intensidad de carga. c) v 1 = 10 V, v 2 = 5 V. d) v 1 = 5 V, v 2 = 5 V.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "intensidad de carga. c) v 1 = 10 V, v 2 = 5 V. d) v 1 = 5 V, v 2 = 5 V."

Transcripción

1 1. En el circuito regulador de tensión de la figura: a) La tensión de alimentación es de 300V y la tensión del diodo de avalancha de 200V. La corriente que pasa por el diodo es de 10 ma y por la carga 30 ma. Qué valor debe tener la resistencia de regulación R del circuito? b) Si la corriente en la carga baja a 20 ma, cúal será la del diodo? c) Si manteniendo la misma carga anterior aumentamos la tensión de alimentación hasta 350V, cuánto valdrá la corriente en el diodo? d) El diodo regula entre 10 y 50 ma, entre qué valores puede tener la corriente de carga, si R=1kΩ y V=350V? 2. En el circuito regulador de tensión de la figura, la tensión Zener es de 10V y la intensidad máxima por el diodo tiene que ser 400mA. La tensión en la fuente varía entre 12 y 24V, y la resistencia de carga es de 200Ω±10%. Hallar el valor necesario de R, la intensidad mínima que pasaría por el Zener y la potencia que disipa el diodo. 3. El circuito de la figura representa un voltímetro de continua con su circuito de protección de sobretensiones, a base de dos resistencias y un diodo de avalancha cuya tensión es de 80V. La tensión a fondo de escala del voltímetro es de 100V y la intensidad que recorre su resistencia interna de 2kΩ es de 1mA a esa tensión. Calcular el valor de las resistencias R 1 y R 2 de manera que cuando la tensión a medir supere los 100V el diodo comience a regular y la sobrecorriente sea desviada del voltímetro. 4. En un circuito regulador de tensión, Vz=60 V, I Z (mín.) = 5 ma e I Z (máx.) = 40 ma. Siendo la tensión de la fuente V=80 V, calcular R para que el zener estabilice la salida para valores de la carga comprendidos entre I L (mím.) = 0 e I L (máx). Se obtendrá así mismo el valor de esta última intensidad. 5. En un circuito estabilizador como el de la figura, la tensión de entrada es de 50V, la resistencia R S es de 1KΩ y el diodo Zener posee las siguientes características, Vz=10 V, I Z (mín.) = 5 ma e I Z (máx.) = 35 ma. Hallar entre qué valores puede oscilar la resistencia de carga R L para que la tensión en sus bornas permanezca constante a 10 V y calcular entre qué valores podría estar la 1

2 intensidad de carga. 6. Diseñar un circuito estabilizador de tensión con diodo zéner capaz de alimentar a una carga de 200 Ω con 20 V constantes, sabiendo que la tensión de entrada a dicho circuito puede oscilar entre 24 V y 30 V. El zener a emplear deberá tener una potencia máxima de 8 W. 7. El circuito de la figura es un estabilizador con diodos Zener, cuyas caraterísticas técnicas son, Vz=10 V, I Z (mín.) = 1 ma e I Z (máx.) = 80 ma. Hallar el valor de R S para que se destruya el diodo cuando el circuito está sin carga así como el valor máximo de la resistencia de carga R L. La tensión de carga es de 20 V y su resistencia interna es de 100 Ω. 8. La tensión de una fuente de alimentación no regulada varia entre 20 y 25 V y la impedancia interna de la fuente es de 10 Ω. Un diodo Zener de 10 V debe regular esta tensión para su utilización en un magnetófono. El magnetófono absorbe 30 ma mientras graba, y 50 ma mientras reproduce. El diodo Zener tiene una resistencia de 10 Ω para una corriente Zener de 30 ma. El codo de la característica Zener se presenta a 10 ma. Además, el díodo Zener puede disipar una potencia máxima de 800 mw. (a) Hallar la resistencia de regulación. (b) Hallar el valor de cresta máximo de la ondulación de salida. 9. Cada diodo se describe mediante una característica tensión-corriente linealizada, con una resistencia incremental r y tensión umbral V ã. El diodo D 1 es de germanio,con V γ = 0,2 V y r = 20 Ω mientras que el D 2 es de silicio con V γ = 0,6 V y r = 15 Ω. Hallar la corriente de cada diodo si: a)r = 10 kω, b)r = 1 kω. 10. En el circuito de la figura, la tensión umbral de un diodo es de 0,6 V y la caída en el diodo que conduce es V = 0,7 V. Calcular v o con las siguientes tensiones de entrada, e indicar el estado de cada diodo (en corte o en conducción). Justificar los supuesto relativos al estado de cada diodo. a) v 1 = 10 V, v 2 = 0 V. b) v 1 =5 V, v 2 =0 V. c) v 1 = 10 V, v 2 = 5 V. d) v 1 = 5 V, v 2 = 5 V. 11.Supóngase que los diodos del circuito de la figura son ideales, es decir que R f = 0, V γ = 0 y R r =. Hallar v o en los siguientes casos: a) v 1 = v 2 = 5 V. 2

3 b) v 1 = 5 V, v 2 = 0 V. c) v 1 = v 2 = 0 V. Justifíquense los supuestos respecto al estado de los diodos en cada caso. 12. En los diodos del circuito de la figura, la tensión umbral es de 0,6 V y la caída en el diodo que conduce es V = 0,7 V. Calcular las intensidades que circulan y la tensión de salida v o en las siguientes condiciones: a) v 1 = 0 V, v 2 = 25 V. b) v 1 = v 2 = 25 V. 13. En el circuito de la figura los niveles de tensión digitales son 2 y 4 V. Supongamos diodos idénticos, cada uno de ellos con una tensión de conducción de 0,7 V y con resistencia despreciable. Comprobar la tabla de la verdad para la función O. Indicar cuáles diodos están en corte o en conducción en cada línea de la tabla, y justificarlo. Hallar la corriente en cada diodo y en cada resistencia. Cuál es el objeto de D 3? 14. Los niveles de entrada binarios para el circuito Y de la figura son V(0) = 0 y V(1)= 25 V. Supónganse diodos ideales. Si v 1 = V (0) y v 2 = V (1), v o debe ser de 2 V, y si v 1 = v 2 = V(1) entonces v o debe subir a l0 V. a) Qué gama de valores de V R deberá emplearse? 3

4 b) Si V R = 15 V cuánto valdrá v o en la coincidencia v 1 = v 2 = V (1)? Cuáles serán las corrientes en los diodos? c) Repítase el apartado b) si V R = 40 V. 15. La tensión de entrada v i del recortador de dos niveles de la figura varía linealmente entre 0 y 100 V. Esbozar la tensión de salida v o, en la misma escala de tiempos que la tensión de entrada. Supónganse diodos ideales. 16. Esbozar la característica de transferencia del circuito de la figura. Supónganse diodos ideales. 17. El circuito de la figura se emplea para convertir en cuadrada una onda senoidal de entrada de 10 khz y pico de 60 V. Se desea que la onda de tensíón de salida sea plana durante el 95 % del tiempo. Se emplean diodos con resistencia directa de 100 Ω inversa de 500kΩ. (a) Hallar los valores de V R1 y V R2. (b) Qué valor de R sería razonable? a) Esbozar la característica de transferencia del circuito de la figura, siendo -5 V < vi <5 V. Supónganse diodos ideales. b) Repítase para el caso en que los diodos tengan una tensión umbral V γ = 1 V. 4

5 18. a) Trazar la característica de transferencia para 0 < v i < 15V. Supónganse diodos ideales. b) Trazar la corriente en R 1 para 0 < v i < 15 V, también con diodos ideales. e) Repetir el apartado a con diodos de V γ = 0,7 V,R f = 0 y R r =. 19. Los diodos de la figura son ideales. Esbozar la característica de transferencia siendo -20 v i 20V. Indicar el estado de corte o de conducción de D 1 y D 2 en cada región de la característica. 20. Los diodos de la figura son ideales. Trazar la característica de transferencia en lazona 0 v i 50V. Procédase de la siguiente forma. a) Hallar v o para v i = 0. Cuál es el estado de los diodos (corte o conducción)? b) Hallar la ecuación de v o en función de v i si D 1 conduce y D 2 está en corte. Entre qué valores de v i son válidos estos estados? c) Hallar v o para v i = 50 V (empléese la superposición). d) Trazar ahora v o en función de v i e indicar cuales diodos conducen en cada región. 21. Supóngase que los diodos de la figura son ideales. Trazar la curva de v o en función de v i para valores 0 v i 50V. Indicar todas las pendientes y niveles de tensión. Indicar cuáles diodos conducen en cada región. 22. a) Construir un circuito que tenga en terminales la característica de la figura. b) Modificar el circuito de forma que las dos pendientes de la figura no sean iguales. 5

6 23. Construir un circuito cuya característica de transferencia (v o en función de v i ) tenga la forma representada en la figura. Empléense diodos ideales y dense valores numéricos a todos los elementos del circuito. 24. Un diodo cuya resistencia interior es de 10Ω debe suministrar potencia procedente de una fuente de 100 V eficaces a una carga de 500Ω. Calcular: a) la corriente de carga de pico; b) la corriente continua de carga; c) la corriente alterna de carga; d) la tensión continua del diodo; e) la potencia total de entrada en el circuito; f) el porcentaje de regulación desde carga nula hasta una carga dada. 25. Un rectificador de onda completa y de una sola fase está formado por diodos semiconductores; la resistencia interna de cada elemento del mismo puede considerarse constante e igual a 30Ω. Con ello se alimenta una carga resistiva pura de 1 kω. La tensión del secundario del transformador a la toma central es de 200 V. Calcular: a) la corriente continua de carga; b) la corriente directa en cada diodo; c) la tensión alterna a través de cada diodo, y d) la potencia de salida en continua. 26. El sistema de puente rectificador de la figura se emplea para construir un voltímetro de alterna. La resistencia directa de los diodos es de 100 Ω, la de R es de 50 Ω y la del amperímetro es despreciable. La señal de tensión viene dada por v s = 100 sen wt. a) Esbozar la onda de la corriente i L a través del amperímetro. Calcular los valores máximos instantáneos. b) Escribir una integral cuyo valor dé la lectura del amperímetro de continua. Evaluar esta expresión y hallar Idc. c) Dibujar realísticamente la onda de tensión a través del diodo D 1. Indicar los valores instantáneos máximos. d) Escribir una integral cuyo valor nos dé la lectura de un voltímetro de valor eficaz, colocado en paralelo con D 1. (Este aparato no tiene en serie un condensador de bloqueo). Hallar el valor eficaz de esta tensión del diodo. 6

7 27. Un miliamperímetro de continua de l0 ma, cuya resistencia es de 20 Ω se calibra para leer tensiones eficaces cuando se emplea en un circuito puente con diodos semiconductores. Se puede considerar que la resistencia de cada elemento es nula en directo, e infinita en inverso. La tensión de entrada senoidal se aplica en serie con una resistencia de l0 kω. Cuál será la lectura de este aparato a fondo de escala? 28. Un rectificador de onda completa y de una sola fase emplea un diodo semiconductor. La tensión del transformador es de 40 V eficaces al centro del devanado. La carga consiste en un condensador de 100µF en paralelo con una resistencia de 300 Ω. Las resistencias del diodo y del transformador así como la reactancia de dispersión pueden despreciarse. La frecuencia de servicio son 50 Hz. Calcular: a) el ángulo de corte b) el ángulo de cebado c) tensión de rizado d) tensión continua en la salida e) intensidad de pico en los diodos f) tensión de pico de los diodos en corte. Repetir los apartados anteriores empleando un condensador de 250 µf en lugar del de 100µF. 29. Diseñar un cargador de batería de automóvil con un rectificador de onda completa de puente de diodos y filtro con condensador, con las siguientes características de onda de salida: tensión de continua 12,6 V, tensión de rizado ± 5% de la tensión continua. Seleccionar: a) el transformador; b) la resistencia de carga y el condensador, y c) el puente de diodos. 7

EJERCICIO 1 EJERCICIO 2

EJERCICIO 1 EJERCICIO 2 EJERCICIO 1 Se miden 0 Volt. en los terminales del diodo de la fig. siguiente, la tensión de la fuente indica +5 Volt. respecto de masa. Qué está mal en el circuito? EJERCICIO 2 En la fig. siguiente la

Más detalles

EJERCICIO 1 EJERCICIO 2

EJERCICIO 1 EJERCICIO 2 EJERCICIO 1 Se miden 0 Volt. en los terminales del diodo de la fig. siguiente, la tensión de la fuente indica +5 Volt. respecto de masa. Qué está mal en el circuito? EJERCICIO 2 En la fig. siguiente la

Más detalles

1.- La señal de salida v o en t = 5ms. a) -60V b) 60V c) 75V d) -75V. 2.- La señal de salida v o en t = 15ms. a) -60V b) 60V c) 75V d) -75V

1.- La señal de salida v o en t = 5ms. a) -60V b) 60V c) 75V d) -75V. 2.- La señal de salida v o en t = 15ms. a) -60V b) 60V c) 75V d) -75V A. A.1.- En el circuito de la figura los diodos son ideales. La señal de entrada v i es sinusoidal de 50 Hz de frecuencia y 100 V de amplitud. En el primer semiperiodo v i es positiva. Calcular: 1.- La

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos) PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Diodos) Escuela Politécnica Superior Profesor. Darío García Rodríguez . En el circuito de la figura los diodos son ideales, calcular la intensidad que circula por la fuente

Más detalles

Electrónica Analógica Rectificadores monofásicos Práctica 3 PRACTICA 3

Electrónica Analógica Rectificadores monofásicos Práctica 3 PRACTICA 3 APELLDOS:...NOMBRE... APELLDOS:...NOMBRE:... PRACTCA 3 1.- Realizar el montaje de un rectificador de media onda como el que se muestra en la siguiente figura. Emplear un transformador ideal (TS_VRTUAL)

Más detalles

Electrónica Analógica Conocimientos previos Práctica 1

Electrónica Analógica Conocimientos previos Práctica 1 APELLIDOS:...NOMBRE:... APELLIDOS:...NOMBRE:... 1.- MANEJO DE LOS VOLTIMETROS Y AMPERIMETROS DEL SIMULADOR. CIRCUITO SERIE. Dado el circuito de la figura, realizar los cálculos necesarios para determinar

Más detalles

4. El diodo semiconductor

4. El diodo semiconductor 4. El diodo semiconductor Objetivos: Comprobar el efecto de un circuito rectificador de media onda con una onda senoidal de entrada. Observar cómo afecta la frecuencia en el funcionamiento de un diodo

Más detalles

Problema Nº 5: Encuentre un circuito equivalente al de la figura con una sola resistencia.

Problema Nº 5: Encuentre un circuito equivalente al de la figura con una sola resistencia. GUIA DE PROBLEMAS Nº 1 CIRCUITOS DE CORRIENTE CONTINUA. Problema Nº 1: En el circuito de la figura calcule: b) La corriente total. c) Las tensiones y corrientes en cada resistencia. Problema Nº 2: En el

Más detalles

UNIDAD DOS. 10mA 2K 3K 8K + V1 -

UNIDAD DOS. 10mA 2K 3K 8K + V1 - UNIDAD DOS 2.1. DIODOS 211.07.-La característica del diodo D está expresada por: i D I 0.(e q.vd m.kt 1) 10 6.(e q.vd m. KT 1) [Amp] donde: I0 = Corriente inversa de saturación; KT/q 25 mv; m = 1,4 a)

Más detalles

APLICACIONES A CIRCUITOS DE CORRIENTE ALTERNA MONOFÁSICOS

APLICACIONES A CIRCUITOS DE CORRIENTE ALTERNA MONOFÁSICOS PRÁCTICA Nº 3 APLICACIONES A CIRCUITOS DE CORRIENTE ALTERNA MONOFÁSICOS Departamento de Ingeniería Eléctrica E.T.S.I.I. Página 1 de 12 DESCRIPCIÓN DE LA PRÁCTICA APLICACIONES A CIRCUITOS DE CORRIENTE ALTERNA

Más detalles

Aplicaciones del diodo

Aplicaciones del diodo Tema 3 Aplicaciones del diodo Índice 1. Rectificación de ondas... 53 1.1. Rectificador de media onda... 55 1.2. Rectificador de onda completa... 56 1.3. Rectificador de media onda con condensador... 57

Más detalles

Al final de cada cuestión se índica su puntuación

Al final de cada cuestión se índica su puntuación TIEMPO: INSTRUCCIONES GENERALES Y VALORACIÓN Una hora y treinta minutos INSTRUCCIONES: El alumno elegirá una de las dos opciones A o B PUNTUACIÓN: Al final de cada cuestión se índica su puntuación CUESTIÓN

Más detalles

Aplicaciones del diodo

Aplicaciones del diodo Tema 3 Aplicaciones del diodo Índice 1. Rectificación de ondas... 1 1.1. Rectificador de media onda... 3 1.2. Rectificador de onda completa... 4 1.3. Rectificador de media onda con condensador... 5 2.

Más detalles

GUIA DE APRENDIZAJE Y AUTOEVALUACION UNIDAD N 2 FUNDAMENTOS DE LOS DIODOS Y SUS APLICACIONES

GUIA DE APRENDIZAJE Y AUTOEVALUACION UNIDAD N 2 FUNDAMENTOS DE LOS DIODOS Y SUS APLICACIONES UNIVERSIDAD NACIONAL DE SAN JUAN. FACULTAD DE INGENIERIA. DEPARTAMENTO DE ELECTRONICA Y AUTOMATICA. GABINETE DE TECNOLOGIA MÉDICA. Área: Electrónica Analógica. Asignatura: "Electrónica Analógica". Carrera:

Más detalles

Aplicaciones del diodo

Aplicaciones del diodo Tema 3 Aplicaciones del diodo Índice 1. Rectificación de ondas... 1 1.1. Rectificador de media onda... 3 1.2. Rectificador de onda completa... 4 1.3. Rectificador de media onda con condensador... 5 2.

Más detalles

ELECTRONICA GENERAL. Tema 3. Circuitos con Diodos.

ELECTRONICA GENERAL. Tema 3. Circuitos con Diodos. Tema 3. Circuitos con Diodos. 1.- En los rectificadores con filtrado de condensador, se obtiene mejor factor de ondulación cuando a) la capacidad del filtro y la resistencia de carga son altas b) la capacidad

Más detalles

PROBLEMAS DE CIRCUITOS ELECTRÓNICOS 2º Curso de Grado en Ingeniería Informática 16/17. TEMA 1: Repaso de la Teoría de redes lineales

PROBLEMAS DE CIRCUITOS ELECTRÓNICOS 2º Curso de Grado en Ingeniería Informática 16/17. TEMA 1: Repaso de la Teoría de redes lineales PROBLEMAS DE CIRCUITOS ELECTRÓNICOS 2º Curso de Grado en Ingeniería Informática 16/17 TEMA 1: Repaso de la Teoría de redes lineales 1.- Para el circuito de la figura, calcular la diferencia de potencial

Más detalles

GUIA DIDACTICA DE ELECTRONICA N º9 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO SEGUNDO 6

GUIA DIDACTICA DE ELECTRONICA N º9 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO SEGUNDO 6 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO SEGUNDO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA

Más detalles

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003.

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. PROBLEMA Nº 1: Por un circuito serie formado por un elemento resistivo de resistencia

Más detalles

PRÁCTICA # 2 APLICACIONES DE DIODO SEMICONDUCTOR ALUMNOS:

PRÁCTICA # 2 APLICACIONES DE DIODO SEMICONDUCTOR ALUMNOS: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA LABORATORIO DE DISPOSITIVOS Y CIRCUITOS ELECTRÓNICOS PRÁCTICA # 2 APLICACIONES DE DIODO SEMICONDUCTOR ALUMNOS: Objetivo El alumno conocerá

Más detalles

Parcial_1_Curso.2012_2013. Nota:

Parcial_1_Curso.2012_2013. Nota: Parcial_1_Curso.2012_2013. 1. El valor medio de una señal ondulada (suma de una señal senoidal con amplitud A y una señal de componente continua de amplitud B) es: a. Siempre cero. b. A/ 2. c. A/2. d.

Más detalles

PROBLEMAS DE EXAMEN. 1.- La figura representa un convertidor alterna/alterna con control por fase bidireccional con carga resistiva:

PROBLEMAS DE EXAMEN. 1.- La figura representa un convertidor alterna/alterna con control por fase bidireccional con carga resistiva: POBLEMAS DE EXAMEN 1.- La figura representa un convertidor alterna/alterna con control por fase bidireccional con carga resistiva: 1 V in = 2 V s sen(wt) i in 2 a) Explicar brevemente el funcionamiento

Más detalles

Figura 1 Figura 2. b) Obtener, ahora, un valor más preciso de V D para la temperatura T a. V AA

Figura 1 Figura 2. b) Obtener, ahora, un valor más preciso de V D para la temperatura T a. V AA DODOS. Se desea diseñar el circuito de polarización de un diodo emisor de luz (LED) de arseniuro de galio (GaAs) conforme a la figura. La característica - del LED se representa en la figura, en la que

Más detalles

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003.

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. PROBLEMA Nº 1: Por un circuito serie formado por un elemento resistivo de resistencia

Más detalles

PRODUCTO P07 DISEÑO Y ELABORACIÓN DE LA FUENTE DE ALIMENTACIÓN

PRODUCTO P07 DISEÑO Y ELABORACIÓN DE LA FUENTE DE ALIMENTACIÓN PRODUCTO P07 DISEÑO Y ELABORACIÓN DE LA FUENTE DE ALIMENTACIÓN Actividades: A07-1: Elaboración de las etapas que conforman la Fuente de Alimentación. A07-2: Diseño de los circuitos electrónicos de cada

Más detalles

V cc t. Fuente de Alimentación

V cc t. Fuente de Alimentación Fuente de Alimentación de Tensión Fuente de alimentación: dispositivo que convierte la tensión alterna de la red de suministro (0 ), en una o varias tensiones, prácticamente continuas, que alimentan a

Más detalles

Máster en Mecatrónica EU4M Master in Mechatronic and Micro-Mechatronic Systems DIODOS. Fundamentos de Ingeniería Eléctrica

Máster en Mecatrónica EU4M Master in Mechatronic and Micro-Mechatronic Systems DIODOS. Fundamentos de Ingeniería Eléctrica Máster en Mecatrónica EU4M Master in Mechatronic and MicroMechatronic Systems DIODOS Fundamentos de Ingeniería Eléctrica Contenidos Funcionamiento Diodo Curvas características Resolución de circuitos con

Más detalles

APELLIDOS: NOMBRE: TEORÍA (Responder Razonadamente)

APELLIDOS: NOMBRE: TEORÍA (Responder Razonadamente) CURSO 12-13. 2º PARCIAL, 22 de Enero de 2.013. Curso de Adaptación al Grado en Tecnologías Industriales. Asignatura: MAQUINAS Y ACCIONAMIENTOS ELECTRICOS TEORÍA (Responder Razonadamente) 1.- La máquina

Más detalles

Práctica 2: Análisis de circuitos básicos con diodos y transistores Utilización del PSIM para análisis de circuitos electrónicos básicos

Práctica 2: Análisis de circuitos básicos con diodos y transistores Utilización del PSIM para análisis de circuitos electrónicos básicos Práctica 2: Análisis de circuitos básicos con diodos y transistores Utilización del PSIM para análisis de circuitos electrónicos básicos EJERCICIO 1: Rectificador de onda completa con puente de diodos

Más detalles

Circuitos rectificadores con diodos

Circuitos rectificadores con diodos Circuitos rectificadores con diodos Práctica 3 Índice General 3.1. Objetivos................................ 29 3.2. Introducción teórica.......................... 29 3.3. Ejercicios Propuestos..........................

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A En la asociación de condensadores de la figura, calcular: a) Capacidad equivalente del circuito. b) Carga que adquiere cada condensador al aplicar una tensión de 13 V entre los puntos entre los

Más detalles

BLOQUE III CIRCUITOS ELÉCTRICOS EN CC

BLOQUE III CIRCUITOS ELÉCTRICOS EN CC 1.- En el circuito de la figura, se sabe que con K abierto, el amperímetro indica una lectura de 5 amperios. Hallar: a) Tensión UAB. b) Potencia disipada en la resistencia R. (Selectividad andaluza septiembre-2001)

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CRITERIOS ESPECÍFICOS DE CORRECCIÓN

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CRITERIOS ESPECÍFICOS DE CORRECCIÓN CRITERIOS ESPECÍFICOS DE CORRECCIÓN A- CALIFICACIÓN En el propio enunciado, a cada ejercicio se le asigna su valoración global máxima: 2,5 puntos En los ejercicios con varios apartados, la puntuación de

Más detalles

Material básico del laboratorio de Electrónica y Circuitos. Generador de señales MTX-3240 o similar. Osciloscopio digital TDS-210 o similar.

Material básico del laboratorio de Electrónica y Circuitos. Generador de señales MTX-3240 o similar. Osciloscopio digital TDS-210 o similar. Práctica 4: Teoremas Apellidos, nombre Grupo Puesto Fecha Apellidos, nombre 4.1 Material necesario Material básico del laboratorio de lectrónica y Circuitos. Generador de señales MTX-3240 o similar. Osciloscopio

Más detalles

CAPITULO XIII RECTIFICADORES CON FILTROS

CAPITULO XIII RECTIFICADORES CON FILTROS CAPITULO XIII RECTIFICADORES CON FILTROS 13.1 INTRODUCCION En este Capítulo vamos a centrar nuestra atención en uno de los circuitos más importantes para el funcionamiento de los sistemas electrónicos:

Más detalles

Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos:

Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos: Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia Fecha: 20-12-2011 Nombre y apellidos: Duración: 2h DNI: Elegir la opción correcta

Más detalles

COLECCIÓN DE PROBLEMAS IV REPASO

COLECCIÓN DE PROBLEMAS IV REPASO COLECCIÓN DE PROBLEMAS I REPASO 1. Una tensión alterna de 100Hz tiene un valor eficaz de 10. Deducir la expresión de la corriente instantánea que circularía por una bobina de L=3H si se le aplica dicha

Más detalles

CURSO: SEMICONDUCTORES UNIDAD 2: RECTIFICACIÓN - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. RECTIFICACIÓN SIMPLE

CURSO: SEMICONDUCTORES UNIDAD 2: RECTIFICACIÓN - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. RECTIFICACIÓN SIMPLE CURSO: SEMICONDUCTORES UNIDAD 2: RECTIFICACIÓN - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. RECTIFICACIÓN SIMPLE Rectificación, es el proceso de convertir los voltajes o tensiones y corrientes alternas

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A EJECICIO 1. (2,5 puntos) En el circuito de la figura; calcular: a) El valor de E 2 en el circuito sabiendo que la potencia disipada en 2 es de 8 W. b) Las intensidades de corriente indicadas en

Más detalles

'UEWGNC7PKXGTUKVCTKC2QNKVÃEPKECFG+PIGPKGTÈC6ÃEPKEC+PFWUVTKCN 241$.'/#5 FGFKQFQU

'UEWGNC7PKXGTUKVCTKC2QNKVÃEPKECFG+PIGPKGTÈC6ÃEPKEC+PFWUVTKCN 241$.'/#5 FGFKQFQU 'UEGNC7PKXGTUKVCTKC2QNKVÃEPKECFG+PIGPKGTÈC6ÃEPKEC+PFUVTKCN (/(&75Ï1,&$%È6,&$ 241$.'/#5 FGFKQFQU ','4%+%+15FGFKQFQU (/(&75Ï1,&$%È6,&$ D Hallar el valor de las tensiones y las corrientes señaladas en los

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A Una batería con una tensión a circuito abierto E=100 V tiene una resistencia interna Rin=25 Ω y se conecta a una resistencia R=590 Ω junto a un voltímetro y un amperímetro como indica la figura.

Más detalles

EJERCICIOS DE RESISTENCIAS

EJERCICIOS DE RESISTENCIAS IES Los Neveros Dpto. Tecnología Apellidos:... Nombre:... Grupo:... Fecha:... EJERCICIOS DE SISTEMAS ELECTRÓNICOS EJERCICIOS DE RESISTENCIAS 1. Indica el valor en código de colores de las siguientes resistencias:

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A Dos pilas iguales de fuerza electromotriz 1,5 V y resistencia interna 0,1 Ω. a) Si se asocian en serie y se conectan a una resistencia exterior, la intensidad que circula es de 3 A, cuál es el

Más detalles

PROBLEMAS SOBRE FUENTES REGULADAS

PROBLEMAS SOBRE FUENTES REGULADAS UNIVERSIDAD NACIONAL DE ROSARIO FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA DEPARTAMENTO DE ELECTRÓNICA ELECTRÓNICA III PROBLEMAS SOBRE FUENTES REGULADAS Autores: Francisco S. López, Federico

Más detalles

1. Un condensador de 3µF se carga a 270V y luego se descarga a través de una resistencia

1. Un condensador de 3µF se carga a 270V y luego se descarga a través de una resistencia Física 3 - Turno : Mañana Guia N 6 - Primer cuatrimestre de 2010 Transitorios, Circuitos de Corriente Alterna, Transformadores 1. Un condensador de 3µF se carga a 270V y luego se descarga a través de una

Más detalles

Celdas de Filtrado con Entrada Inductiva

Celdas de Filtrado con Entrada Inductiva Celdas de Filtrado con Entrada Inductiva Un circuito rectificador con carga capacitiva está limitado por el hecho que, para elevadas corrientes de carga, se requiere un capacitor de filtro de capacidad

Más detalles

Resultado: V (Volt) I (A)

Resultado: V (Volt) I (A) Ejercicios relativos al diodo de unión pn 1. Una unión pn abrupta de germanio tiene las siguientes concentraciones de impurezas: N A = 5 10 14 cm -3. N D = 10 16 cm -3 ε r = 16.3 ε 0 = 8.854 10-12 F m

Más detalles

Electrónica Analógica Diodos Práctica 2

Electrónica Analógica Diodos Práctica 2 APELLIDOS:...NOMBRE:... APELLIDOS:...NOMBRE:... 1.- ANALISIS DE UN CIRCUITO CON DIODOS I. 1. a.- Analiza el funcionamiento del siguiente circuito y dibuja de forma acotada las formas de onda de las tensiones

Más detalles

DE UN MEDIDOR DE AC. Existen diversos tipos de medidores que se pueden emplear en medir magnitudes eléctricas alternas. Se pueden clasificar en:

DE UN MEDIDOR DE AC. Existen diversos tipos de medidores que se pueden emplear en medir magnitudes eléctricas alternas. Se pueden clasificar en: PRÁCTICA 1. DISEÑO Y RESPUESTA EN FRECUENCIA 1 Objetivo. DE UN MEDIDOR DE AC Diseñar y construir un voltímetro elemental de corriente alterna utilizando un puente rectificador de media onda y otro de onda

Más detalles

ELO I UNIDAD DOS 2.1. DIODOS La característica del diodo utilizado en el circuito está expresada por:

ELO I UNIDAD DOS 2.1. DIODOS La característica del diodo utilizado en el circuito está expresada por: ELO I UNIA OS 2.1. IOOS 211.06.- La característica del diodo utilizado en el circuito está expresada por: i I 0.(e q.vd m.kt 1) 10 6.(e q.vd m. KT 1) [Amp] onde: I 0 = Corriente inversa de saturación;

Más detalles

VARIAS APLICACIONES DE LOS DIODOS RECTIFICADORES CIRCUITO DOBLADOR DE VOLTAJE

VARIAS APLICACIONES DE LOS DIODOS RECTIFICADORES CIRCUITO DOBLADOR DE VOLTAJE VARIAS APLICACIONES DE LOS DIODOS RECTIFICADORES CIRCUITO DOBLADOR DE VOLTAJE Semiciclo positivo: Conduce D1, se carga C1 Semiciclo negativo: Conduce D2, se carga C2 Voltaje de salida: El doble que el

Más detalles

DIODOS EL DIODO IDEAL

DIODOS EL DIODO IDEAL DIODOS EL DIODO IDEAL Con este modelo VD = 0,7 V EL MODELO DE VOLTAJE CONSTANTE EL RECTIFICADOR VOLTAJE EN LA CARGA Y EN EL DIODO Voltaje en la carga Voltaje en el diodo RECTIFICADOR DE MEDIA ONDA VALOR

Más detalles

Parcial_2_Curso.2012_2013

Parcial_2_Curso.2012_2013 Parcial_2_Curso.2012_2013 1. La función de transferencia que corresponde al diagrama de Bode de la figura es: a) b) c) d) Ninguna de ellas. w (rad/s) w (rad/s) 2. Dado el circuito de la figura, indique

Más detalles

Componentes Electrónicos. Prácticas - Laboratorio. Práctica 2: Diodos

Componentes Electrónicos. Prácticas - Laboratorio. Práctica 2: Diodos Prácticas Laboratorio Práctica 2: Diodos Ernesto Ávila Navarro Práctica 2: Diodos (Montaje y medida en laboratorio) Índice: 1. Material de prácticas 2. Medida de las características del diodo 2.2. Diodo

Más detalles

24 V. i(t) 100 A. 1 t (sg)

24 V. i(t) 100 A. 1 t (sg) oletín de preguntas COTS de Exámenes de Electrotecnia oletín de preguntas COTS de Exámenes de Electrotecnia TEM 1 1.- Un condensador tiene 100 V entre sus terminales, Que tensión debería tener para que

Más detalles

PRINCIPIOS DE REGULACIÓN FUENTE REGULADA

PRINCIPIOS DE REGULACIÓN FUENTE REGULADA PRINCIPIOS DE REGULACIÓN FUENTE REGULADA PARÁMETROS DE LAS FUENTES DE VOLTAJE DC REGULADAS Regulación de Carga Es una medida de la capacidad de la Fuente de Voltaje DC de mantener constante su voltaje

Más detalles

RECTIFICACIÓN DE MEDIA ONDA

RECTIFICACIÓN DE MEDIA ONDA RECTIFICACIÓN DE MEDIA ONDA I. OBJETIVOS Definir lo que es una fuente de baja tensión. Analizar los componentes a utilizar. Montaje del circuito. Análisis de tensión (AC-DC). Determinar las gráficas a

Más detalles

Ejercicios Resueltos de Dispositivos Electrónicos I 1 Examen Final de Junio de Ejercicio 2

Ejercicios Resueltos de Dispositivos Electrónicos I 1 Examen Final de Junio de Ejercicio 2 Ejercicios Resueltos de ispositivos Electrónicos I Examen Final de Junio de 2000 - Ejercicio 2 Enunciado Obtener analíticamente y dibujar la gráfica de la función f el siguiente circuito. Ie z Ve z Para

Más detalles

Pr.A Boletín de problemas de la Unidad Temática A.I: Características principales y utilización

Pr.A Boletín de problemas de la Unidad Temática A.I: Características principales y utilización Pr.A Boletín de problemas de la Unidad Temática A.I: Características principales y utilización Pr.A.1. El diodo 1. Obtener de forma gráfica la corriente que circula por el diodo del siguiente circuito

Más detalles

ISEI JOSE ALFREDO MARTINEZ PEREZ DISPOSITIVOS ELECTRONICOS. Práctica 6. Aplicaciones de los diodos: REGULACIÓN.

ISEI JOSE ALFREDO MARTINEZ PEREZ DISPOSITIVOS ELECTRONICOS. Práctica 6. Aplicaciones de los diodos: REGULACIÓN. JOSE ALFREDO MARTINEZ PEREZ DISPOSITIVOS ELECTRONICOS Práctica 6 Aplicaciones de los diodos: REGULACIÓN. Objetivo: En esta práctica el estudiante conocerá una de las aplicaciones más importantes del diodo

Más detalles

Tema 1. Diodos Semiconductores 1-Introducción 2-Comportamiento en régimen estático. Recta de carga. 3- Tipos especiales de diodos

Tema 1. Diodos Semiconductores 1-Introducción 2-Comportamiento en régimen estático. Recta de carga. 3- Tipos especiales de diodos Tema 1. Diodos Semiconductores 1-Introducción 2-Comportamiento en régimen estático. ecta de carga. 3- Tipos especiales de diodos Zener Schottky Emisor de luz (LED) 4- Circuitos con diodos ecortadores ó

Más detalles

CIRCUITO DE CORRIENTE ALTERNA EN SERIE R y L Fundamento

CIRCUITO DE CORRIENTE ALTERNA EN SERIE R y L Fundamento CIRCUITO DE CORRIENTE ALTERNA EN SERIE R y L Fundamento Si en un circuito de corriente alterna, se situaran una resistencia y una autoinducción pura, es decir sin resistencia óhmica, dispuestas en serie

Más detalles

ELECTRÓNICA DE POTENCIA

ELECTRÓNICA DE POTENCIA ELECTRÓNICA DE POTENCIA RELACIÓN DE PROBLEMAS (4) PROBLEMA 20: Convertidor reductor: cálculo de inductancia En un convertidor Buck en el que podemos considerar todos los componentes ideales, la tensión

Más detalles

EXP204 REGULADOR DE VOLTAJE SERIE

EXP204 REGULADOR DE VOLTAJE SERIE EXP204 REGULADOR DE VOLTAJE SERIE I.- OBJETIVOS. Diseñar un regulador de voltaje serie ajustable Comprobar el funcionamiento del regulador. Medir la resistencia de salida del regulador Medir el por ciento

Más detalles

EXAMEN DE CIRCUITOS NOMBRE: TEST DE CIRCUITOS 1ª PREGUNTA RESPUESTA. A. 0.2 A D. 7.5 A B. 5 A E. Indeterminada ( g?) C. 10 A F.

EXAMEN DE CIRCUITOS NOMBRE: TEST DE CIRCUITOS 1ª PREGUNTA RESPUESTA. A. 0.2 A D. 7.5 A B. 5 A E. Indeterminada ( g?) C. 10 A F. EXAMEN DE CICUITOS NOMBE: TEST DE CICUITOS 1ª PEGUNTA ESPUESTA E gv V 1 1 A En el circuito de la figura, el generador E proporciona una tensión de 100V y =10Ω. El generador Equivalente de Norton del circuito

Más detalles

Laboratorio de Electricidad PRACTICA - 14 CARACTERISTICAS DE UN CIRCUITO SERIE RLC

Laboratorio de Electricidad PRACTICA - 14 CARACTERISTICAS DE UN CIRCUITO SERIE RLC PACTICA - 14 CAACTEISTICAS DE UN CICUITO SEIE LC I - Finalidades 1.- Estudiar los efectos sobre la corriente alterna en un circuito serie, con resistencia, autoinducción y capacidad (LC). 2.- Comprobar

Más detalles

UNIDAD DIDACTICA En el circuito de la figura, calcular la intensidad de la corriente que circula por las resistencias A y B.

UNIDAD DIDACTICA En el circuito de la figura, calcular la intensidad de la corriente que circula por las resistencias A y B. UNIDD DIDCTIC 3 1. Uniendo mediante una resistencia de 7 Ω los terminales de una batería de E=5 V de fuerza electromotriz y resistencia interna r, circula una corriente de 0,5. Hallar: a) esistencia interna

Más detalles

Transitorios, Circuitos de Corriente Alterna, Transformadores.

Transitorios, Circuitos de Corriente Alterna, Transformadores. Física 3 Guia 5 - Corrientes variables Verano 2016 Transitorios, Circuitos de Corriente Alterna, Transformadores. 1. Un condensador de 3µF se carga a 270 V y luego se descarga a través de una resistencia

Más detalles

Examen de Electrónica Industrial. 1 de septiembre de 2006 Tiempo: 2:30 horas.

Examen de Electrónica Industrial. 1 de septiembre de 2006 Tiempo: 2:30 horas. Examen de Electrónica ndustrial. de septiembre de 006 Tiempo: :30 horas. Problema ( punto) En la figura se muestra un circuito de disparo de tiristores usando un UJT. La tensión de alimentación del circuito

Más detalles

EXAMEN DE CIRCUITOS NOMBRE: TEST DE CIRCUITOS 1ª PREGUNTA RESPUESTA

EXAMEN DE CIRCUITOS NOMBRE: TEST DE CIRCUITOS 1ª PREGUNTA RESPUESTA NOMRE: TEST DE CIRCUITOS 1ª PREGUNT RESPUEST El circuito de la figura está formado por 12 varillas conductoras de igual material y sección, con resistencia R. La resistencia equivalente entre los terminales

Más detalles

Práctica E1: Características de un circuito serie RLC

Práctica E1: Características de un circuito serie RLC aracterísticas de un circuito serie : Práctica E1 Práctica E1: aracterísticas de un circuito serie 1. Objetivos os objetivos de la práctica son: 1.- Medida del coeficiente de autoinducción de una bobina..-

Más detalles

BOLETÍN DE PROBLEMAS SISTEMAS TRIFÁSICOS EQUILIBRADOS

BOLETÍN DE PROBLEMAS SISTEMAS TRIFÁSICOS EQUILIBRADOS TECNOLOGÍA ELÉCTRICA Ingeniero Químico Curso 2004/2005 BOLETÍN DE PROBLEMAS SISTEMAS TRIFÁSICOS EQUILIBRADOS Problema 1. En el circuito de la figura, calcular: a) Las intensidades de línea. b) Las tensiones

Más detalles

Pz max : El fabricante especifica la potencia máxima que determina la corriente máxima que puede circular por el dispositivo.

Pz max : El fabricante especifica la potencia máxima que determina la corriente máxima que puede circular por el dispositivo. EL DIODO ZENER PARAMETROS DEL DIODO ZENER V Z0 : Fuente de voltaje en el modelo del zener. V ZK - I ZK : El fabricante especifica un valor de voltaje del zener identificado como el voltaje de rodilla para

Más detalles

PREPARACIÓN DE LA PRÁCTICA 2: DIODOS Y ZENERS RECTIFICADORES Y REGULADORES. Hoja de datos del diodo rectificador 1N400X. Valores Máximos Absolutos

PREPARACIÓN DE LA PRÁCTICA 2: DIODOS Y ZENERS RECTIFICADORES Y REGULADORES. Hoja de datos del diodo rectificador 1N400X. Valores Máximos Absolutos PREPARACIÓN DE LA PRÁCTICA 2: DIODOS Y ZENERS RECTIFICADORES Y REGULADORES Hoja de datos del diodo rectificador 1N400X Valores Máximos Absolutos Características Térmicas Características Eléctricas Hoja

Más detalles

BOLETÍN DE PROBLEMAS SISTEMAS MONOFÁSICOS

BOLETÍN DE PROBLEMAS SISTEMAS MONOFÁSICOS Dpto. de Ingeniería Eléctrica E.T.S. de Ingenieros Industriales Universidad de Valladolid TECNOLOGÍA ELÉCTRICA Ingeniero Químico Curso 2004/2005 BOLETÍN DE PROBLEMAS SISTEMAS MONOFÁSICOS Problema 1 Calcular

Más detalles

Electrónica 2. Práctico 2 Osciladores

Electrónica 2. Práctico 2 Osciladores Electrónica 2 Práctico 2 Osciladores Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic Circuits,

Más detalles

Serie 7 CORRIENTE ALTERNA

Serie 7 CORRIENTE ALTERNA Serie 7 CORRIENTE LTERN 1. En el circuito de la figura hallar la corriente que circula y el diagrama vectorial correspondiente. 12 S 110 0 20 mhy f = 50Hz 100 µf 2. Idéntico al anterior. 3. Idéntico al

Más detalles

Districte Universitari de Catalunya

Districte Universitari de Catalunya Proves d Accés a la Universitat. Curs 2012-2013 Electrotecnia Serie 4 La prueba consta de dos partes de dos ejercicios cada una. La primera parte es común y la segunda tiene dos opciones (A y B), entre

Más detalles

Fuentes de alimentación. Lineales

Fuentes de alimentación. Lineales Fuentes de alimentación Lineales Regulador integrado 7805 Diagrama en bloques Mediciones Diagrama en bloques Fuente de alimentación lineal Fuente no regulada ni estabilizada Fuente regulada y estabilizada

Más detalles

UNIVERSIDAD DE ALCALÁ Escuela Politécnica Superior Grado en Electrónica y Automática Industrial

UNIVERSIDAD DE ALCALÁ Escuela Politécnica Superior Grado en Electrónica y Automática Industrial 1.- En el circuito de la figura, se pide: a) Calcular i 1 (t) e i 2 (t) analizando el circuito por corrientes. b) Calcular v B (t), analizando el circuito por tensiones. c) Confirmar que la suma de las

Más detalles

BLOQUE I MEDIDAS ELECTROTÉCNICAS

BLOQUE I MEDIDAS ELECTROTÉCNICAS 1.- Un galvanómetro cuyo cuadro móvil tiene una resistencia de 40Ω, su escala está dividida en 20 partes iguales y la aguja se desvía al fondo de la escala cuando circula por él una corriente de 1 ma.

Más detalles

Las fuentes de alimentación

Las fuentes de alimentación Las fuentes de alimentación La mayoría de los circuitos electrónicos trabajan con corriente continua. Lo normal es que ésta sea suministrada por pilas o baterías, pero para las situaciones en la que esto

Más detalles

Resumen APLICACIONES DE LOS DIODOS

Resumen APLICACIONES DE LOS DIODOS Resumen FUNDAMENTO DE ELECTRÓNICA El diodo es un elemento semiconductor formado por la unión de dos pastillas semiconductoras, una de tipo P (ánodo) y otra de tipo N (cátodo). Cuando la tensión en el ánodo

Más detalles

MEDIDAS ELÉCTRICAS. Trabajo Práctico. Introducción a la simulación de circuitos eléctricos por computadora con PSpice

MEDIDAS ELÉCTRICAS. Trabajo Práctico. Introducción a la simulación de circuitos eléctricos por computadora con PSpice MEDIDAS ELÉCTRICAS Trabajo Práctico Introducción a la simulación de circuitos eléctricos por computadora con PSpice Su aplicación a las Medidas Eléctricas Asignatura Medidas Eléctricas Curso 2017 Trabajo

Más detalles

TEMA 1.3 APLICACIONES DE LOS DIODOS TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA

TEMA 1.3 APLICACIONES DE LOS DIODOS TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA TEMA 1.3 APLICACIONES DE LOS DIODOS TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA 09 de octubre de 2014 TEMA 1.3 APLICACIONES DE LOS DIODOS Rectificador Regulador de tensión Circuitos recortadores

Más detalles

Andrés García Rodríguez. I.E.S. Enrique Nieto. Electrotecnia 1

Andrés García Rodríguez. I.E.S. Enrique Nieto. Electrotecnia 1 Andrés García Rodríguez. I.E.S. Enrique Nieto. Electrotecnia 1 Andrés García Rodríguez. I.E.S. Enrique Nieto. Electrotecnia 2 a) La tensión en vacío coincide con la fem de la pila. Al conectarle una carga

Más detalles

2003-Septiembre 2016-Modelo B. Cuestión Septiembre A. Cuestión 1.- B. Cuestión Junio B. Cuestión Modelo A. Cuestión 4.

2003-Septiembre 2016-Modelo B. Cuestión Septiembre A. Cuestión 1.- B. Cuestión Junio B. Cuestión Modelo A. Cuestión 4. 2016-Modelo B. Cuestión 1.- Un condensador de 100 μf se carga con una tensión de 10 V (posición del conmutador en (1) en la figura). Posteriormente se conectan sus armaduras a las de otro condensador de

Más detalles

9 José Fco. Gómez Glez., Benjamín Glez. Díaz, María de la Peña Fabiani, Ernesto Pereda de Pablo

9 José Fco. Gómez Glez., Benjamín Glez. Díaz, María de la Peña Fabiani, Ernesto Pereda de Pablo PROBLEMAS DE CIRCUITOS EN CORRIENTE ALTERNA 25. Una fuente de voltaje senoidal, de amplitud Vm = 200 V y frecuencia f=500 Hz toma el valor v(t)=100 V para t=0. Determinar la dependencia del voltaje en

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2010-2011 MATERIA: ELECTROTECNIA INSTRUCCIONES GENERALES Y VALORACIÓN TIEMPO:

Más detalles

Fuentes Reguladas Lineales

Fuentes Reguladas Lineales Fuentes Reguladas ineales 1 Fuentes Reguladas Clasificaciones. Fuentes reguladas Discretas Fuentes reguladas ntegradas Reguladores Series Reguladores en paralelo 2 1 Fuentes Reguladas Diagrama en bloque

Más detalles

ELECTRÓNICA Y TELECOMUNICACIONES Competencia Individual Nivel 1 Segunda Ronda

ELECTRÓNICA Y TELECOMUNICACIONES Competencia Individual Nivel 1 Segunda Ronda ELECTÓNCA Y TELECOMUNCACONES Competencia ndividual Nivel Segunda onda. Un galvanómetro tiene una resistencia de 50 [ y su lectura a fondo de escala es de 0,0[A]. Qué resistencia paralelo p convierte al

Más detalles

Convocatòria Electrotecnia. Proves d accés a la universitat. Serie 1. Primera parte

Convocatòria Electrotecnia. Proves d accés a la universitat. Serie 1. Primera parte Proves d accés a la universitat Electrotecnia Serie 1 La prueba consta de dos partes de dos ejercicios cada una. La primera parte es común y la segunda tiene dos opciones (A y B). Resuelva los ejercicios

Más detalles

ASIGNATURA: ANÁLISIS DE CIRCUITOS (2º Curso Grado Ingeniero Tecnologías Industriales) Test de conocimientos 2012/2013

ASIGNATURA: ANÁLISIS DE CIRCUITOS (2º Curso Grado Ingeniero Tecnologías Industriales) Test de conocimientos 2012/2013 ASIGNATURA: ANÁLISIS DE CIRCUITOS (2º Curso Grado Ingeniero Tecnologías Industriales) Test de conocimientos 2012/2013 SUGERENCIA: Intenta contestar a cada cuestión y analizar el porqué de cada respuesta

Más detalles

Examen de Electrónica Industrial - 30 de junio de 2008

Examen de Electrónica Industrial - 30 de junio de 2008 Examen de Electrónica Industrial - 3 de junio de 28 Tiempo: 2 horas El valor de cada subapartado aparece indicado en el mismo En todos los problemas se deben justificar todos los pasos que se den para

Más detalles

1-C Circuitos en régimen senoidal permanente

1-C Circuitos en régimen senoidal permanente -C Circuitos en régimen senoidal permanente C- Calcular las potencias complejas en todos los elementos, y hacer un balance de las potencias activas y reactivas. V = 00 Vef V = 50 Vef (-j) j0 j0 V 0 V Figura

Más detalles

Universidad de Carabobo Facultad de Ingeniería Departamento de Electrónica y Comunicaciones Electrónica I Prof. César Martínez Reinoso

Universidad de Carabobo Facultad de Ingeniería Departamento de Electrónica y Comunicaciones Electrónica I Prof. César Martínez Reinoso Guía de Ejercicios Parte II. Unión PN y Diodos 1. Una unión P-N tiene un dopado de átomos aceptantes de 10 17 cm -3 en el material tipo P y un dopado de impurezas donantes de 5*10 15 cm -3 en el lado N.

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A Hallar el valor que ha de tener la fuerza electromotriz, ε del generador intercalado en el circuito de la figura, para que el potencial del punto A sea 9 voltios. Para conseguir crear una inducción

Más detalles

MEDIDAS ELÉCTRICAS. Unidad Temática N 2. Estudio de un voltímetro digital. Errores de forma de onda.

MEDIDAS ELÉCTRICAS. Unidad Temática N 2. Estudio de un voltímetro digital. Errores de forma de onda. MEDIDAS ELÉCTRICAS Unidad Temática N 2 Estudio de un voltímetro digital. Errores de forma de onda. Guía del trabajo práctico N 2 Problemas propuestos Asignatura Medidas Eléctricas Curso 2017 Trabajo Práctico

Más detalles

CIRCUITOS CON DIODOS.

CIRCUITOS CON DIODOS. ema 3 CIRCUIOS CON DIODOS. 1.- Aplicación elemental..- Circuitos recortadores (limitadores)..1.- Resolución de un circuito recortador utilizando las cuatro aproximaciones del diodo..1.1.- Resolución utilizando

Más detalles