CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CAPÍTULO 6 DISTRIBUCIONES MUESTRALES"

Transcripción

1 CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ). Para ello se extrae ua muestra aleatoria de la població y se calcula el valor de u estadístico correspodiete, por ejemplo, la media muestral ( X ), la variaza muestral ( s ) o la proporció muestral ( pˆ ). El valor del estadístico es aleatorio porque depede de los elemetos elegidos e la muestra seleccioada y, por lo tato, el estadístico tiee ua distribució de probabilidad la cual es llamada la Distribució Muestral del estadístico. El estudio de estas distribucioes es ecesario para eteder el proceso de iferecia estadística que será discutido e el próximo capitulo. E este capitulo se cosiderará la distribució muestral de dos estadísticos muy usados, la media muestral y proporció muestral. 6.1 Distribució de la Media Muestral cuado la població es ormal Si se extrae muestras aleatorias de tamaño de ua població ifiita que tiee media poblacioal μ y variaza, etoces se tiee que: i) La media de las medias muestrales es igual a la media poblacioal. Es decir, μ x = μ. ii) La variaza de las medias muestrales es igual a la variaza poblacioal dividida por. E cosecuecia la desviació estádar de las medias muestrales (llamada tambié el error estádar de la media muestral), es igual a la deviació estádar poblacioal dividida por la raíz cuadrada de. Es decir x =. Si la població fuera fiita de tamaño N, etoces se aplica el factor de correció N al error estádar de la media muestral. Pero e la práctica este factor es omitido a N 1 meos que la muestra sea lo suficietemete grade comparada co la població. Si además la població se distribuye ormalmete, etoces la media muestral tambié tiee ua distribució ormal co la media y variaza ateriormete idicadas. Pero si la població o es ormal solamete se cumple i) y ii). Cuado la muestra es grade se aplica el teorema de límite cetral para la distribució de la media muestral, este tema es tratado e la siguiete secció.

2 Edgar Acuña Capítulo 6 Distribucioes Muestrales El Teorema del Límite Cetral U importate resultado e Probabilidades y Estadística es el llamado Teorema del Límite Cetral que dice que si de ua població ifiita co media μ y variaza se extrae muestras aleatorias de tamaño, etoces la media muestral se comporta aproximadamete como ua variable aleatoria ormal co media igual a la media poblacioal y co variaza igual a la variaza poblacioal dividida por el tamaño de la muestra, siempre que sea grade. Lo importate de este resultado es que es idepediete de la forma de la distribució de la població. Es decir, X ~ N( μ, ) Cuado es grade. Estadarizado, esto es equivalete a: Z = X μ ~ N(0,1) Si la població es bastate simétrica etoces, u tamaño de muestra de aproximadamete 30 es suficiete para ua buea aproximació a la ormal. Si la població es bastate asimétrica, etoces el tamaño de muestra debe ser mucho más grade. E MINITAB se puede tratar de corroborar el Teorema del Límite Cetral a través de u proceso de simulació. Ejemplo 6.1 Cosiderar ua població que cosiste de 3, 4, 6, 8, 10, 11, 1, 15, 0. Primero calculamos la media y desviació estádar de dicha població. Descriptive Statistics Variable N Mea Media Tr Mea StDev SE Mea C Variable Mi Max Q1 Q3 C Notar que μ = y = Segudo, extraemos 30 muestras de tamaño 4 de dicha població, ejecutado 4 veces la siguiete secuecia Calc4Radom Data4Sample from colums. Guardar cada ua de las 4 observacioes de las muestras e 4 columas distitas: Obs1, Obs, Obs3, y Obs4.

3 Edgar Acuña Capítulo 6 Distribucioes Muestrales 15 Tercero, calculamos las medias de todas esas muestras usado la opció Row Statistics del meú Calc y tratamos de ver gráficamete al meos si hay acercamieto a Normalidad. Asimismo se debe observar que la media de todas estas medias debería estar cerca de μ y su variaza cerca de /. Las 30 muestras elegidas y sus respectivas medias so: Muestra obs1 obs obs3 obs4 media Las medidas estadísticas de la media muestral so: Variable N Mea Media Tr Mea StDev SE Mea media Variable Mi Max Q1 Q3 media E la Figura 6.1 se muestra el histograma de la distribució de las medias muestrales y la curva ormal que más se aproxima al histograma.

4 Edgar Acuña Capítulo 6 Distribucioes Muestrales 153 Iterpretació: Notar que la media de las medias muestrales es μ x = que está bie cerca de la media poblacioal μ = Además la desviació estádar de la media muestral es.806 mietras que es igual a 5.4/=.71 ambos valores tambié está relativamete cerca. El histograma si está u poco alejado de la ormalidad. Si se icremeta el tamaño de las muestras se puede otar ua mejor aproximació a la Normal. Figura 6.1 Histograma de la distibució de las medias maestrales del Ejemplo 6.1 Luego de aplicar estadarizació, las siguietes fórmulas se cumple, aproximadamete si la població o es ormal y exactamete si lo es. a μ i) P( X < a) = P( Z < ) a μ b μ ii) P( a < X < b) = P( < Z < ) b μ iii) P( X > b) = P( Z > )

5 Edgar Acuña Capítulo 6 Distribucioes Muestrales 154 Las probabilidades puede ser calculadas usado la tabla de la ormal estádar que aparece e al apédice del texto. Si embargo, éstas puede ser halladas directamete e MINITAB si ecesidad de estadarizació. Ejemplo 6.. El tiempo de ateció por cliete de u cajero de u Baco es ormal co media 6 miutos y desviació estádar.5 miutos. a) Cuál es la probabilidad de que el tiempo promedio de ateció para ua muestra de 15 clietes sea meor de 7 miutos? b) Cuál es la probabilidad de que el tiempo de ateció a u grupo de 15 clietes sea más de ua hora y 15 miutos? c) Si el tiempo e que el cajero atiede a u grupo de 15 clietes excede las dos horas etoces éste es despedido. Cuál es la probabilidad de que esto ocurra? Solució: Usado el hecho que el tiempo promedio de ateció para ua muestra de tamaño 15 es.5 ormal co media 6 y desviació estádar = , co la ayuda de MINITAB se 15 obtiee: a) P ( X < 7) = b) U tiempo de ateció de 75 miutos a 15 clietes equivale a u tiempo promedio de ateció de 75/15 = 5 miutos. Luego, hay que hallar P ( X > 5) = = c) U tiempo de ateció de 10 miutos a 15 clietes equivale a u tiempo promedio de ateció de 10/15 = 8 miutos por cliete. Luego, hay que hallar P (X > 8) = =.001. Ejemplo 6.3. Los pesos de las persoas que sube a u ascesor se distribuye ormalmete co media igual a 15 libras y desviació estádar de 30 libras. U grupo de 9 persoas sube al ascesor: a) Cuál es la probabilidad de que el peso promedio del grupo sea meor de 100 libras? b) El ascesor tiee ua capacidad máxima de 1400 libras. Cuál es la probabilidad de que se exceda esta capacidad co u grupo de 9 persoas? Solució: a) El peso promedio de u grupo de 9 persoas se distribuye ormalmete co media y desviació estádar igual a = 10. Luego usado la secuecia Calc4Probability 9 Distributios4 Normal e MINITAB se obtiee que P ( X < 100) = b) Decir que la suma de los pesos del grupo sea mayor que 1400, equivale a que el peso promedio del grupo de 9 persoas sea mayor que 1400/9 = libras. Luego, la probabilidad pedida será P ( X > ) = 1 P( X < ) = =

6 Edgar Acuña Capítulo 6 Distribucioes Muestrales Distribució de la Proporció Muestral Si de ua població distribuida Biomialmete co probabilidad de éxito p, se extrae ua muestra aleatoria de tamaño, etoces se puede mostrar que la media de X: úmero de éxitos e la muestra, es μ = p y que su variaza es = pq. E X pq cosecuecia la proporció muestral p ˆ = tiee media p, y variaza. Así, por el Teorema del Limite Cetral, cuado el tamaño de muestra es grade, etoces: z = X p pq = pˆ p pq Se distribuye aproximadamete como ua ormal estádar. La aproximació es bastate cofiable si tato ˆ p como qˆ so mayores que 5. Cuado pˆ es cercao a 0 ó 1 se debe tomar u tamaño de muestra más grade para mejorar la aproximació. Asímismo, como se está aproximado probabilidades de ua distribució discreta por probabilidades de ua distribució cotíua, se debe aplicar u Factor de Correcció por Cotiuidad de 1/, ates de calcular las probabilidades. Este 1/ se explica porque u valor etero k de la variable discreta represeta a todos los valores de la variable cotiua que cae e el itervalo ( k 1, k + 1 ). Cuado el tamaño de muestra es bie grade etoces el efecto de cosiderar el factor de correcció por cotiuidad es isigificate. Fórmulas de aproximació Normal a la Biomial. Si X es ua Biomial co parámetros y p, etoces k.5 p k +.5 p i) P( X = k) P( k.5 < X < k +.5) = P( < Z < ) ii) P( a < X < b) = P( a +.5 < X < b.5) = P( < Z < ) pq a +.5 p pq a.5 p pq b.5 p iii) P( a X b) = P( a.5 < X < b +.5) = P( < Z < ) pq pq b +.5 p Similarmete se puede defiir fórmulas para aproximar probabilidades para proporcioes muestrales. pq

7 Edgar Acuña Capítulo 6 Distribucioes Muestrales 156 Ejemplo 6.4. Segú reportes del cetro acioal para estadísticas de salud, alrededor del 0 % de la població masculia adulta de los Estados Uidos es obesa. Se elige al azar ua muestra de 150 hombres adultos e los Estados Uidos. Cuál es la probabilidad de que: a) Haya a lo más 5 persoas obesas? b) Haya más de pero meos de 35 obesos? c) Haya por lo meos u 5% de obesos e la muestra? Solució: Sea X el úmero de persoas obesas e la muestra. Usado aproximació ormal a la Biomial se tiee que: a) P ( X 5 ) P( X < 5.5) = P Z < = P( Z < 0.91) = b) P ( < X < 35) P(.5 < x < 34.5) = P < Z < = 4 4 P ( 1.53 < Z < 0.91) = = c) P( p ˆ.5) = P( X 37.5) = P( Z > ) = P(Z>1.53) = 1-P(Z<1.53) = = La distribució de la proporció muestral será usado cuado se haga iferecia acerca de la proporció poblacioal a ser discutida e el próximo capitulo.

8 Edgar Acuña Capítulo 6 Distribucioes Muestrales 157 EJERCICIOS 1. Los tiempos de espera e la fila de u proceso de matrícula de ua uiversidad se distribuye ormalmete co media 45 miutos y desviació estádar de 0 miutos. Se elige al azar ua muestra de 16 estudiates que se va a matricular. a) Cuál es la probabilidad de que el tiempo de espera promedio de la muestra sea mayor de 60 miutos? b) Cuál es la probabilidad de que el tiempo de espera promedio de la muestra sea mayor de 35 miutos pero meor de 55 miutos?. Los tiempos que se demora los empleados de ua fábrica e realizar ua tarea de esamblaje se distribuye ormalmete co media de 1 miutos y desviació estádar de 6. Se toma ua muestra de 10 empleados. a) Cuál es la probabilidad de que el tiempo promedio que usa los empleados para termiar la tarea de esamblaje sea mayor de 15, pero meor de 17 miutos? b) Si los 10 empleados tarda meos de hora y media e termiar la tarea de esamblaje etoces la fábrica recibe u premio. Cuál es la probabilidad de que esto ocurra? 3. El coteido promedio de cereal e u paquete es de 450 gramos co ua desviació estádar de 13 gramos. Si se tomó ua muestra de 35 paquetes a) Cuál es la probabilidad de que el promedio de esta muestra sea mayor a 455 gramos? b) Cuál es la probabilidad de que el promedio de ésta muestra se ecuetre etre 445 y 458 gramos? 4. Haga uso del programa MINITAB para: a) Geerar 60 muestras aleatorias de tamaño 5 de ua població ormal co media 60 y deviació estadar 13. b) Calcule la media para cada muestra geerada e la parte a). c) Calcule la desviació estádar de los promedios calculados e la parte a) d) Compare los resultados obteidos e la parte b) y c), co lo propuesto e la parte a) 5. U restaurat determió que e 1 de cada 5 almuerzos vedidos el cliete pide u postre. Si e u día el restaurat realiza 600 vetas: a) Calcular la probabilidad de más de 150 clietes acompañe su almuerzo co u postre. b) Calcular la probabilidad de que a lo más 450 clietes acompañe su almuerzo co u postre. 6. E la época de iviero e los Estados Uidos se estima que el 90% de la població cotrae efermedades respiratorias. Para ua muestra de 350 Cuál es la probabilidad de que más de 315 podria evetualmete sufrir algú tipo de efermedades respiratorias?.

6. DISTRIBUCIONES MUESTRALES

6. DISTRIBUCIONES MUESTRALES 6. DISTRIBUCIONES MUESTRALES DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber acerca del comportamieto de parámetros poblacioales tales como: la media ( ), la variaza ( ) o la proporció

Más detalles

6. DISTRIBUCIONES MUESTRALES

6. DISTRIBUCIONES MUESTRALES 6. DISTRIBUCIONES MUESTRALES Dr. Edgar Acua http://math.uprm.edu/~edgar UNIVERSIDAD DE UERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

MUESTREO Y ESTIMACIÓN ESTADÍSTICA

MUESTREO Y ESTIMACIÓN ESTADÍSTICA 1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso

Más detalles

EJERCICIOS RESUELTOS TEMA 8

EJERCICIOS RESUELTOS TEMA 8 EJERCICIOS RESUELTOS TEMA 8 8.. U ivestigador desea coocer la opiió de los madrileños sobre la saidad pública. Para ello, acude a las 8 de la mañaa al hospital público de la capital más cercao a su domicilio

Más detalles

SESION 15 DISTRIBUCIONES DE MUESTREO

SESION 15 DISTRIBUCIONES DE MUESTREO SESION 15 DISTRIBUCIONES DE MUESTREO I. CONTENIDOS: 1. Distribució de muestreo. 2. Distribucioes de muestreo de la media 3. Media, mediaa y moda, así como su relació co la desviació estádar de las distribucioes

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3 Estadística y sus aplicacioes e Ciecias Sociales Práctico 4 - Solució Curso 016 Ejercicio 1 5! 1) Como se trata de muestreo si reposició, se tiee C 5 3 3!! muestras de tamaño =3. ) Distribució muestral

Más detalles

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la

Más detalles

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN INFERENCIA ESTADÍSTICA Y ESTIMACIÓN La estadística iferecial se ocupa de exteder o extrapolar a toda ua població, iformacioes obteidas a partir de ua muestra, así como de tomar de decisioes. El muestreo

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

Tema 2. Medidas descriptivas de los datos

Tema 2. Medidas descriptivas de los datos Tema 2. Medidas descriptivas de los datos Resume del tema 2.1. Medidas de posició So valores que os sirve para idicar la posició alrededor de la cual se distribuye las observacioes. 2.1.1. Mediaa La mediaa

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A EXAMEN COMPLETO Istruccioes: a) Duració: 1 hora y 30 miutos. b) Elija ua de las dos opcioes propuestas y coteste los ejercicios de la opció elegida. c) E cada ejercicio, parte o apartado se idica la putuació

Más detalles

Formulas. Población infinita. Población finita

Formulas. Población infinita. Población finita Formulas X~N(μ, σ 2 ) x = x i x ~N si X~N o si > 30 Població ifiita Població fiita x ~N(μ, σ2 ) N x ~N(μ, N 1 σ2 ) Ejercicio Se sabe que la media poblacioal e u exame de Estadística es de 70 y que la variaza

Más detalles

Práctica 7 CONTRASTES DE HIPÓTESIS

Práctica 7 CONTRASTES DE HIPÓTESIS Práctica 7. Cotrastes de hipótesis Práctica 7 CONTRATE DE IPÓTEI Objetivos Utilizar los cotrastes de hipótesis para decidir si u parámetro de la distribució de uos datos objeto de estudio cumple o o ua

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción Curso de Estadística Aplicada a las Ciecias Sociales Tema 11. Estimació de ua (Cap. 1 del libro) Tema 11. Estimació de ua Itroducció 1. Distribució de la e el. La muestral es cetrada 3. El error típico

Más detalles

IntroducciónalaInferencia Estadística

IntroducciónalaInferencia Estadística Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla

Más detalles

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple)

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple) 1 Muestreo Tema 1 1. Muestreo. Muestreo aleatorio 3. Tipos de muestreo aleatorio 3.1. Muestreo aleatorio si reposició 3.. Muestreo aleatorio co reposició (muestreo aleatorio simple) 3.3. Muestreo aleatorio

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo: TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo,

Más detalles

Determinación del tamaño de una muestra (para dos o más muestras)

Determinación del tamaño de una muestra (para dos o más muestras) STATGRAPHICS Rev. 457 Determiació del tamaño de ua muestra (para dos o más muestras) Este procedimieto determia el tamaño de muestra apropiado para estimar o realiar pruebas de hipótesis respecto a alguo

Más detalles

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos: T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.

Más detalles

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS 8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS Sea ua variable aleatoria de ley descoocida co 0,00. Si 0,, emplear la desigualdad de TCHEBYCHEFF para acotar iferiormete la probabilidad E( ) [

Más detalles

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA . Metodología e Salud Pública INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA Autor: Clara Lagua 5.1 INTRODUCCIÓN La estadística iferecial aporta las técicas ecesarias para extraer

Más detalles

PROBLEMAS DE LOS TEMAS 5, 6 Y 7 PROPUESTOS EN EXÁMENES DE ESTADÍSTICA EMPRESARIAL (ANTIGUA LICENCIATURA ADE)

PROBLEMAS DE LOS TEMAS 5, 6 Y 7 PROPUESTOS EN EXÁMENES DE ESTADÍSTICA EMPRESARIAL (ANTIGUA LICENCIATURA ADE) TUTORÍA DE ETADÍTICA EMPREARIAL (º A.D.E.) e-mail: imozas@elx.ued.es https://www.iova.ued.es/webpages/ilde/web/idex.htm PROBLEMA DE LO TEMA 5, 6 Y 7 PROPUETO EN EXÁMENE DE ETADÍTICA EMPREARIAL (ANTIGUA

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO Objetivos geerales del tema E este tema se itroducirá el cocepto de estadístico como medio para extraer iformació acerca de la ley de

Más detalles

Tema 9. Inferencia Estadística. Intervalos de confianza.

Tema 9. Inferencia Estadística. Intervalos de confianza. Tema 9. Iferecia Estadística. Itervalos de cofiaza. Idice 1. Itroducció.... 2 2. Itervalo de cofiaza para media poblacioal. Tamaño de la muestra.... 2 2.1. Itervalo de cofiaza... 2 2.2. Tamaño de la muestra...

Más detalles

Teorema del límite central

Teorema del límite central Teorema del límite cetral Carles Rovira Escofet P03/75057/01008 FUOC P03/75057/01008 Teorema del límite cetral Ídice Sesió 1 La distribució de la media muestral... 5 1. Distribució de la media muestral

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

Para resolver una probabilidad con la distribución binomial se aplica la siguiente fórmula

Para resolver una probabilidad con la distribución binomial se aplica la siguiente fórmula CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: ESTADISTICA DE LA PROBABILIDAD DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD

Más detalles

1. Propiedades de los estimadores

1. Propiedades de los estimadores . Propiedades de los estimadores.. Eficiecia relativa. Defiició: Dados dos estimadores isesgados, ˆ y ˆ, de u parámetro, co variazas V ( ˆ ) y V ( ˆ ), etoces la eficiecia (eff) de ˆ respecto a ˆ, se defie

Más detalles

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales.

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales. Resume Tema 2: Muestreo aleatorio simple. Muestreo co probabilidades desiguales. M.A.S.: Muestreo aleatorio simple co probabilidades iguales si reemplazo. Hipótesis: Marco perfecto, si omisioes i duplicados

Más detalles

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n.

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n. 1. Teorema del Límite Cetral Teorema: ea Y 1, Y,..., Y variables aleatorias idepedietes idéticamete distribuidas co EY i = µ y V Y i =

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció

Más detalles

6. DISTRIBUCIONES MUESTRALES CONTENIDO 6 DISTRIBUCIONES MUESTRALES INTRODUCCION PARÁMETROS Y ESTADÍSTICOS...

6. DISTRIBUCIONES MUESTRALES CONTENIDO 6 DISTRIBUCIONES MUESTRALES INTRODUCCION PARÁMETROS Y ESTADÍSTICOS... 6. DISTRIBUCIONES MUESTRALES CONTENIDO 6 DISTRIBUCIONES MUESTRALES... 7 6. INTRODUCCION...7 6. PARÁMETROS Y ESTADÍSTICOS...8 6.3 DISTRIBUCIÓN DEL PROMEDIO MUESTRAL...9 6.4 DISTRIBUCIÓN DE LA FRECUENCIA

Más detalles

Práctica 2 VARIABLES ALEATORIAS CONTINUAS

Práctica 2 VARIABLES ALEATORIAS CONTINUAS Práctica. Objetivos: a) Apreder a calcular probabilidades de las distribucioes Normal y Chi-cuadrado. b) Estudio de la fució de desidad de la distribució Normal ~ N(µ;σ) c) Cálculo de la fució de distribució

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

EJERCICIOS TEMA 8. INFERENCIA ESTADISTICA

EJERCICIOS TEMA 8. INFERENCIA ESTADISTICA º BACHILLERATO. CIENCIAS SOCIALES 1. Ua variable aleatoria tiee ua distribució ormal de media m y desviació típica s. Si se extrae muestras aleatorias de tamaño : a) Qué distribució tiee la variable aleatoria

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

Estadística Teórica II

Estadística Teórica II tervalos de cofiaza Estadística Teórica NTERVALOS DE CONFANZA Satiago de la Fuete Ferádez 77 tervalos de cofiaza CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA.

Más detalles

PRUEBAS DE HIPÓTESIS.

PRUEBAS DE HIPÓTESIS. PRUEBAS DE HIPÓTESIS. HIPÓTESIS ESTADÍSTICA Paramétrica : No Paramétrica Es ua afirmació sobre los valores de los parámetros poblacioales descoocidos. Es ua afirmació sobre algua característica Simple

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 1) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Ua fábrica de muebles dispoe de 600 kg de madera para fabricar librerías de 1 y de 3 estates.

Más detalles

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS)

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 1 Supogamos que ua variable aleatoria X sigue ua ley N(µ; =,9). A partir de ua muestra de tamaño = 1, se obtiee ua media muestral

Más detalles

SEMANA 01. CLASE 01. MARTES 04/10/16

SEMANA 01. CLASE 01. MARTES 04/10/16 EMANA 0. CLAE 0. MARTE 04/0/6. Experimeto aleatorio.. Defiició. Experimeto e el cual o se puede predecir el resultado ates de realizarlo. Para que u experimeto sea aleatorio debe teer al meos dos resultados

Más detalles

1. QUÉ ES LA ESTADÍSTICA?

1. QUÉ ES LA ESTADÍSTICA? 1. QUÉ ES LA ESTADÍSTICA? Cuado coloquialmete se habla de estadística, se suele pesar e ua relació de datos uméricos presetada de forma ordeada y sistemática. Esta idea es la cosecuecia del cocepto popular

Más detalles

1. Intervalos de Conanza

1. Intervalos de Conanza M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.: Itervalos de coaza Objetivos Costruir itervalos de coaza para los parámetros más importates. Aplicar coveietemete los IC atediedo a cada situació

Más detalles

Probabilidad y estadística

Probabilidad y estadística Probabilidad y estadística MEDIDAS DE TENDENCIA CENTRAL, MEDIDAS DE DISPERSIÓN, GRÁFICAS, E INTERPRETANDO RESULTADOS Prof. Miguel Hesiquio Garduño. Est. Mirla Beavides Rojas Depto. De Igeiería Química

Más detalles

Población Joven Adulta Total A favor En contra Total

Población Joven Adulta Total A favor En contra Total Nombre: Libre Reglametado C.I.: EXAMEN El exame costa de dos partes. La Primera Parte debe ser realizada por todos los alumos y el tiempo previsto es de 2 horas. La Seguda Parte debe ser realizada sólo

Más detalles

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky 106 1. INTERVALO DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL upogamos que X1,...,X es ua muestra aleatoria de ua

Más detalles

INTERVALOS DE CONFIANZA

INTERVALOS DE CONFIANZA Gestió Aeroáutica: Estadística Teórica Facultad Ciecias Ecoómicas y Empresariales Departameto de Ecoomía Aplicada Profesor: Satiago de la Fuete Ferádez NTERVALOS DE CONFANZA Gestió Aeroáutica: Estadística

Más detalles

13.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

13.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Dra. Diaa M. Kelmasky 109 13. INTERVALOS DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL Supogamos que X1,...,X es ua muestra aleatoria de ua població ormal co media μ y variaza. Sabemos que la media

Más detalles

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos Probabilidad y Estadística 3 Itervalos de Cofiaza y Test de Hipótesis paramétricos Itervalos de Cofiaza Defiició Dada ua muestra aleatoria simple es decir, u vector de variables aleatorias X co compoetes

Más detalles

CONTRASTE DE HIPÓTESIS

CONTRASTE DE HIPÓTESIS Estadística: Cotraste de hipótesis 1 CONTRASTE DE HIPÓTESIS 1. Cotraste de hipótesis sobre la media poblacioal Se parte de ua població supuestamete ormal de media y desviació típica N(, ); se tipifica

Más detalles

CAPÍTULO 7 DISTRIBUCIONES EN EL MUESTREO Introducción

CAPÍTULO 7 DISTRIBUCIONES EN EL MUESTREO Introducción CAPÍTULO 7 DISTRIBUCIONES EN EL MUESTREO 7.. Itroducció Geeralmete, las poblacioes tiee tamaños que hace que estudiarla e su totalidad sea poco práctico desde diversos putos de vista; costo, tiempo, tipo

Más detalles

TEMA 3: INFERENCIA ESTADISTICA

TEMA 3: INFERENCIA ESTADISTICA ESTADÍSTICA, CURSO 008 009 TEMA 3: INFERENCIA ESTADISTICA INTRODUCCION oblació. Muestra, muestreo. Objetivos de la iferecia estadística. Métodos paramétricos y o paramétricos. TEORIA ELEMENTAL DEL MUESTREO.

Más detalles

Muestreo e Intervalos de Confianza

Muestreo e Intervalos de Confianza Muestreo e Itervalos de Cofiaza PROBLEMAS DE SELECTIVIDAD RESUELTOS MUESTREO E INTERVALOS DE CONFIANZA 1) E ua població ormal co variaza coocida se ha tomado ua muestra de tamaño 49 y se ha calculado su

Más detalles

Mirando las gráficas, justifica estas afirmaciones: Cuantos más dados intervienen, más se parece la distribución de sus promedios a la curva normal.

Mirando las gráficas, justifica estas afirmaciones: Cuantos más dados intervienen, más se parece la distribución de sus promedios a la curva normal. Uidad 1. Iferecia estadística. Estimació de la media Matemáticas aplicadas a las Ciecias Sociales II Resuelve Págia 85 Lazamieto de varios dados Comprueba e la tabla aterior ue: DESV. TÍPICA DESV. TÍPICA

Más detalles

Intervalos de confianza para la media

Intervalos de confianza para la media Itervalos de cofiaza para la media Ejercicio º 1.- Las vetas diarias, e euros, e u determiado comercio sigue ua distribució N(950, 200). Calcula la probabilidad de que las vetas diarias e ese comercio:

Más detalles

Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD. X- μ. f(x) = e para - < x < Z 2. . e para - < z <

Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD. X- μ. f(x) = e para - < x < Z 2. . e para - < z < Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD La distribució ormal: La distribució ormal, campaa de Gauss o, curva ormal, tambié defiida por De Moivre. Características y propiedades: La siguiete fórmula

Más detalles

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA. Esquema del procedimiento de Prueba de Hipótesis

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA. Esquema del procedimiento de Prueba de Hipótesis PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA Pruebas de hipótesis es ua parte de la ESTADISTICA INFERENCIAL y tiee su aalogía co los pasos que se realiza e u JUICIO. Objetivo: Aquí o se busca Estimar

Más detalles

Distribuciones muestrales y el teorema del límite central

Distribuciones muestrales y el teorema del límite central CAPÍTULO 7 Distribucioes muestrales y el teorema del límite cetral 7.1 Itroducció 7.2 Distribucioes muestrales relacioadas co la distribució ormal 7.3 Teorema del límite cetral 7.4 Ua demostració del teorema

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

Secretaría de Extensión Universitaria. Trabajo Practico N 3

Secretaría de Extensión Universitaria. Trabajo Practico N 3 Trabajo Practico N 3 Medidas de Tedecia Cetral La Media (promedio), se deota como x, de ua muestra es el promedio aritmético de sus valores. Y se calcula mediate al formula: Si aparece los datos agrupados

Más detalles

República Bolivariana de Venezuela Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática

República Bolivariana de Venezuela Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática República Bolivariaa de Veezuela Uiversidad Nacioal Abierta Vicerrectorado Académico Área de Matemática Fórmulas y Tablas Cursos: 738, 745, 746 y 748 Prof. Gilberto Noguera Lista de Formulas N 1) µ = x

Más detalles

MATEMÁTICAS. TEMA Inferencia Estadística.

MATEMÁTICAS. TEMA Inferencia Estadística. MATEMÁTICAS TEMA 11-12 Iferecia Estadística. . ÍNDICE 1. Itroducció. 2. Tabla Normal (0,1). 3. Itervalos de cofiaza. 3.1. Itervalo de cofiaza para la media 3.2. Itervalo de cofiaza para la proporció 4.

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

Ejercicios resueltos de Muestreo

Ejercicios resueltos de Muestreo Tema Ejercicios resueltos de Muestreo Ejercicio Sea ua població ita de 4 elemetos: P = f; 4; ; g : Se cosidera muestras de elemetos que se supoe extraidos y o devueltos a la població y que el muestreo

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD PAUTA DE CORRECCIÓN PRUEBA RECUPERATIVA N 2 Profesor: Hugo S. Salias. Segudo Semestre 2009 DESARROLLO

Más detalles

Introducción a las medidas de dispersión.

Introducción a las medidas de dispersión. UNIDAD 8: INTERPRETEMOS LA VARIABILIDAD DE LA INFORMACION. Itroducció a las medidas de dispersió. Como su ombre lo idica, las medidas de dispersió so parámetros que os idica qué ta dispersos está los datos.

Más detalles

ESTIMACIONES DE MEDIAS

ESTIMACIONES DE MEDIAS COLEGIO SAN BARTOLOMÉ LA MERCED ESTADÍSTICA GRADO ESTIMACIÓN 0-0 Símbolos que se debe teer e cueta: POBLACIÓN MUESTRA MEDIA VARIANZA DESVIACIÓN ESTÁNDAR TAMAÑO N La estimació cosiste e determiar el valor

Más detalles

MATEMÁTICAS 2º BACH. CC. SS. 4 de abril de 2006 Probabilidades

MATEMÁTICAS 2º BACH. CC. SS. 4 de abril de 2006 Probabilidades MATEMÁTIAS º BAH.. SS. 4 de abril de 006 Probabilidades 1) Sea A y B dos sucesos idepedietes tales que B) = 0.05 y A/ B) = 0.35. a) uál es la probabilidad de que suceda al meos uo de ellos? ( putos) b)

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribucioes de probabilidad 1. Variable aleatoria real: Ejemplo: Ua variable aleatoria X es ua fució que asocia a cada elemeto del espacio muestral E u úmero X: E ú Cosideremos el experimeto aleatorio

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Primer Semestre. EstadísTICa Curso Primero Graduado e Geomática y Topografía Escuela Técica Superior de Igeieros e Topografía, Geodesia y Cartografía. Uiversidad Politécica de Madrid

Más detalles

Contrastes de hipótesis

Contrastes de hipótesis Cotrastes de hipótesis Ejercicio º 1.- E u determiado istituto asegura que las otas obteidas por sus alumos e las pruebas de acceso a la Uiversidad tiee ua media igual o superior a 7 putos. Pero la media

Más detalles

UNIDAD 7: ESTADÍSTICA INFERENCIAL

UNIDAD 7: ESTADÍSTICA INFERENCIAL UNIDAD 7: ESTADÍSTICA INFERENCIAL ÍNDICE DE LA UNIDAD 1.- INTRODUCCIÓN.... 1.- VARIABLES ESTADÍSTICAS. PARÁMETROS... 3.- DISTRIBUCIONES DE PROBABILIDAD... 3 3.1.- Distribució Biomial... 4 3..- Distribució

Más detalles

Intervalo de confianza para µ

Intervalo de confianza para µ Itervalo de cofiaza para p y ˆp1 ˆp ˆp1 ˆp ˆp z 1 α/ ; ˆp + z 1 α/, 7.6 ˆp + z 1 α/ ± z 1 α/ 1 + z 1 α/ ˆp1 ˆp + z 1 α/ 4 7.7 siedo ˆp = x/ y z 1 α/ el cuatil 1 α/ de la distribució ormal estádar. El itervalo

Más detalles

Pasos básicos para docimar una hipótesis:

Pasos básicos para docimar una hipótesis: Pasos básicos para docimar ua hipótesis:. Defiir cual es la població y el o los parámetro de iterés.. Establecer la hipótesis (ula y alterativa). 3. Establecer el ivel de sigificació α. 4. Recoger los

Más detalles

OPCIÓN A EJERCICIO 1_A 1 0 2

OPCIÓN A EJERCICIO 1_A 1 0 2 IES Fco Ayala de Graada Sobrates de 007 (Modelo 6) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 0 - Sea las matrices A, B - 1 0 5 (1 5 putos) Calcule B.B t - A.A t (1 5 putos) Halle la matriz

Más detalles

PyE_ EF2_TIPO1_

PyE_ EF2_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EXAMEN FINAL RESOLUCIÓN

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

Bloque 3 Tema 12 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS

Bloque 3 Tema 12 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS Bloque 3 Tema 1 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS Hay ocasioes e las que teemos que tomar decisioes relativas a ua població sobre la base de los coocimietos que

Más detalles

Intervalos de Confianza

Intervalos de Confianza Itervalos de Cofiaza 1.- Se quiere estudiar la vida útil de uas uevas pilas que se va a lazar al mercado. Para ello se examia la duració de 40 de ellas, resultado ua media de 63 horas. Supoiedo que el

Más detalles

Inferencia estadística

Inferencia estadística UNIDAD 0 Iferecia estadística Objetivos Al fializar la uidad, el alumo: determiará si u estimador es sesgado o isesgado resolverá problemas de itervalos de cofiaza para la media, diferecia de medias, variaza

Más detalles

TEMA 6 MUESTRAS ALEATORIAS Y DISTRIBUCIONES EN EL MUESTREO

TEMA 6 MUESTRAS ALEATORIAS Y DISTRIBUCIONES EN EL MUESTREO .- Itroducció: TEMA MUESTRAS ALEATORIAS Y DISTRIBUCIONES EN EL MUESTREO Los aálisis estadísticos que se realiza e el mudo real tiee como objetivo estudiar las propiedades características de las poblacioes

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

Conceptos generales de inferencia estadística. Estimación de parámetros. Intervalos de confianza.

Conceptos generales de inferencia estadística. Estimación de parámetros. Intervalos de confianza. FCEyN - Estadística para Química do. cuat. 006 - Marta García Be Coceptos geerales de iferecia estadística. Estimació de parámetros. Itervalos de cofiaza. Iferecia estadística: Dijimos e la primera clase

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

IES Fco Ayala de Granada Modelo 2 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 2 DEL 2015 OPCIÓN A

IES Fco Ayala de Granada Modelo 2 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 2 DEL 2015 OPCIÓN A IES Fco Ayala de Graada Modelo del 015 (Solucioes) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO DEL 015 OPCIÓN A EJERCICIO 1 (A) 1-1 Sea las matrices A = 0 1-1, B = 1 1, C = ( 1),

Más detalles

Tema 8. Sesiones 15 y 16 Guía de clase 8. CONTRASTE DE HIPOTESIS

Tema 8. Sesiones 15 y 16 Guía de clase 8. CONTRASTE DE HIPOTESIS UNIVERSIDAD DE LOS ANDES NUCLEO UNIVERSITARIO RAFAEL RANGEL DEPTO DE CIENCIAS ECONOMOMICAS Y ADMIMISTRATIVAS AREA DE ESTADÍSTICA ESTADÍSTICA BASICA CONTADURÍA PÚBLICA Tema 8. Sesioes 5 y 6 Guía de clase

Más detalles

Unidad N 2. Medidas de dispersión

Unidad N 2. Medidas de dispersión Uidad N 2 Medidas de dispersió Ua seguda propiedad importate que describe ua serie de datos uméricos es ua variació. La variació es la catidad de dispersió o propagació e los datos. Dos series de datos

Más detalles

Muestreo. Tipos de muestreo. Inferencia Introducción

Muestreo. Tipos de muestreo. Inferencia Introducción Germá Jesús Rubio Lua Catedrático de Matemáticas del IES Fracisco Ayala Muestreo. Tipos de muestreo. Iferecia Itroducció Nota.- Puede decirse que la Estadística es la ciecia que se preocupa de la recogida

Más detalles

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo Modelos lieales e Biología, 5ª Curso de Ciecias Biológicas Clase 8/10/04 Estimació y estimadores: Distribucioes asociadas al muestreo Referecias: Cualquiera de los textos icluidos e la bibliografía recomedada

Más detalles