tan sólo se ocupa de los aspectos externos como son el desplazamiento, el espacio

Más detalles

Tema 4: Movimiento en 2D y 3D

Tema 4: Movimiento en 2D y 3D Tema 4: Movimiento en 2D y 3D FISICA I, 1º Grado en Ingeniería Electrónica, Robótica y Mecatrónica Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla Índice

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I PROBLEMAS PROPUESTOS 2.- CINEMÁTICA DE LA PARTÍCULA 2 Cinemática de la partícula PROBLEMA PROPUESTO 2.1. Para la curva de ecuación

Más detalles

Movimiento curvilíneo. Magnitudes cinemáticas

Movimiento curvilíneo. Magnitudes cinemáticas Movimiento curvilíneo. Magnitudes cinemáticas Movimiento curvilíneo Supongamos que el movimiento tiene lugar en el plano XY, Situamos un origen, y unos ejes, y representamos la trayectoria del móvil, es

Más detalles

CURVAS Y SUPERFICIES Hoja 1: Curvas

CURVAS Y SUPERFICIES Hoja 1: Curvas CURVAS Y SUPERFICIES Hoja 1: Curvas 1. Sea σ (t) = (cos t, sen t, t) con t [0, π] y sea f(x, y, z) = x + y + z. Evaluar la integral σ fdσ. (Sol.: π 3 (3 + 4π )).. Sea σ : [0, π/] R 3 la curva σ(t) = (30

Más detalles

Tema 4: Movimiento en 2D y 3D

Tema 4: Movimiento en 2D y 3D Tema 4: Movimiento en 2D y 3D FISICA I, 1º Grado en Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla Física I, GIC, Dpto. Física Aplicada III, ETSI, Universidad de Sevilla, 2017/18 1

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

ESTUDIO DEL MOVIMIENTO.

ESTUDIO DEL MOVIMIENTO. 1. INTRODUCCIÓN. ESTUDIO DEL MOVIMIENTO. Un cuerpo está en movimiento cuando cambia de posición a lo largo del tiempo con respecto a un punto de referencia que consideramos fijo. Es un concepto relativo,

Más detalles

MATEMÁTICAS II Geometría diferencial Curso de las curvas en el espacio

MATEMÁTICAS II Geometría diferencial Curso de las curvas en el espacio 1.- a) Se denomina cicloide a la curva descrita por un punto P de una circunferencia que rueda, sin deslizar, a lo largo de una recta. Si P está inicialmente en el origen O(,) y a es el radio de la circunferencia,

Más detalles

Tema 3: Cinemática del punto

Tema 3: Cinemática del punto Tema 3: Cinemática del punto FISICA I, 1º Grado en Ingeniería Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Introducción Ecuaciones de una curva Velocidad y aceleración Movimientos

Más detalles

Velocidad y aceleración

Velocidad y aceleración Velocidad y aceleración 1.- Un móvil recorre una hélice según las coordenadas paramétricas: x = R cos wt y = Rsenwt p z = wt π Determinar para cada instante t el módulo de su velocidad y las componentes

Más detalles

1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN (continuación)

1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN (continuación) 1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN (continuación) 1.2.29.* Dado el vector de posición de un punto material, r=(t 2 +2)i-(t-1) 2 j (Unidades S.I.), se podrá decir que la aceleración a los

Más detalles

1. INTRODUCCIÓN. MOVIMIENTO Y SISTEMA DE REFERENCIA.

1. INTRODUCCIÓN. MOVIMIENTO Y SISTEMA DE REFERENCIA. TEMA 1 CINEMÁTICA 1. INTRODUCCIÓN. MOVIMIENTO Y SISTEMA DE REFERENCIA. Un cuerpo está en movimiento cuando cambia de lugar respecto a un punto que se considera fijo, a medida que pasa el tiempo. En todo

Más detalles

CÁLCULO III (0253) PRIMER PARCIAL (33.33%) SECCIONES 02 Y 04 27/03/09. . π

CÁLCULO III (0253) PRIMER PARCIAL (33.33%) SECCIONES 02 Y 04 27/03/09. . π UCV FIUCV CÁLCULO III (05) PRIMER PARCIAL (%) SECCIONES 0 Y 04 7/0/09 Una curva C está definida por y = sen(x) x 0 y = x x 0 x + (y + ) = x 0 a Parametrice la curva C en sentido horario ( puntos) b Encuentre

Más detalles

Cinemática del Punto. e Problema 2.3 de [1]

Cinemática del Punto. e Problema 2.3 de [1] Capítulo 2 Cinemática del Punto Problema 2.1 Se considera una esfera de radio R centro O. Sean ABC las intersecciones de las esfera con tres ejes rectangulares que pasan por O. Un punto M está situado

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. 1 Análisis II Análisis matemático II Matemática 3. 1er. cuatrimestre de 2008 Práctica 1 - urvas, integral de longitud de arco e integrales curvilíneas. urvas Definición 1. Una curva R 3 es un conjunto

Más detalles

UNIDAD II. 2 Cinemática. 2.1 Movimiento rectilíneo. 2.2 Movimiento bajo aceleración constante. 2.3 Movimiento circular

UNIDAD II. 2 Cinemática. 2.1 Movimiento rectilíneo. 2.2 Movimiento bajo aceleración constante. 2.3 Movimiento circular 42 UNIDAD II 2 Cinemática 2.1 Movimiento rectilíneo 2.2 Movimiento bajo aceleración constante 2.3 Movimiento circular 2.4 Movimiento curvilíneo general 43 UNIDAD II 2 CINEMATICA. La Cinemática (del griego

Más detalles

Tarea 1 - Vectorial

Tarea 1 - Vectorial Tarea - Vectorial 2050. Part :. - 3.2.. Un cerro se queda en las montañas en la altura de 6 mil metros. El cerro tiene la forma del gráfico de la función z = f(x, y) = x 2 y 2. Observamos que plaquitas

Más detalles

3. Cinemática de la partícula: Sistemas de referencia

3. Cinemática de la partícula: Sistemas de referencia 3. Cinemática de la partícula: Sistemas de referencia 3.1.- Cinemática de la partícula 3.2.- Coordenadas intrínsecas y polares 3.3.- Algunos casos particulares de especial interés 3.1.- Cinemática de la

Más detalles

EXAMEN TIPO TEST NÚMERO 1. MODELO 1 RESOLUCIÓN. El ángulo tiene que ser adimensional de modo que: Respuesta correcta: c)

EXAMEN TIPO TEST NÚMERO 1. MODELO 1 RESOLUCIÓN. El ángulo tiene que ser adimensional de modo que: Respuesta correcta: c) EXAMEN TIPO TEST NÚMERO 1. MODELO 1 RESOLUCIÓN 1.-Si en la expresión xcos(cρt) "x" es espacio, "t" es tiempo y ρ densidad, la constante C tiene dimensiones de: a) ML -3 T b) L c) M -1 L 3 T -1 d) L -1

Más detalles

FÍSICA Y QUÍMICA 1ª Bachillerato CINEMÁTICA 1 Página 1

FÍSICA Y QUÍMICA 1ª Bachillerato CINEMÁTICA 1 Página 1 Página 1 CINEMÁTICA 1: ECUACIONES GENERALES DEL MOVIMIENTO 1. Calcula el vector de posición y su módulo para los siguientes puntos del plano XY: P 1 (2,3), P 2 (-4,1) y P 3 (1,-3). Las coordenadas se dan

Más detalles

Posición y trayectoria de un cuerpo La velocidad La aceleración. Cinemática. Antonio Falcó, Ignasi Rosell. Tema 2

Posición y trayectoria de un cuerpo La velocidad La aceleración. Cinemática. Antonio Falcó, Ignasi Rosell. Tema 2 Tema 2 1 2 3 Dimensiones del espacio Espacio-tiempo Vivimos en un mundo que se caracteriza por tener tres dimensiones espaciales y una temporal. Solo podemos trazar tres lineas perpendiculares entre si

Más detalles

Cinemática del sólido rígido

Cinemática del sólido rígido Cinemática del sólido rígido Teoría básica para el curso Cinemática del sólido rígido, ejercicios comentados α δ ω B B A A P r B AB A ω α O Ramírez López-Para, Pilar Loizaga Garmendia, Maider López Soto,

Más detalles

ACTIVIDADES GA ACTIVIDAD

ACTIVIDADES GA ACTIVIDAD ACTIVIDADES GA ACTIVIDAD 1: (Mié-12-Feb-14) a) Conteste Qué es y para qué sirve un Sistema de referencia? b) Conteste Qué es y para qué sirve un Sistema de coordenadas? c) Conteste Es lo mismo 'sistema

Más detalles

MOVIMIENTO. El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador.

MOVIMIENTO. El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador. Ciencias Naturales 2º ESO página 1 MOVIMIENTO El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador. Las diferentes posiciones que posee el objeto forman

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES ) 3-1. Calcular, para las siguientes funciones. a) fx, y) x cos x sen y b) fx, y) e xy c) fx, y) x + y ) lnx + y )

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 10 CINEMÁTICA DE ROTACIÓN

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 10 CINEMÁTICA DE ROTACIÓN APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 10 CINEMÁTICA DE ROTACIÓN Movimiento de rotación Qué tienen en común los movimientos de un disco compacto, las sillas voladoras, un esmeril,

Más detalles

Vectores. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo equivalente a QP.

Vectores. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo equivalente a QP. Wilson Herrera 1 Vectores 1. Dados los puntos P (1, 2), Q( 2, 2) y R(1, 6): a) Representarlos en el plano XOY. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo

Más detalles

transparent CINEMÁTICA Prof. Jorge Rojo Carrascosa 3 de marzo de 2016

transparent  CINEMÁTICA Prof. Jorge Rojo Carrascosa 3 de marzo de 2016 transparent www.profesorjrc.es 3 de marzo de 2016 Elementos para describir el movimiento 1 Sistema de Referencia (inerciales o no) = Ejes cartesianos 2 Vector de posición, r = r(t) r(t) = (x(t) i, y(t)

Más detalles

Universidad de Atacama. Física 1. Dr. David Jones. 11 Junio 2014

Universidad de Atacama. Física 1. Dr. David Jones. 11 Junio 2014 Universidad de Atacama Física 1 Dr. David Jones 11 Junio 2014 Vector de posición El vector de posición r que va desde el origen del sistema (en el centro de la circunferencia) hasta el punto P en cualquier

Más detalles

1. Curvas paramétricas y funciones vectoriales de un parámetro

1. Curvas paramétricas y funciones vectoriales de un parámetro Universidad Nacional de La Plata Facultad de Ciencias Exactas ANÁLISIS MATEMÁTICO II (CiBEx - Física Médica) 2014 Segundo Semestre GUÍA Nro. 2: FUNCIONES VECTORIALES 1. Curvas paramétricas y funciones

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

SERIE # 2 CÁLCULO VECTORIAL

SERIE # 2 CÁLCULO VECTORIAL SERIE # CÁLCULO VECTORIAL SERIE 1) Calcular las coordenadas del punto P de la curva: en el que el vector P 1, 1, r t es paralelo a r t Página 1 t1 r t 1 t i ( t ) j e k ) Una partícula se mueve a lo largo

Más detalles

Ecuación del movimiento

Ecuación del movimiento Cinemática Tema 2 Ecuación del movimiento La ecuación del movimiento nos da la posición en la que se encuentra un móvil en función del tiempo. Esto quiere decir, que dado un valor del tiempo, podemos obtener

Más detalles

CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan.

CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan. 1. CINEMÁTICA. CONCEPTO. CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan. 2. MOVIMIENTO. 2.1. CONCEPTO Es el cambio de lugar o de posición

Más detalles

1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN

1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN 1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN 1.2.1. Supuesto el vector de posición de un punto en el espacio: r = 2i-6j+4k, la mejor representación de dicho vector de todas las dadas es la: a) A b)

Más detalles

Estudia las propiedades geométricas de las trayectorias que describen los cuerpos en movimiento mecánico, independientemente de la masa del cuerpo y

Estudia las propiedades geométricas de las trayectorias que describen los cuerpos en movimiento mecánico, independientemente de la masa del cuerpo y CINEMÁTICA CINEMÁTICA (MRU) CONCEPTO DE CINEMÁTICA Estudia las propiedades geométricas de las trayectorias que describen los cuerpos en movimiento mecánico, independientemente de la masa del cuerpo y de

Más detalles

SUPERFICIES. 2.2 Plano tangente y recta normal. 2.3 Métrica sobre una superficie: Primera forma fundamental y aplicaciones.

SUPERFICIES. 2.2 Plano tangente y recta normal. 2.3 Métrica sobre una superficie: Primera forma fundamental y aplicaciones. SUPERFICIES. 2.2 Plano tangente y recta normal. 2.3 Métrica sobre una superficie: Primera forma fundamental y aplicaciones. 2.1 Superficie parametrizacida. Ecuaciones implícitas. Curvas paramétricas. 2.2

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2015 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2015 Problemas (Dos puntos por problema). Examen de Física-, Ingeniería Química Examen final. Enero de 205 Problemas (Dos puntos por problema). Problema : La posición de una partícula móvil en el plano Oxy viene dada por : x(t) = 2 t 2 y(t) =

Más detalles

El movimiento Circular

El movimiento Circular El movimiento Circular Definición de movimiento circular: Se define movimiento circular como aquél cuya trayectoria es una circunferencia. Recordar: Una circunferencia es el lugar geométrico de los puntos

Más detalles

Cinemática de la partícula, movimiento curvilíneo

Cinemática de la partícula, movimiento curvilíneo Cinemática de la partícula, movimiento curvilíneo Introducción En este documento se estudiará el movimiento de partículas (cuerpos cuyas dimensiones no son tomadas en cuenta para su estudio) que siguen

Más detalles

TEMA 8: LA DESCRIPCION DE LOS MOVIMIENTOS: CINEMÁTICA.

TEMA 8: LA DESCRIPCION DE LOS MOVIMIENTOS: CINEMÁTICA. CURSO 2012/2013 DEPARTAMENTO DE CIENCIAS DE LA NATURALEZA FÍSICA Y QUIMICA 1º BACHILLERATO CIENCIAS Y TECNOLOGÍA Profesor: José Criado Ferrándiz TEMA 8: LA DESCRIPCION DE LOS MOVIMIENTOS: CINEMÁTICA. 1.

Más detalles

CAMPOS VECTORIALES. Presenta: M.E.M. Enrique Arenas Sánchez. 21 de septiembre de 2016

CAMPOS VECTORIALES. Presenta: M.E.M. Enrique Arenas Sánchez. 21 de septiembre de 2016 Presenta: M.E.M. Enrique Arenas Sánchez 21 de septiembre de 2016 Definición de Campo Escalar. Se llama campo escalar a una función que asocia a cada punto del dominio de una función un valor escalar. Ejemplo:

Más detalles

Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G.

Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G. Nombre: Curso: Movimiento Circunferencial Uniforme. (MCU) Caracteristicas 1) La trayectoria es una circunferencia 2) La partícula recorre distancia iguales en tiempos iguales Consecuencias 1) El vector

Más detalles

1. Características del movimiento

1. Características del movimiento CINEMÁTICA TEMA 1 1. Características del movimiento En el universo todo está en continuo movimiento. Movimiento es el cambio de posición de un cuerpo a lo largo del tiempo respecto a un sistema de referencia

Más detalles

s(t = 5) = = 65 m

s(t = 5) = = 65 m TEMA.- CINEMÁTICA.1.- ECUACIÓN DEL MOVIMIENTO..- VELOCIDAD MEDIA Y VELOCIDAD INSTANTÁNEA.3.- MOVIMIENTO RECTILÍNEO UNIFORME.4.- MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO.5.- CAÍDA LIBRE Y TIRO VERTICAL.6.-

Más detalles

Unidad II. Cinemática

Unidad II. Cinemática Unidad II. Cinemática Ref. Capítulos II y III. Física Tipler-Mosca, 6a ed. 18 de marzo de 018 1. Introducción La mecánica estudia el movimiento de los cuerpos. La cinemática describe el movimiento, explica

Más detalles

Guillermo Carrión Santiago 4 de enero de 2013

Guillermo Carrión Santiago 4 de enero de 2013 física I Guillermo Carrión Santiago 4 de enero de 2013 Espero que a todos os sirva y que podáis estudiar física como un matemático lo haría y sin patadas en el estomago. Si encontráis alguna errata avisad

Más detalles

MATEMÁTICAS VI (ÁREA1)

MATEMÁTICAS VI (ÁREA1) MATEMÁTICAS VI (ÁREA) VERSIÓN Unidad I. Funciones..- El dibujo de la gráfica de... 8 9 9 0.- El Lim 0 cuando tiende a 0 es :....- La función es continua en :...,,, 0,, 0.- El lim Sen 0....- El dominio

Más detalles

Escriba la función vectorial dada r(t) como ecuaciones paramétricas.

Escriba la función vectorial dada r(t) como ecuaciones paramétricas. Nota: las respuestas al ejercicio 8 de los problemas se encuentran en la parte inferior. Ejercicio 8. Escriba las ecuaciones paramétricas dadas como una función vectorial r(t). 1. x = sen πt, y = cos πt,

Más detalles

Unidad Nº 4 - los MOVIMIENTOs sencillos # 13 !!!""#""!!!

Unidad Nº 4 - los MOVIMIENTOs sencillos # 13 !!!#!!! Unidad Nº 4 - los MOVIMIENTOs sencillos # 13 4 En la cuestión anterior, cómo son los dos movimientos que, juntos, explican la trayectoria de la piedra? Es la composición de dos movimientos, según los ejes

Más detalles

1. Cinemática: Elementos del movimiento

1. Cinemática: Elementos del movimiento 1. Cinemática: Elementos del movimiento 1.1. Solución: a) En el primer caso la respuesta correcta es afirmativa, ya que puede tratarse de un movimiento acelerado, pero en el que cambia el sentido del movimiento.

Más detalles

SEMANA 12: CURVAS EN EL ESPACIO. ds v(t) = d r (t) =

SEMANA 12: CURVAS EN EL ESPACIO. ds v(t) = d r (t) = FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 8-2 Basado en el apunte del ramo Matemáticas Aplicadas, de Felipe Álvarez, Juan Diego Dávila, Roberto Cominetti

Más detalles

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena 1 Universidad Simón Bolívar. Preparaduría nº 3. christianlaya@hotmail.com ; @ChristianLaya Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena Derivada

Más detalles

CINEMÁTICA LA CINEMÁTICA

CINEMÁTICA LA CINEMÁTICA CINEMÁTICA LA CINEMÁTICA es la parte de la Física que estudia el movimiento de los cuerpos sin tener en cuenta sus causas. Para estudiar el movimiento de un cuerpo es necesario elegir un sistema de referencia

Más detalles

Soluciones de los ejercicios del segundo examen parcial

Soluciones de los ejercicios del segundo examen parcial Matemáticas II (GIC, curso 5 6 Soluciones de los ejercicios del segundo examen parcial EJERCICIO. Halla el área que encierra la curva C dada en polares por r = + sen(θ. Solución: Primero debemos hallar

Más detalles

Análisis Matemático II Curso 2018 Práctica introductoria

Análisis Matemático II Curso 2018 Práctica introductoria Análisis Matemático II Curso 018 Práctica introductoria Cónicas - Sus ecuaciones y gráficas 1. Encontrar la forma estándar de cada cónica y graficar. a) x + y 6y = 0 b) x + y 1 = 0 c) x(x + 1) y = 4 d)

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

GUIA DE ESTUDIO FÍSICA 3 COMÚN PREPARACIÓN PRUEBA COEFICIENTE DOS Nombre: Curso: Fecha:

GUIA DE ESTUDIO FÍSICA 3 COMÚN PREPARACIÓN PRUEBA COEFICIENTE DOS Nombre: Curso: Fecha: I.MUNICIPALIDAD DE PROVIDENCIA CORPORACIÓN DE DESARROLLO SOCIAL LICEO POLIVALENTE ARTURO ALESSANDRI PALMA DEPARTAMENTO DE FÍSICA PROF.: Nelly Troncoso Rojas. GUIA DE ESTUDIO FÍSICA 3 COMÚN PREPARACIÓN

Más detalles

1. Cinemática: Elementos del movimiento

1. Cinemática: Elementos del movimiento 1. Cinemática: Elementos del movimiento 1. Una partícula con velocidad cero, puede tener aceleración distinta de cero? Y si su aceleración es cero, puede cambiar el módulo de la velocidad? 2. La ecuación

Más detalles

Movimiento. Cinemática

Movimiento. Cinemática Movimiento. Cinemática Magnitudes físicas Cinemática (conceptos básicos) Desplazamiento y espacio recorrido Velocidad Gráficas espacio-tiempo Gráficas posición-tiempo Gráficas velocidad-tiempo Movimiento

Más detalles

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE Un movimiento periódico es aquel que describe una partícula cuando las variables posición, velocidad y aceleración de su movimiento toman los mismos valores después de

Más detalles

Curvatura. t Rdt = Rt s = Rt t = s R. y r (s) =

Curvatura. t Rdt = Rt s = Rt t = s R. y r (s) = Introducción a las Funciones Vectoriales Funciones de R R n ) Curvatura En una recta, el vector unitario tangente T no cambia su dirección y por tanto T =. Si la curva no es una linea recta, la derivada

Más detalles

MECÁNICA. Estática: Es la parte de la mecánica que se ocupa del estudio del estado de reposo de los objetos sometidos a fuerzas.

MECÁNICA. Estática: Es la parte de la mecánica que se ocupa del estudio del estado de reposo de los objetos sometidos a fuerzas. Clase 1-1 Clase 1- MECÁNICA Cinemática: Es la parte de la mecánica que se ocupa del estudio del movimiento de los objetos haciendo abstracción de las causas que lo producen o modifican. Dinámica: Es la

Más detalles

CURVAS Y SUPERFICIES, S.L. Rueda CURVAS. 1.2 Longitud de una curva. Parámetro arco.

CURVAS Y SUPERFICIES, S.L. Rueda CURVAS. 1.2 Longitud de una curva. Parámetro arco. CURVAS. 1.2 Longitud de una curva. Parámetro arco. 1.1 Definición de curva parametrizada espacial. Representación implícita. 1.2 Longitud de una curva. Parámetro arco. 1.3 Curvatura y torsión. Triedro

Más detalles

MOVIMIENTO CIRCULAR UNIFORME (MCU)

MOVIMIENTO CIRCULAR UNIFORME (MCU) MOVIMIENTO CIRCULAR UNIFORME (MCU) Ángulo Es la abertura comprendida entre dos radios abiertos que limitan un arco de circunferencia. B _ r θ _ r A Θ= desplazamiento angular r = vector de posición A =

Más detalles

IES Francisco Giner de los Ríos 2016/2017 Física y Química 1º Bachillerato nocturno (FQ NB1B-Noct) UD 8. El movimiento

IES Francisco Giner de los Ríos 2016/2017 Física y Química 1º Bachillerato nocturno (FQ NB1B-Noct) UD 8. El movimiento UD 8. El movimiento 1- Sistemas de referencia. 2- Magnitudes vectoriales. 3- Interpretaciones gráficas de los movimientos. 4- Componentes intrínsecas de la aceleración. 1- Sistemas de referencia: 1.1.

Más detalles

Análisis Matemático I (Lic. en Cs. Biológicas) Práctica 6: Integración. Primer cuatrimestre de (e) f(x) = cos x. F(x) = arccosx. Ejercicio 1.

Análisis Matemático I (Lic. en Cs. Biológicas) Práctica 6: Integración. Primer cuatrimestre de (e) f(x) = cos x. F(x) = arccosx. Ejercicio 1. Análisis Matemático I (Lic. en Cs. Biológicas) Primer cuatrimestre de 29 Práctica 6: Integración Ejercicio. Hallar en cada caso una función g : R R que cumpla (i) g () = 2 (ii) g () = (iii) g () = sen

Más detalles

Guía realizada por: Pimentel Yender.

Guía realizada por: Pimentel Yender. REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN U.E. COLEGIO DON CESAR ACOSTA BARINAS. ESTADO, BARINAS. PROFESOR: PIMENTEL YENDER. FÍSICA 4TO AÑO. MOVIMIENTO CIRCULAR

Más detalles

OCW-Universidad de Málaga, (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3.

OCW-Universidad de Málaga,  (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3. OCW-Universidad de Málaga, http://ocw.uma.es 14. Bajo licencia Creative Commons Attribution- NonComercial-ShareAlike 3. Spain Matemáticas III Relación de ejercicios Tema 3 Ejercicios Ej. 1 Reparametriza

Más detalles

Posición de un Cuerpo. Elementos para la descripción del movimiento. Vector de Posición y Vector Desplazamiento

Posición de un Cuerpo. Elementos para la descripción del movimiento. Vector de Posición y Vector Desplazamiento 1 Bárbara Cánovas Conesa 637 70 113 www.clasesalacarta.com 1 Cinemática Posición de un Cuerpo Coordenadas Cartesianas Coordenadas Polares Vector de Posición (,, z) r, q r Elementos para la descripción

Más detalles

PROBLEMAS RESUELTOS TEMA: 1

PROBLEMAS RESUELTOS TEMA: 1 PROBLEMAS RESUELTOS TEMA: 1 1. Un guardacostas tiene el combustible justo para ir con su lancha desde la costa hasta una isla; éste es un viaje de 4 h en contra de la corriente. Al llegar, resulta que

Más detalles

ANALISIS II Computación. Práctica 4. x 3. x 2 + y 2. x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0)

ANALISIS II Computación. Práctica 4. x 3. x 2 + y 2. x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0) facultad de ciencias exactas y naturales uba curso de verano 2006 ANALISIS II Computación Práctica 4 Derivadas parciales 1. Calcular (a) f xy y (2, 1) para f(x, y) = + x y (b) f z (1, 1, 1) para f(x, y,

Más detalles

X. CINEMÁTICA Índice. 1. El problema del movimiento 2. La posición de los cuerpos 3. La velocidad de los cuerpos 4. La aceleración de los cuerpos

X. CINEMÁTICA Índice. 1. El problema del movimiento 2. La posición de los cuerpos 3. La velocidad de los cuerpos 4. La aceleración de los cuerpos Índice 1. El problema del movimiento 2. La posición de los cuerpos 3. La velocidad de los cuerpos 4. La aceleración de los cuerpos 2 1 El problema del movimiento Si pudiésemos estar ahora en la Tierra

Más detalles

(x 1) + y = 1 y 1, y = (x 2) y 0,1

(x 1) + y = 1 y 1, y = (x 2) y 0,1 CÁLCULO III (053) SECCIÓN 05 6/03/09. Una curva C está definida por y tg(x) x 0, (x ) + y y, 0. y (x ) y 0, 8 a. Parametrice la curva C en sentido antihorario. ( puntos) b. En el punto (, ) determine las

Más detalles

BACHILLERATO FÍSICA B. REPASO DE MECÁNICA. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA B. REPASO DE MECÁNICA. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA B. REPASO DE MECÁNICA R. Artacho Dpto. de Física y Química B. REPASO DE MECÁNICA ÍNDICE 1. Las magnitudes cinemáticas 2. Movimientos en una dimensión. Movimientos rectilíneos 3. Movimientos

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Ingeniería de la Energía Física I Física I. Boletín 4. Octubre de 2015 4.1. Un coche entra en una curva de 90 y 100 m de radio a 80 km/h. Disminuye su rapidez uniformemente

Más detalles

Nombre/Código: Septiembre Parcial II

Nombre/Código: Septiembre Parcial II 1 Cálculo II Sección 1 Guillermo Mantilla Nombre/Código: Septiembre 11 1 Parcial II Instrucciones: Duración 7mins. Durante el examen no son permitidos libros, notas, calculadoras, celulares o en general

Más detalles

MOVIMIENTO OSCILATORIO O VIBRATORIO

MOVIMIENTO OSCILATORIO O VIBRATORIO MOVIMIENTO OSCILATORIO O VIBRATORIO 1. Movimiento armónico simple (MAS). 2. Ecuaciones del MAS. 3. Dinámica del MAS. 4. Energía del MAS. 5. El oscilador armónico. 6. El péndulo simple. Física 2º bachillerato

Más detalles

TEMA 0: INTRODUCCIÓN

TEMA 0: INTRODUCCIÓN TEMA 0: INTRODUCCIÓN 0.1 CÁLCULO VECTORIAL... 2 0.2 DERIVADAS E INTEGRALES... 6 0.3 REPASO DE CINEMÁTICA Y DINÁMICA... 9 Física 2º Bachillerato 1/21 Tema 0 0.1 CÁLCULO VECTORIAL 0.1.1 MAGNITUDES ESCALARES

Más detalles

1.5. Integral de línea de un campo Vectorial.

1.5. Integral de línea de un campo Vectorial. .5. Integral de línea de un campo Vectorial. Sea F ( xyz,, un campo vectorial continuo sobre R donde F representa un campo de fuerzas aplicado sobre una partícula cuya trayectoria puede ser descrita por

Más detalles

Cinemática II. QUÍMICA. Prof. Jorge Rojo Carrascosa

Cinemática II. QUÍMICA. Prof. Jorge Rojo Carrascosa FÍSICA Y QUÍMICA 1 o Bachillerato I. FÍSICA Cinemática II. QUÍMICA Prof. Jorge Rojo Carrascosa Índice general 1. CINEMÁTICA 2 1.1. ELEMENTOS PARA LA DESCRIPCIÓN DEL MOVIMIENTO.. 2 1.1.1. VECTOR DE POSICIÓN

Más detalles

MATE1207 Primer parcial - Tema B MATE-1207

MATE1207 Primer parcial - Tema B MATE-1207 MATE7 Primer parcial - Tema B MATE-7. Si su respuesta y justificación son correctas obtendrá el máximo puntaje. Si su respuesta es incorrecta podrá obtener créditos parciales de acuerdo a su justificación.

Más detalles

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos.

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. CINEMÁTICA: ESTUDIO DEL MOVIMIENTO Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. 1. Cuándo un cuerpo está en movimiento? Para hablar de reposo o movimiento

Más detalles

MOVIMIENTO CIRCULAR Y DE ROTACIÓN (NOTAS INCONCLUSAS)

MOVIMIENTO CIRCULAR Y DE ROTACIÓN (NOTAS INCONCLUSAS) MOVIMIENTO CIRCULAR Y DE ROTACIÓN (NOTAS INCONCLUSAS) 1. Introducción 1.1. Requisitos. Esta presentación supone que el lector está familiarizado con los siguientes conceptos: 1. Vectores: Noción de vector,

Más detalles

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS.

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. Cálculo III, Examen Final. Semestre Primavera 1 Tiempo: 11 min. Problema 1 [1,5 puntos] La curvatura de una trayectoria

Más detalles

Si cálculamos el límite de estas pendiente cuando t tiende a t 0 f 2 (t) f 2 (t 0 )

Si cálculamos el límite de estas pendiente cuando t tiende a t 0 f 2 (t) f 2 (t 0 ) ANÁLISIS MATEMÁTICO BÁSICO. TANGENTES A CURVAS PARAMÉTRICAS. La forma más general de representar un curva en el plano no es a través de una gráfica sino de una curva paramétrica (ver Apéndice al tema de

Más detalles

Unidad Nº 4 - los MOVIMIENTOs sencillos % 1 !!!""#""!!!

Unidad Nº 4 - los MOVIMIENTOs sencillos % 1 !!!#!!! Unidad Nº 4 - los MOVIMIENTOs sencillos % 1 Cuestiones ( Pág!" ) 1 Cita tres movimientos, al menos, en los que la trayectoria sea rectilínea y la aceleración, nula. En la naturaleza no se dan movimientos

Más detalles

Indice. Cinemática de la Partícula Introducción

Indice. Cinemática de la Partícula Introducción Indice Cinemática de la Partícula Introducción Un fenómeno que siempre está presente y que observamos a nuestro alrededor es el movimiento. La cinemática es la parte de la Física que describe los posibles

Más detalles

Unidades 5, 6 y 7:Cinemática

Unidades 5, 6 y 7:Cinemática Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidades 5, 6 y 7:Cinemática Universidad Politécnica de Madrid 28 de junio de 2010 2 5.1. Planificación

Más detalles

Física Cinemática velocidad v = x/t (1) Movimiento rectilíneo uniforme (M.R.U.) velocidad es constante

Física Cinemática velocidad v = x/t (1) Movimiento rectilíneo uniforme (M.R.U.) velocidad es constante Física Cinemática La cinemática se ocupa de la descripción del movimiento sin tener en cuenta sus causas. La velocidad (la tasa de variación de la posición) se define como la razón entre el espacio recorrido

Más detalles

Tema 2: Movimiento unidimensional

Tema 2: Movimiento unidimensional Tema 2: Movimiento unidimensional FíSICA I, 1º Grado en Ingeniería Electrónica, Robótica y Mecatrónica Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla

Más detalles

Ecuaciones de Cinemática en 2-D. FIS Ricardo Ramirez - 1er. Semestre / 14

Ecuaciones de Cinemática en 2-D. FIS Ricardo Ramirez - 1er. Semestre / 14 Ecuaciones de Cinemática en 2-D r(t) FIS1503 - Ricardo Ramirez - 1er. Semestre 2010 1 / 14 Ecuaciones de Cinemática en 2-D r(t) = r o + v o t + 1 2 a t2 FIS1503 - Ricardo Ramirez - 1er. Semestre 2010 1

Más detalles

CINEMÁTICA I - Movimiento Vectorial

CINEMÁTICA I - Movimiento Vectorial > CONCEPTOS PREVIOS Para poder entender las explicaciones posteriores, vamos a aclarar unos conceptos básicos del movimiento vectorial: El sistema de referencia es un punto fijo respecto al cuál describimos

Más detalles

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0)

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0) facultad de ciencias exactas y naturales uba primer cuatrimestre 2007 ANÁLISIS II Computación Práctica 4 Derivadas parciales 1. Calcular a) f y (2, 1) para f(x, y) = xy + x y b) f z (1, 1, 1) para f(x,

Más detalles