Ejemplo: Para indicar el conjunto (que llamaremos M), formado por los números 4, 6 y 8, escribimos: M = { 4, 6, 8}

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejemplo: Para indicar el conjunto (que llamaremos M), formado por los números 4, 6 y 8, escribimos: M = { 4, 6, 8}"

Transcripción

1 NÚMEROS REALES. BREVE REPASO DE LA TEORÍA DE CONJUNTOS En est unidd utilizremos ls notciones l terminologí de conjuntos. L ide de conjunto se emple mucho en mtemátic se trt de un concepto básico del que no dremos un definición forml. Podemos decir que un conjunto es un grupción de objetos distintos (pero con lgun crcterístic en común), los que reciben el nombre de elemento. Generlmente se nombr un conjunto con un letr múscul, un elemento de ese conjunto con un letr minúscul. Un conjunto puede especificrse de dos mners: ) hciendo un list de los elementos del conjunto (enumerción), en cuo cso lo describiremos utilizndo un notción de uso universl. Pr indicr el conjunto (que llmremos M), formdo por los números 4, 6 8, escribimos: M { 4, 6, 8} b) estbleciendo un propiedd que crcterice los elementos del conjunto (comprensión). Pr indicr el mismo conjunto M escribimos: M { / es un número pr comprendido entre 9} o bien M { / N < < 9} Recordr que: / : se lee tl que : se lee : se lee pertenece < : se lee menor que : se lee o

2 A menudo result de grn utilidd pr visulizr ciertos conjuntos, representrlos medinte un recinto plno limitdo por un líne cerrd, cundo se representn los elementos del conjunto se conviene en hcerlo mrcndo un punto interior. Est representción se llm digrm de Venn. Se emple el símbolo pr indicr que un elemento específico pertenece l conjunto; el símbolo pr indicr que un elemento específico no es elemento de un conjunto. A {,,, 4, } A { / es un número nturl menor que 6 } A { / N < 6 } donde A ; A ; 6 A A Ddos los conjuntos A B, si todo elemento de A es elemento de B se indic A B ( A está incluído en B, o A es prte de B). Mientrs que si A no es prte de B, es decir que h lgún elemento de A que no es elemento de B, se escribe A B. A {, } B {,,,4 } B A....4 A B Se dice que dos conjuntos A B son igules ( se escribe A B ) si A B poseen elementos idénticos, es decir si A B B A. Mientrs que si h lgún elemento de A que no es elemento de B ó si h lgún elemento de B que no es elemento de A se dice que A B.

3 símbolo. El conjunto que no tiene elementos se denomin conjunto vcío se represent con el Ejemplos: A { / N } ó A B { : < 0 } ó B Se llm conjunto universl (o referencil) se denot con U l conjunto que contiene todos los elementos de todos los conjuntos considerdos del tem trtdo. U { / N} A { / N es pr } B { / N es impr } Se llm complemento de A (respecto de U l conjunto de elementos de U que no están en A. Pr indicr el complemento del conjunto A, usremos el símbolo A. U {,,, 4,, 6, 7, 8, 9} U A {, {,, 4, 4, 6,, 8} 6, 7, 8, 9} A {,,, 7, 9} A B {, {, 4, 6,, 8}, 4, } A B {,, {, 6, 7, 9} 8, 9 } B {,,, 4, } B { 6, 7, 8, 9 } Operciones entre conjuntos Alguns operciones entre conjuntos que utilizremos son: unión, intersección diferenci. L unión de dos conjuntos A B (representd A B ) es el conjunto de elementos que se encuentrn en A o en B o en mbos. En símbolos: A B { / A B }

4 A { / Z - < } A {-, -, 0,, } B { / Z 0 } B { 0,,,, 4, } A B {-, -, 0,,,, 4, } L intersección de dos conjuntos A B (representd A B ) es el conjunto de elementos que se encuentrn tnto en A como en B ( o se los elementos comunes A B). En símbolos: A B { / A B } A { / Z - < } A {-, -, 0,, } B { / Z 0 } B { 0,,,, 4, } A B { 0,, } L diferenci entre los conjuntos A B (representd A B ) es el conjunto formdo por los elementos de A que no son elementos de B. En símbolos: A - B { / A B } A { / Z - < } A {-, -, 0,, } B { / Z 0 } B { 0,,,, 4, } A - B {-, - } B - A {, 4, } 4

5 A modo de resumen de ls operciones vists,se present el siguiente ejemplo: A {,,, 4,, 6, 7, 8} B {, 4, 6, 0, } ) A B {,,, 4,, 6, 7, 8, 0, } ) A B {, 4, 6} ) A B {,,, 7, 8} 4) B A {0, } Est situción se puede representr medinte el digrm de Venn siguiente. A B Cd zon sombred corresponde l operción indicd A B A B A B A B A B A B A - B B - A

6 . LOS NÚMEROS REALES.. Conjunto de los números reles Aunque l Mtemátic v más llá del estudio de los números, comenzremos trbjndo con el conjunto de los números reles. Recordremos que el conjunto de los números nturles o enteros positivos, se compone de: N {,,, 4,... }; que N es un subconjunto del conjunto de los enteros: Z {..., -, -, 0,,,, 4,...}. El conjunto Z inclue tnto los enteros positivos como los negtivos el número cero, el cul no es ni negtivo ni positivo. A su vez el conjunto de enteros es un subconjunto del conjunto de los números rcionles (que denotremos con Q): p Q { / p q son enteros, q 0 }. El conjunto Q está compuesto de todos los cocientes de dos q enteros, siempre que el denomindor no se cero. El conjunto de los números rcionles no es suficiente pr solucionr ciertos problems elementles lgebricos geométricos. Por ejemplo no h un número rcionl p / q pr el p que, o se que el número q no es un número rcionl, pertenece l conjunto de los números irrcionles, es decir l conjunto de números reles que no puede epresrse como cociente de dos enteros. Otros ejemplos de números irrcionles: π, e,, - 7. Luego podemos firmr que: N Z Q R. R N Z Q 6

7 .. Sistem de números reles El sistem de números reles consiste en un conjunto de elementos denomindos números reles dos operciones conocids como dición multiplicción. El conjunto de números reles se represent R. L operción de l dición se represent con el símbolo (+), l multiplicción por ( ). Si b son elementos del conjunto R, + b design l sum de de b, mientrs que. b design su producto. El sistem de números reles se puede describir completmente por un conjunto de ioms (enuncido forml que se d por cierto sin necesidd de demostrrlo). Con estos ioms podemos deducir ls propieddes de los números reles de ls cules siguen ls operciones lgebrics de dición, sustrcción, multiplicción división. PROPIEDADES BÁSICAS Ls propieddes básics del sistem de números reles con respecto ls operciones de dición multiplicción son ls siguientes: Sen, b c dos números reles: Adición Multiplicción ) Le clusurtiv (le de cierre) + b es un número rel. b es un número rel ) L sum es socitiv + ( b + c) ( + b) + c El producto es socitivo. ( b. c) (. b). c ) L sum es conmuttiv + b b + El producto es conmuttivo. b b. 4) Eiste elemento neutro pr l sum A Eiste elemento neutro pr el producto.. ) Pr cd número rel eiste un único número rel (llmdo negtivo o inverso ditivo de ), representdo por (-) tl que: + (-) - 0 Pr cd número rel 0 eiste un único número rel (llmdo recíproco o inverso multiplictivo de ),representdo por / o tmbién por tl que:.. 7

8 86) Propiedd distributiv ( el producto es distributivo respecto de l sum). ( b + c ) (.b) +(.c) b + c ( + b ) c (.b) +(.c) c + bc OTRAS PROPIEDADES Muchs otrs propieddes de los números reles pueden demostrrse prtir de ls propieddes básics. Alguns que utilizremos son ls siguientes: ) Le cnceltiv ( o nultiv) Si + c b + c entonces b Si.c b.c, entonces b b) (Si b, entonces + c b + c ) ( Si b, entonces.c b.c) c) Si. b 0 0 ó b 0 d) Pr los números b, l diferenci b se define como: b + ( - b ) Si b 0, el cociente / b se define : b. b b En el cociente b, se llm numerdor b se llm denomindor. Con frecuenci el cociente de dos números reles se llm frcción. Recordr que b no está definid pr b 0. No tods ls propieddes que funcionn pr l dición l multiplicción son válids pr l sustrcción l división. Hremos un list de otrs propieddes importntes. e) ( -). - f) - (- ) g) (- ). b. (- b) - (.b) - b h) (- ) ( - b ) b i) ( + b) (- ) + (- b) b j) ( - ) - k) ( b) - b 8

9 .. Los números reles l rect Al conjunto R se le impone un condición denomind iom de completitud (que no estudiremos hor). Sin embrgo dremos un interpretción geométric l conjunto de números reles sociándolos los puntos de un rect horizontl llmd eje. El iom de completitud grntiz un correspondenci biunívoc (de uno uno) entre el conjunto R el conjunto de puntos en el eje. Se elige un punto en el eje pr que represente el punto 0. Este punto recibe el nombre de origen. Se seleccion luego un unidd de distnci. Entonces cd número positivo quedrá representdo por un punto situdo un distnci de uniddes l derech del origen, cd número negtivo se representrá por un punto un distnci de uniddes l izquierd del origen. Eiste un correspondenci biunívoc entre R los puntos del eje, es decir, cd número rel le corresponde un único punto en el eje cd punto en el eje se le soci un único número rel. A l rect R se l denomin rect de números reles o rect numéric Orden en los reles Eiste un ordenmiento en el conjunto R por medio de un relción denotd por los símbolos < ( menor que ) > ( mor que ) que se definen sí: < b si sólo si b es positiv. > b si sólo si b es positiv. L relción de orden sí definid verific ls siguientes propieddes. PROPIEDADES BÁSICAS DEL ORDEN: Sen, b, c R, se cumple : ) Un sólo un de ls siguientes firmciones es verdder: < b, ó > b, ó b ) Si > 0 b > 0, entonces + b > 0. ) Si > 0 b > 0, entonces b > 0. 9

10 Son de uso universl ls siguientes notciones: b si sólo si: < b, o bien b. b si sólo si : > b, o bien b. < b < c pr indicr que < b b < c. b c pr indicr que b b c. OTRAS PROPIEDADES DEL ORDEN EN R Muchs otrs propieddes reltivs l orden pueden demostrrse prtir de ls básics; lguns son ls siguientes: O ) b b b. O ) b b c c. O ) Si > b b > c, entonces > c. (le de trnsitividd) Si < b b < c, entonces < c. O 4) Lees de monotoní de l sum ) Si > b entonces + c > b + c. b) Si < b entonces + c < b + c. c) Si < b c < d entonces + c < b + d. O ) Lees de monotoní del producto: ) Si > b c > 0, entonces c > b c. b) Si < b c > 0, entonces c < b c. c) Si > b c < 0, entonces c < b c. d) Si < b c < 0, entonces c > b c. O 6) Si 0 < <b entonces < b, (donde b bb ) O 7) Si < b< 0 entonces b <. O 8) Si 0 entonces > 0.. 0

11 .. Intervlos Pr indicr que un número se encuentr entre b, o se si < < b. Esto puede escribirse de l siguiente mner: < < b. Tmbién son utilizds ls epresiones: b, < b, < b. Al conjunto formdo por todos los vlores reles de que cumplen con lgun de ls condiciones nteriores se lo denomin intervlo, tiene un notción determind se lo puede representr en l rect numéric. (, b) { R : < < b} (intervlo bierto) [, b] { R : b} (intervlo cerrdo) (, b] { R : < b} (intervlo semibierto l izquierd o semicerrdo) [, b) { R : < b} (intervlo semibierto l derech o semicerrdo) Ejemplos: A { / R - < < } (-, ) B { / R - } [-, ] - - C { / R - < } [-, ) - D { / R - < } (-, ] Otros intervlos: [, + ) { R : } - (, + ) { R : > } (-, ] { R : } (-, ) { R : < } (-, + ) { R } R

12 .6. Otrs operciones: potencición rdicción Potencición Así como un sum repetid se podí escribir 4, el producto repetido se puede escribir En generl, pr culquier entero positivo n, el símbolo n represent el producto de n fctores de. n donde n es el eponente es l bse nveces Tmbién pr culquier entero positivo n definimos - n n De ls propieddes vists del producto surgen ls siguientes PROPIEDADES DE LA POTENCIACIÓN ) m. n m + n b) ( m ) n m. n c) (. ) m m. m d) m m m e) m n m n Ejemplos: ( )... (. )

13 Rdicción Ls ríces de los números reles se definen por el enuncido n r si sólo si r n donde r son números reles no negtivos n es un entero positivo, ó r son números reles negtivos n es un número entero positivo impr. Al número n se lo denomin l ríz enésim de. L epresión n se llm rdicl; el número n es el índice del rdicl se llm rdicndo. El símbolo se llm signo rdicl. PROPIEDADES DE LA RADICACIÓN Ls propieddes siguientes se utilizn pr operr simplificr epresiones que contengn rdicles. Sen m n números positivos e números reles. Entonces: ) ( n ) n b) n. n n. n c) n n d) n m m.n Ejemplos: ) b) ó. 8 8 ( ) c) 8 4 d)

14 Al rcionlizr un denomindor estmos encontrndo un epresión equivlente l dd que no tiene rdicles en el denomindor. Pr ello bst multiplicr l epresión dd por, escrito en form especil ( 7 ) 7 Si un frcción contiene epresiones del tipo ( + ) ó ( ) bstrá multiplicr por un epresión conveniente pr obtener otr epresión, equivlente l dd, pero que no conteng rdicles en el denomindor. Ejemplos: ) ( 7 + ) ( 7 + ) ( 7 + ( 7 ) ( ) 7 4 ) b) ( ) ( ) c) + +. ( ) ( ) ( ) ( ) ( ) 4

15 Eponentes rcionles El concepto de ríz enésim de un número nos permite mplir l definición de eponentes enteros eponentes rcionles, veces es más cómodo trbjr con eponentes rcionles que con rdicles. Si el vlor n está definido, diremos que: Análogmente n n m m n n n m Ejemplos: ) 64 ( ) 6 64 ( ) ( ) 4 6 b) ( ) ( ) ( ) 8 c) d)

16 PROPIEDADES Ls propieddes de l potencición vists pr eponentes enteros positivos tmbién son válids pr los eponentes rcionles o se si e son números reles decudos, r p son números rcionles se cumple que: ) r. p r + p b) ( r ) p r. p c) (. ) r r. r d) r r r e) p r p r Ejemplos:.) b)

17 .7 Vlor bsoluto El vlor bsoluto de un número rel se design medinte, se define como: si 0 si < 0 Geométricmente el vlor bsoluto de un número es l distnci entre ese número el origen. L epresión d represent quellos vlores de cu distnci l origen es d. Gráficmente: -d d 0 - d d Ejemplos 4, esto puede interpretrse: los números cu distnci l origen es igul >, esto se lee: los números cu distnci l origen es mor -d d 0 - d d Análogmente, se define l distnci (no dirigid) entre dos números como: - En prticulr si 0, - 0 tendrímos l distnci l origen como se definió ntes. Ejemplo L epresión - se lee los números cu distnci es. Los números que stisfcen est iguldd son: - 8, tl como se muestr en l siguiente figur:

18 Not: Si es un número negtivo l epresión ( ) + L epresión + < 4 se lee los números cu distnci - es menor que 4. Los números que stisfcen est desiguldd son los que pertenecen l intervlo: (-,) tl como se muestr en l siguiente figur: Propieddes del vlor bsoluto. 0 ( > 0 si 0 0 si 0) (desiguldd tringulr) Otrs propieddes de vlor bsoluto < < 7. Observción 8

SISTEMA DE NÚMEROS REALES

SISTEMA DE NÚMEROS REALES SISTEMA DE NÚMEROS REALES. BREVE REPASO DE LA TEORÍA DE CONJUNTOS En est unidd utilizremos ls notciones l terminologí de conjuntos. L ide de conjunto se emple mucho en mtemátic se trt de un concepto básico

Más detalles

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por.

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por. Se distinguen distints clses de números: Números Reles Los números nturles son {1; 2; 3; }, el conjunto de todos ellos se represent por. El primer elemento es el 1 y no tiene último elemento Todo número

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES FUNDAMENTOS DEL ÁLGEBRA CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES NOMBRE ID SECCIÓN SALÓN Prof. Evelyn Dávil Tbl de contenido TEMA A. CONJUNTOS NUMÉRICOS... REGLA PARA LA SUMA DE NÚMEROS REALES...

Más detalles

Formalización de los Números Reales. M. en I. Gerardo Avilés Rosas

Formalización de los Números Reales. M. en I. Gerardo Avilés Rosas Formlizción de los Números Reles M. en I. Gerrdo Avilés Ross Agosto de 016 Tem Formlizción de los Números Reles Objetivo: El lumno plicrá ls propieddes de los números reles y sus subconjuntos, pr demostrr

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

Números Naturales. Los números enteros

Números Naturales. Los números enteros Números Nturles Con los números nturles contmos los elementos de un conjunto (número crdinl). O bien expresmos l posición u orden que ocup un elemento en un conjunto (ordinl). El conjunto de los números

Más detalles

Los números racionales:

Los números racionales: El número rel MATEMÁTICAS I 1 1. EL CONJUNTO DE LOS NÚMEROS REALES. LA RECTA REAL 1.1. El conjunto de los números reles. Como y sbes los números nturles surgen de l necesidd de contr, expresr medids, pr

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

Presentación Axiomática de los Números Reales

Presentación Axiomática de los Números Reales Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. 1 Prte I Presentción Axiomátic de los Números Reles 1. Axioms de los Números Reles 1.1. Axioms de Cuerpo Aceptremos l existenci de un conjunto R cuyos elementos

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 4 a 21

SOLUCIONES DE LAS ACTIVIDADES Págs. 4 a 21 TEMA. NÚMEROS REALES SOLUCIONES DE LAS ACTIVIDADES Págs. Págin. Actividd personl, por ejemplo:,...,...,...,9...,8.... ) No, pues un deciml puede tener un número limitdo de cifrs o ser periódico. Por ejemplo,,

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio NUMEROS IRRACIONALES Conocemos hst hor distintos conjuntos numéricos: - Los n nturles: (, 8,.978), representdos por l letr N - Los n enteros: ( -, -, 8, 68), representdos por l letr Z - Los n rcionles

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Septiembre de 2015 Conjuntos Numéricos ) Los Números

Más detalles

2 Números racionales positivos

2 Números racionales positivos Progrm Inmersión, Verno 0 Nots escrits por Dr. M Nots del cursos. Bsds en los pronturios de MATE 00 y MATE 0 Clse #: miércoles, de junio de 0. Números rcionles positivos. Consceptos básicos del conjunto

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES Se dice que un función y f() tiene límite "L" cundo l tiende "" y lo representmos por: f() L cundo pr tod sucesión de números reles que se proime "" tnto como quermos, los vlores correspondientes

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS Mtemátic Unidd - UNIDAD N : EXPRESIONES ALGEBRAICAS POLINOMIOS ÍNDICE GENERAL DE LA UNIDAD Epresiones Algebrics Enters...... Polinomios..... Actividdes... 4 Vlor Numérico del polinomio........ 4 Concepto

Más detalles

EXPONENTES Y RADICALES

EXPONENTES Y RADICALES . UNIDAD EXPONENTES Y RADICALES Objetivo generl. Al terinr est Unidd resolverás ejercicios probles en los que pliques ls lees de los eponentes de los rdicles. Objetivos específicos:. Recordrás l notción

Más detalles

LÍMITES CONCEPTO INTUITIVO DE LÍMITE

LÍMITES CONCEPTO INTUITIVO DE LÍMITE Mrí Teres Szostk Ingenierí Comercil Mtemátic II Clse Nº, LÍMITES El concepto de ite, es uno de los pilres en que se bs el Análisis Mtemático, se encontrb en 8 en estdo potencil, ern más principios intuitivos

Más detalles

TEMA : INTERVALOS. Clases de intervalos Notación de conjuntos

TEMA : INTERVALOS. Clases de intervalos Notación de conjuntos TEMA : INTERVALOS L rect rel: el conjunto de números reles se puede representr medinte los puntos de un rect horizontl, que se denomin rect rel, donde cd punto le corresponde un único número rel. Al número

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

Los Números Racionales

Los Números Racionales Cpítulo 12 Los Números Rcionles El conjunto de los números rcionles constituyen un extesión de los números enteros, en el sentido de que incluyen frcciones que permiten resolver ecuciones del tipo x =

Más detalles

Universidad de Antioquia

Universidad de Antioquia 1. Introducción Números reles Instituto de Mtemátics * Fcultd de Ciencis Excts y Nturles Unviersidd de Anquioqui Medellín, 24 de julio de 2011 El mtemático lemán Julius Wilhelm Richrd Dedekind (6 de octubre

Más detalles

COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti

COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti COLEGIO SAN FRANCISCO DE SALES - 0 - Prof. Cecili Glimerti MATEMÁTICA AÑO B GUÍA N - NÚMEROS IRRACIONALES NUMEROS IRRACIONALES Conocemos hst hor distintos Conjuntos Numéricos: - Los n nturles: (, 8,.8),

Más detalles

Z := Z {0} a partir de este nuevo conjunto construimos el producto cartesiano

Z := Z {0} a partir de este nuevo conjunto construimos el producto cartesiano Cpítulo 4 Números Rcionles. Luego de construir los Números Nturles, se presentron ciertos problems como Cuál es el resultdo de 3 menos 5?, pr poder encontrr un solución se creó prtir de N el conjunto de

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN:

TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: TEMA LOS NÚMEROS REALES. LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los números rcionles: Se crcterizn porque pueden epresrse: En form de frcción, es decir, como cociente de dos números enteros: Q,

Más detalles

Módulo 14 Multiplicación de expresiones algebraicas. Exponentes

Módulo 14 Multiplicación de expresiones algebraicas. Exponentes Módulo 14 Multiplicción de expresiones lgebrics. Exponentes OBJETIVO: Identificr potenci, bse exponente de un expresión lgebric. Multiplicr dividir polinomios. Recordemos lguns definiciones básics. Un

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES RAÍCES FUNCIÓN RAÍZ CUADRADA

UNIDAD: ÁLGEBRA Y FUNCIONES RAÍCES FUNCIÓN RAÍZ CUADRADA C u r s o : Mtemátic Mteril N 7 UNIDAD: ÁLGEBRA Y FUNCIONES RAÍCES FUNCIÓN RAÍZ CUADRADA GUÍA TEÓRICO PRÁCTICA Nº DEFINICIÓN : Si n es un entero pr positivo es un rel no negtivo, entonces n es el único

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n

Más detalles

SISTEMA DE NUMEROS REALES

SISTEMA DE NUMEROS REALES SISTEMA DE NUMEROS REALES 1.1 Conjuntos Es una agrupación de objetos distintos (pero con algunas características en común), los que reciben el nombre de elementos. Generalmente se nombra a un conjunto

Más detalles

1. NÚMEROS RACIONALES

1. NÚMEROS RACIONALES IES Jun Grcí Vldemor Deprtmento de Mtemátics 4º ESO Mtemátics B. NÚMEROS RACIONALES Desde l prición de ls socieddes humns los números desempeñn un ppel fundmentl pr ordenr y contr los elementos de un conjunto.

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

(a;b] = {x / x R a x b}

(a;b] = {x / x R a x b} Intervlos y Entornos L geometrí nlític estlece un correspondenci entre puntos de un rect y números reles, de tl form que cd número rel le corresponde un punto de l rect y cd punto de l rect un único número

Más detalles

Multiplicar y dividir radicales

Multiplicar y dividir radicales Multiplicr y dividir rdicles 1 Repso Simplificr: 000 4 0 18 1000 4 4 4 10 4 0 0 ( ( ) 0 8) 0 0 0 8 Multiplicción de rdicles Si y son números reles, n n n n n Podemos decir que cundo multiplicmos rdicles

Más detalles

es una matriz de orden 2 x 3.

es una matriz de orden 2 x 3. TEMA 7: MATRICES. 7.. Introducción l concepto de mtriz. 7.. Tipos de mtrices. 7.. El espcio vectoril de ls mtrices de orden m x n. 7.. INTRODUCCIÓN AL CONCEPTO DE MATRIZ. Se define mtriz de orden m x n

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Myo de 2015 Operciones Básics con Frcciones Número

Más detalles

Ecuaciones de 1 er y 2º grado

Ecuaciones de 1 er y 2º grado Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidd de Cádiz Deprtmento de Mtemátics MATEMÁTICAS pr estudintes de primer curso de fcultdes y escuels técnics Tem 1 Nociones mtemátics básics. Los números. Operciones Elbordo por l Profesor Doctor

Más detalles

El conjunto de los números reales se forma mediante la unión del conjunto de los números racionales y el conjunto de los números irracionales.

El conjunto de los números reales se forma mediante la unión del conjunto de los números racionales y el conjunto de los números irracionales. El conjunto de los números reles (R) El conjunto de los números reles se form medinte l unión del conjunto de los números rcionles y el conjunto de los números irrcionles. Propieddes del conjunto R R =

Más detalles

LA FUNCIÓN LOGARÍTMICA

LA FUNCIÓN LOGARÍTMICA LA FUNCIÓN LOGARÍTMICA.- Definición.- Se denomin ritmo en bse de un número, l eponente que es preciso elevr pr que resulte. debe ser un número positivo y distinto de l unidd. Pr epresr que y es el ritmo

Más detalles

Matemáticas II TEMA 7 Repaso del conjunto de los números reales y de funciones reales

Matemáticas II TEMA 7 Repaso del conjunto de los números reales y de funciones reales Mtemátics II TEMA 7 Repso del conjunto de los números reles y de funciones reles El conjunto de los números reles El conjunto de los números reles, R, es el más mplio de los números usules Puede considerrse

Más detalles

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD

Más detalles

REPASO DE ECUACIONES (4º ESO)

REPASO DE ECUACIONES (4º ESO) TIPOS DE ECUACIONES.- REPASO DE ECUACIONES ( ESO) Eisten diversos tipos de ecuciones, entre ells estudiremos: Polinómics: En ells, l incógnit prece solmente en epresiones polinómics. El grdo de un ecución

Más detalles

Números racionales son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresar en forma de fracción.

Números racionales son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresar en forma de fracción. MATEMÁTICAS ºACT TEMA. EL NÚMERO REAL. NÚMEROS RACIONALES. Números rcionles son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresr en form de frcción. Los números

Más detalles

Donde a los elementos de E y R se les llama vectores y escalares respectivamente, los segundos como coeficientes de los primeros.

Donde a los elementos de E y R se les llama vectores y escalares respectivamente, los segundos como coeficientes de los primeros. 4. Espcios vectoriles, definición propieddes Viguers En l Físic, con frecuenci se us el término vector pr descriir mgnitudes como l fuer, l velocidd, l celerción, otros fenómenos de l nturle, sin emrgo

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS

Más detalles

NÚMEROS RACIONALES ABSOLUTOS

NÚMEROS RACIONALES ABSOLUTOS NÚMEROS RACIONALES ABSOLUTOS Frcción: es un pr ordendo de números nturles con l segund componente distint de cero. (, ) pr ordendo frcción es un frcción N N EQUIVALENCIA DE FRACCIONES * Frcciones diferentes,

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

open green road Guía Matemática FRACCIONES ALGEBRAICAS profesor: Nicolás Melgarejo .co

open green road Guía Matemática FRACCIONES ALGEBRAICAS profesor: Nicolás Melgarejo .co Guí Mtemátic FRACCIONES ALGEBRAICAS profesor: Nicolás Melgrejo.co . Introducción El mnejo lgebrico es un herrmient básic que nos permite comunicr ides en el mbiente científico sin importr l lengu que ellos

Más detalles

Clase 2: Expresiones algebraicas

Clase 2: Expresiones algebraicas Clse 2: Expresiones lgebrics Operr expresiones lgebrics usndo ls propieddes lgebrics de ls operciones sum y producto, propieddes de ls potencis, regls de signos y préntesis. Evlur expresiones lgebrics

Más detalles

NÚMEROS COMPLEJOS. Números reales Intervalos El conjunto R 2 Discos Números complejos Teorema fundamental del Álgebra

NÚMEROS COMPLEJOS. Números reales Intervalos El conjunto R 2 Discos Números complejos Teorema fundamental del Álgebra NÚMEROS COMPLEJOS Números reles Intervlos El conjunto R 2 Discos Números complejos Teorem fundmentl del Álgebr NÚMEROS REALES Números nturles, enteros rcionles e irrcionles En mtemátics son importntes

Más detalles

LÁMINA No. 1.1 LECTURA Y ESCRITURA DE UN NÚMERO

LÁMINA No. 1.1 LECTURA Y ESCRITURA DE UN NÚMERO 6 LÁMINA No. 1.1 REPRESENTACION GRÁFICA DE N N {0, 1,,, 4, 5,...} Propieddes de N: 1. Tiene primer elemento. 0 1 4 5... 1er elemento suc() último elemento. Todo número tiene sucesor. No existe último elemento

Más detalles

TEMA 1 EL NÚMERO REAL

TEMA 1 EL NÚMERO REAL Tem El número rel Ejercicios resueltos Mtemátics B º ESO TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN DE NÚMEROS REALES EJERCICIO : Clsific los siguientes números como 0 ; ;,...; 7; ; ; ; 7, = 0,8

Más detalles

Respuesta: Con este resultado Anahí decide contratar a estos pintores.

Respuesta: Con este resultado Anahí decide contratar a estos pintores. Universidd de Concepción Fcultd de Ciencis Veterinris Nivelción de Mtemátics(0) Unidd-I: Conjunto de los Números Rcionles Introducción: Al plnter l necesidd de dividir números enteros, surge un problem:

Más detalles

ECUACIONES (4º ESO Op B)

ECUACIONES (4º ESO Op B) ECUACIONES ( ESO Op B) IDENTIDADES, IGUALDADES FALSAS Y ECUACIONES.- Un iguldd lgebric está formd por dos epresiones lgebrics (un de ells puede ser un número), seprds por el signo. Ejemplos.- + + 1 ( +

Más detalles

Multiplicar por la potencia de 10 adecuada para convertirlo en entero. Despejar N 119. Simplificar la fracción, si es posible N = 50

Multiplicar por la potencia de 10 adecuada para convertirlo en entero. Despejar N 119. Simplificar la fracción, si es posible N = 50 .0 INTRODUCCIÓN º.0. ESQUEMA DE CLASIFICACIÓN DE LOS NÚMEROS º RACIONALES(Q)???????? NO RACIONALES NATURALES(N) 0 ; ; ; 8... ENTEROS (Z) - ENTEROS NEGATIVOS -; ; 8... Decimles exctos :0,; ;... FRACCIONARIOS.

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() = m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

1. Cuales son los números naturales?

1. Cuales son los números naturales? Guí de mtemátics. Héctor. de bril de 015 1. Cules son los números nturles? Los números nturles son usdos pr contr (por ejemplo, hy cinco moneds en l mes ) o pr imponer un orden (por ejemplo,. Es t es l

Más detalles

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el

Más detalles

Manual de teoría: Álgebra Matemática Bachillerato

Manual de teoría: Álgebra Matemática Bachillerato Mnul de teorí: Álgebr Mtemátic Bchillerto Relizdo por José Pblo Flores Zúñig Álgebr: José Pblo Flores Zúñig Págin Contenido: ) Álgebr. Fctorizción. Simplificción de epresiones lgebrics. Ecuciones Álgebr:

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

3. RECTA REAL. 3.1 Intervalos reales. Curso de Apoyo en Matemática

3. RECTA REAL. 3.1 Intervalos reales. Curso de Apoyo en Matemática Curso de Apoyo en Mtemátic. RECTA REAL Es muy común mnejrse en l vid cotidin con números que osciln en ciertos rngos. Muchos de los fenómenos que se producen en l nturlez no tienen soluciones excts, y

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

TEMA 14 Números complejos *

TEMA 14 Números complejos * TEMA 4 Números complejos * Definiciones Supongmos que quiero resolver l ecución de segundo grdo x + 0. Quedrá: x, luego x ±, que evidentemente no pertenecen l conjunto de los números reles. Por tnto tenemos

Más detalles

Potencias y radicales

Potencias y radicales CUADERNO Nº Potencis y rdicles Es necesrio que repsemos ls propieddes de ls potencis. En l escen puedes bordr este repso y ver múltiples ejemplos de cd propiedd. Complet l siguiente tbl: Propiedd (Complet

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejemplo : Consideremos l gráic de l unción: si < si > Si tom vlores próimos, distintos de y menores que ej.: 9, 99, 999,, se not

Más detalles

UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD

UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD Introducción Ide de ite Propieddes de los ites Operciones con. Indeterminciones Regls práctics pr l obtención del ite Asíntots horizontles y verticles Continuidd

Más detalles

Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta.

Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta. Propieddes de l Potenci Distributiv con respecto l producto ( = b Distributiv con respecto l división b b Producto de potencis de igul bse n = n + División de potencis de igul bse n n Potenci de potenci

Más detalles

Hasta el momento solo hemos trabajado con funciones reales de la forma

Hasta el momento solo hemos trabajado con funciones reales de la forma Función eponencil: Hst el momento solo hemos trbjdo con funciones reles de l form f( ) = P( ) donde P ( ) es un polinomio f ( ) = donde y es un vrible, entre otros pero hor vmos trbjr con funciones donde

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

Artemio González López

Artemio González López Cálculo I Artemio González López Mdrid, febrero de 2003 Índice generl 0. Preliminres 1 1. L rect rel 4 1.1. Concepto de cuerpo....................... 4 1.2. Consecuencis de los xioms de cuerpo............

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO EJERCICIOS RECOLECTADOS EN LA RED. (MATEMÁTICA I ADMINISTRACIÓN) INECUACIONES Y VALOR ABSOLUTO INTERVALOS DESIGUALDADES INECUACIONES INTERVALOS EN LA RECTA REAL Ddos dos números culesquier y b, tles que

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007

NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007 NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007 1 1. Intervlos Ddos dos números reles y,

Más detalles

POLINOMIOS. se denominan coeficientes.

POLINOMIOS. se denominan coeficientes. POLINOMIOS Polinomios. Generliddes Llmremos polinomios de grdo n en l vrile, tod epresión de l form: tl que: 0... n n 0 R; R; R;... ; n R n 0 siendo n N0 En tl epresión, l letr represent un número rel

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 147

INSTITUTO VALLADOLID PREPARATORIA página 147 INSTITUTO VALLADOLID PREPARATORIA págin 17 págin 18 EXPONENTES NEGATIVOS Y FRACCIONARIOS EXPONENTES L ide de los eponentes nce con l necesidd de revir cierts multiplicciones. Como es sido, cundo se multiplic

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

Números reales. 1. Números y expresiones decimales. página El conjunto de los números reales página La recta real. Intervalos página 9

Números reales. 1. Números y expresiones decimales. página El conjunto de los números reales página La recta real. Intervalos página 9 Números reles E S Q U E M A D E L A U N I D A D.. Los números rcionles págin.. Los números irrcionles págin. Números y expresiones decimles págin. El conjunto de los números reles págin 8 4.. Orden y desiguldd

Más detalles

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( )

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( ) Concepto clve L derivd de un función se define principlmente de dos mners: 1. Como el límite del cociente de Fermt f ( ) lím x f ( x) f ( ) x. Como el límite del cociente de incrementos f ( x) lím x 0

Más detalles

Sistema de los Números Reales

Sistema de los Números Reales Sistem de los Números Reles El Conjunto de los Números Rcionles Ysel Ocho Tpi Ysel Ocho Tpi Sistem de los Números Reles /2 Introducción Los rcionles: Q Los números rcionles permiten expresr medids. Cundo

Más detalles

Revista digital Matemática, Educación e Internet (www.cidse.itcr.ac.cr/revistamate/). Vol. 12, N o 1. Agosto Febrero 2012.

Revista digital Matemática, Educación e Internet (www.cidse.itcr.ac.cr/revistamate/). Vol. 12, N o 1. Agosto Febrero 2012. Artículo de sección Revist digitl Mtemátic, Educción e Internet www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS LOGARITMOS

MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS LOGARITMOS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS LOGARITMOS Unidd 4 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS UNIDAD DIDÁCTICA 4: LOGARITMOS. ÍNDICE. Introducción. Potencis funciones eponenciles.

Más detalles

3º ESO NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa NÚMEROS REALES

3º ESO NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa NÚMEROS REALES º ESO NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. NÚMEROS REALES.- NÚMEROS RACIONALES Los números rcionles son lo que hbitulmente conocemos como frcciones. Un número rcionl o frcción está compuesto por

Más detalles

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta DEPARTAMENTO DE INGENIERÍA ELÉCTRICA ENERGÉTICA NÚMEROS COMPLEJOS Miguel Angel Rodríguez Pozuet Doctor Ingeniero Industril OBSERVACIONES SOBRE LA NOMENCLATURA En este teto, siguiendo l nomencltur hitul

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero. TEMA 2: actividades

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero. TEMA 2: actividades º E.S.O. TEMA : ctividdes. Sc del rdicndo l myor cntidd posible de fctores: 0 0 0 800.. Epres como rdicl:. Simplific los siguientes rdicles: 8. Ps estos números de notción científic form ordinri:, 0 =,

Más detalles

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3 Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd

Más detalles

CURSO DE NIVELACIÓN 2012 EJERCITARIO TEÓRICO DE MATEMÁTICA I

CURSO DE NIVELACIÓN 2012 EJERCITARIO TEÓRICO DE MATEMÁTICA I CURSO DE NIVELACIÓN 0 EJERCITARIO TEÓRICO DE MATEMÁTICA I 0 EJERCITARIO TEÓRICO DE MATEMÁTICA I. Con relción l potencición, se firm que es un operción: ) Conmuttiv. ) Distriutiv respecto l sum. 3) Distriutiv

Más detalles

Teoría Tema 7 Integral definida. Área encerrada por una curva

Teoría Tema 7 Integral definida. Área encerrada por una curva Colegio Mrist L Inmculd de Grnd Profesor Dniel Prtl Grcí www.dniprtl.net Asigntur: Mtemátics II 2ºBchillerto Teorí Tem 7: Integrl definid. Áre encerrd por un curv págin /0 Teorí Tem 7 Integrl definid.

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic

Más detalles