Para qué medir? Midiendo el Desempeño. M. Curiel 1. Midiendo el Desempeño. Qué variables se desea medir? Cuáles son las herramientas disponibles?

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Para qué medir? Midiendo el Desempeño. M. Curiel 1. Midiendo el Desempeño. Qué variables se desea medir? Cuáles son las herramientas disponibles?"

Transcripción

1 Midiedo el Desempeño Mariela Curiel 009 (Alguas trasparecias so tomadas del libro de Juiz, Molero, etc) Para qué medir? teder el fucioamieto de u sistema o aplicació - cotrar los segmetos que se usa de forma más frecuete e u programa (perfilació) - Medir las utilizacioes de los recursos, ecotrar posibles cuellos de botella. toar los parámetros del sistema (tuig) para mejorar su desempeño. Obteer parámetros para los modelos de la carga. Actualizar modelos de redimieto Validació de modelos de redimieto Midiedo el Desempeño Qué variables se desea medir? Cuáles so las herramietas dispoibles? 1

2 Qué medidas se ecesita? Itesidad de la carga: el úmero de peticioes, la tasa a la que llega al sistema, patroes específicos Características de los datos: catidad de datos y el tamaño de cada item, la frecuecia de peticioes a cada item, elemetos que se accede cocurretemete. Qué medidas se ecesita? Características de la ejecució Path characteristics: se mide el úmero de veces que se ejecuta cada camio para calcular las veces que se repite u ciclo y las probabilidades de ejecució de los camios codicioales. Uso de recursos: úmero de veces que se solicita el recurso y tiempo de servicio Overhead: tiempo del sistema o atribuible a procesos usuarios. Herramieta diseñada para observar la actividad de u sistema iformático mietras es utilizado por los usuarios Carga Cocepto de moitor Moitor Accioes típicas de u moitor Observar el comportamieto Recoger datos estadísticos Aalizar estos datos, mostrar los resultados.

3 Moitores Los moitores so las herramietas de medició que permite seguir el comportamieto de los pricipales elemetos de u sistema iformático cuado éste se halla sometido a ua carga de trabajo determiada. alguos cotextos se llama sesores. Dejado el térmio moitor para las herramietas capaces de actuar. Utilidad de los moitores Admiistrador Coocer la utilizació de los recursos (detecció de cuellos de botella) Ajustar los parámetros del sistema (toar) Aalista de desempeño Calcular los parámetros de etrada a modelos del sistema (aalíticos o simulació). Sistema Adaptarse diámicamete a la carga Desarrollo de aplicacioes: eteder su fucioamieto: etoarlas. Implemetació de los moitores Software Programas istalados e el sistema Hardware Dispositivos exteros al sistema Híbridos Utiliza los dos tipos ateriores Los más habituales toros muy específicos 3

4 Situació de los moitores Sodas electromagéticas Sistema iformático Moitor software Moitor hardware Moitores software So los más usados Geera Sobrecarga Implemetació Adició de u uevo programa Modificació del software a medir Modificació del sistema operativo Moitores hardware Istrumetos idepedietes (exteros) del sistema a moitorizar coectados a este mediate sodas electromagéticas Vetajas No usa recursos del sistema moitorizado Rapidez (circuitos electróicos) Icoveietes Los sistemas o facilita la istalació de sodas Persoal especializado para su operació Hay magitudes o accesibles por hardware Costosos 4

5 Moitores híbridos Parte hardware Actúa como u dispositivo de I/O que guarda, aaliza y procesa la iformació eviada por la parte software Parte software Código añadido al SO: istruccioes especiales de I/O Actúa como ua soda que recoge iformació y la evía a la parte hardware Moitor híbrido Software Moitores: clasificació De acuerdo a cómo orgaiza la iformació: Orietados a clases: realiza medidas a ivel de programa. Orietados a recursos: orgaiza la iformació por recursos (utilizacioes, tiempos de servicio, logitudes media de cola, etc.) y o está al tato de qué procesos usa tales recursos i e qué medida. Moitores: clasificació De acuerdo al mecaismo de activació: Moitores de evetos o acotecimietos (evet drive): se activa co la aparició de ciertos evetos e el sistema. Moitores de muestreo: se activa a itervalos de tiempos fijos o aleatorios mediate iterrupcioes de reloj. 5

6 Detecció de evetos stado del sistema Coteido de todas las memorias veto Provoca u cambio del estado Volume de iformació recogida Depede de la frecuecia de los evetos i-1 stado i-1 stado i stado i+1 i jemplos de evetos: Iicio/fi de la ejecució de u programa vío o recepció de u mesaje Abrir/cerrar u fichero Ua gra parte de los evetos (o todos) puede ser detectados por software Muestreo Observació a itervalos regulares o aleatorios Volume de iformació recogida y precisió: depede de T T T T Medidas Moitores: clasificació De acuerdo a la forma de mostrar los resultados: Moitores e tiempo real (o-lie): muestra el estado del sistema tato e forma cotiua, como a itervalos frecuetes de tiempo (vmstat, ps, top, etc.). Moitores batch o de cotabilidad: recoge los datos y escribe los registros cuado termia los procesos o el período de recolecció. 6

7 Moitores: clasificació Perfiladores: mide cuáto tiempo o qué fracció del tiempo total el sistema ivierte e ciertos estados. jem, cuáto tiempo gasta u programa ejecutado ua o varias de sus subrutias. (performace debuggig) Técica para realizar las medidas specificar los putos de referecia A cliet Server F LAN LAN C Network D B Técica para realizar las medidas Compreder el propósito del proceso de medició, las pregutas que se desea respoder. specificar las variables a ser medidas y las herramietas y técicas que se va a usar. Defiir los casos de prueba: la carga y las características del sistema (sop, middleware, etc.) Logitud del itervalo de medida Número de Réplicas Orde e las medidas Codicioes iiciales 7

8 Técica para realizar las medidas Istrumetar el sistema y recolectar los datos. Aalizar y trasformar los datos. Programas de Aplicació Servidores/ Middleware Moitores Sistema Operativo Hardware specificar los putos de referecia specificar las variables que se va a medir Istrumetar y recolectar datos Aalizar y trasformar los datos Cosejos para sobrevivir a las medidas Lea las págias del maual de las herramietas de moitoreo, estudie todas las opcioes del moitor y el sigificado de las variables que se mide Determie todos los compoetes de Hw (cache, discos, etc.) y trate de eteder su fucioalidad. Trate de compreder la arquitectura de software y cómo es la iteracció etre los compoetes Cosejos para sobrevivir a las medidas studie la graularidad de las medidas y determie si este ivel de graularidad es apropiado. Determie la presecia de procesos e backgroud cuyo cosumo de recursos o vaya a ser determiado por la herramieta de moitorizació seleccioada. 8

9 Cosejos para sobrevivir a las medidas Observe la iterferecia del proceso de recolecció de datos e el sistema, trate de miimizar esta iterferecia Si las herramietas seleccioadas tiee problemas de precisió, determie si esto se puede admitir de acuerdo co los objetivos del estudio. Si hay dudas, es mejor recolectar datos e exceso. Recolecte iformació para validar posteriormete los modelos. Medidas e la RD Los datos so trasmitidos a través de la red desde el Agete al Moitor. sto afecta el acho de bada y afecta las medidas de desempeño. Los hosts puede estar a distacias diferetes, por lo que los datos puede experimetar diferetes retrasos. sto puede ser u problema si las medidas se espera e forma periódica. Medidas e la RD Si los datos viee de diferetes hosts y tiee timestamps el moitor tiee el problema de ordear los evetos correctamete. Si los relojes o está sicroizados, los tiempos puede ser poco sigificativos. Si los hosts so heterogéeos los valores puede ser difíciles de comparar. 9

10 rrores e las Medidas Fuetes de rror rrores sistemáticos: so el resultado de algú procedimieto icorrecto. Tiede a ser costates etre las medidas. l experimetador debe detectar y elimiar estos errores. jm. réplicas del mismo experimeto co codicioes iiciales diferetes. Fuetes de rror rrores aleatorios: so impredecibles, o determiísticos. U error aleatorio puede, co igual probabilidad, aumetar o dismiuir la duració del itervalo. Puede ser causados por: la herramieta de moitoreo, u proceso aleatorio detro del sistema o el observador que lee los resultados de la herramieta Afecta la precisió de las medidas, es decir la repetibilidad de los resultados 10

11 Fuetes de rror veto tc =13 ticks de reloj (duració del eveto = tc) 14 ticks de reloj, duració del eveto = (+1)tc rrores Los Itervalos de Cofiaza se utiliza co el valor medio para cuatificar la precisió de las medidas. precisió Impresició: catidad de dispersió e las medidas obteidas e múltiples medicioes de ua sola característica. Accuracy: diferecia etre el valor medido y el valor de referecia correspodiete. Resolució: es el cambio icremetal más pequeño que puede detectarse y mostrarse (periodo etre ticks). rrores Para que se pueda utilizar los itervalos de cofiaza, los errores debe seguir ua distribució ormal. Se desarrollará u modelo simple de errores para ver de forma ituitiva porque esta suposició es razoable. 11

12 U Modelo para los rrores rror 1 rror Valor Medido Probabilidad - - x 1/4 - x 1/4 - x 1/4 x + 1/4 Las fuetes de error puede afectar las medidas e +/- co igual probabilidad U modelo para los errores V. M x 3 Prob x x x x- x x + x x + x- x x+ - x + x + 3 x-3 x- x+ x+3 P(x-) = 3/8 Itervalos de Cofiaza Se toma la media muestral de medidas como la mejor aproximació del valor verdadero de x. x Para valores de grades (>=30) por teorema cetral del límite, La media muestral es gaussiaa y se distribuye co media μ Y desv. Stadard σ 1

13 Itervalos de Cofiaza Para cuatificar la precisió de las medidas, lo que se hace es ecotrar valores c 1,c, tales que la probabilidad de que el verdadero valor de x este etre c 1 y c, sea 1α probability{ c μ c } = 1α 1 (c1,c) es el itervalo de cofiaza α ivel de sigificacia 100( 1α ) ivel de cofiaza 1α coeficiete de cofiaza Itervalos de Cofiaza si o si si α = 0.05 (1 0.05)100 = 95% 0.95 es la probabilidad de que el itervalo escogido icluya la media poblacioal o que la media esté e el itervalo escogido. Total si >= 100( 1α) Total o <= 100 α 100 si Itervalos de Cofiaza X es la media muestral, y se usa como la mejor aproximació del valor de x. Si los valores medidos, {x 1,..., x }, so idepedietes y viee de la misma població co media μ y desviació stadard σ, el teorema cetral del límite asegura que para grades valores de ( >= 30), X es ormal co media μ y desviació estádar σ / Se supoe que la media poblacioal μ es el verdadero valor de x que se está tratado de medir. 13

14 Itervalos de Cofiaza c1 probabilit y{ c μ c } = 1α 1 Pr[ x < c1] = Pr[ x > c] = α x c 1α x N ( μ, σ x μ σ ) α α z = N ( 0,1 ) Zα P(z <= Z α Cuatil α de ua N(0,1) ) = α Itervalos de Cofiaza x 1α X μ P( Z Z ) = 1α (1 α ) s (1 α ) α Z ( 1 α ) Z ( 1α ) α P( x Z s (1 α ) μ x+ Z s (1 α ) ) = 1α Si < 30 c = x t 1 c = x+ t 1 1α / ; 1 1α / ; 1 s s Determiar el Número de Medidas que se Necesita s x m Z r r X X, X + X s z = X = r zs rx Se desea determiar el desempeo promedio co ua precisió de ± r% r r ( X (1 ), X (1 + )) s y x Se debe determiar de u cojuto reducido de medidas. 14

15 Bibliografía Daiel Meascé. Virgilio Almeida. Larry W. Dowdy. Capacity Plaig ad Performace Modelig. Pretice Hall, RajJai. The Art of Computer Systems Performace Aalysis. Wiley, David J. Lilja. Measurig Computer Performace. A practitioers guide. Cambridge Uiversity Press U método para la medició del overhead de servidores co cargas trasaccioales y su represetació mediate modelos de redes de colas. Tesis Doctoral. Uiversidad de las Islas Baleares

Midiendo el Desempeño

Midiendo el Desempeño Midiedo el Desempeño Prof. Mariela J. Curiel H. Midiedo el Desempeño Qué variables se desea medir Cuáles so las herramietas dispoibles Qué tecicas se utiliza para calcular los parámetros de etrada de u

Más detalles

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo Modelos lieales e Biología, 5ª Curso de Ciecias Biológicas Clase 8/10/04 Estimació y estimadores: Distribucioes asociadas al muestreo Referecias: Cualquiera de los textos icluidos e la bibliografía recomedada

Más detalles

ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA

ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA Autores: Ágel A. Jua (ajuap@uoc.edu), Máimo Sedao (msedaoh@uoc.edu), Alicia Vila (avilag@uoc.edu). ESQUEMA DE CONTENIDOS Defiició Propiedades

Más detalles

Estimación puntual y por intervalos de confianza

Estimación puntual y por intervalos de confianza Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció

Más detalles

16 Distribución Muestral de la Proporción

16 Distribución Muestral de la Proporción 16 Distribució Muestral de la Proporció 16.1 INTRODUCCIÓN E el capítulo aterior hemos estudiado cómo se distribuye la variable aleatoria media aritmética de valores idepedietes. A esta distribució la hemos

Más detalles

Estimación puntual y por Intervalos de Confianza

Estimación puntual y por Intervalos de Confianza Capítulo 7 Estimació putual y por Itervalos de Cofiaza 7.1. Itroducció Cosideremos ua v.a X co distribució F θ co θ descoocido. E este tema vemos cómo dar ua estimació putual para el parámetro θ y cómo

Más detalles

CURSO 2.004-2.005 - CONVOCATORIA:

CURSO 2.004-2.005 - CONVOCATORIA: PRUEBAS DE ACCESO A LA UNIVERSIDAD LOGSE / LOCE CURSO 4-5 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL. 1. Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos

INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL. 1. Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos 1 INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL La mayoría de estos problemas ha sido propuestos e exámees de selectividad de los distitos distritos uiversitarios españoles. 1. Ua muestra aleatoria de 9 tarrias

Más detalles

BIOESTADISTICA (55-10536) Estudios de prevalencia (transversales) 1) Características del diseño en un estudio de prevalencia, o transversal.

BIOESTADISTICA (55-10536) Estudios de prevalencia (transversales) 1) Características del diseño en un estudio de prevalencia, o transversal. Departameto de Estadística Uiversidad Carlos III de Madrid BIOESTADISTICA (55-10536) Estudios de prevalecia (trasversales) CONCEPTOS CLAVE 1) Características del diseño e u estudio de prevalecia, o trasversal

Más detalles

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,

Más detalles

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN Págia 98 Cuátas caras cabe esperar? El itervalo característico correspodiete a ua probabilidad del 95% (cosideramos casas raros al 5% de los casos extremos)

Más detalles

Muestreo. Tipos de muestreo. Inferencia Introducción

Muestreo. Tipos de muestreo. Inferencia Introducción Germá Jesús Rubio Lua Catedrático de Matemáticas del IES Fracisco Ayala Muestreo. Tipos de muestreo. Iferecia Itroducció Nota.- Puede decirse que la Estadística es la ciecia que se preocupa de la recogida

Más detalles

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA CAPÍTULO I CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA El campo de la estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Motgomery

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN PRUEBA PARCIAL N o 3 Profesor: Hugo S. Salias. Primer Semestre 2012 1. El ivel

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...}

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...} ESTADÍSTICA BÁSICA 1.) Coceptos básicos: Estadística: Es ua ciecia que aaliza series de datos (por ejemplo, edad de ua població, altura de u equipo de balocesto, temperatura de los meses de verao, etc.)

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO.001-.00 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella,

Más detalles

Tema 9. Inferencia Estadística. Intervalos de confianza.

Tema 9. Inferencia Estadística. Intervalos de confianza. Tema 9. Iferecia Estadística. Itervalos de cofiaza. Idice 1. Itroducció.... 2 2. Itervalo de cofiaza para media poblacioal. Tamaño de la muestra.... 2 2.1. Itervalo de cofiaza... 2 2.2. Tamaño de la muestra...

Más detalles

Teoría de colas. Andrés Ramos Universidad Pontificia Comillas http://www.iit.comillas.edu/aramos/ Andres.Ramos@comillas.edu TEORÍA DE COLAS 1

Teoría de colas. Andrés Ramos Universidad Pontificia Comillas http://www.iit.comillas.edu/aramos/ Andres.Ramos@comillas.edu TEORÍA DE COLAS 1 Teoría de colas Adrés Ramos Uiversidad Potificia Comillas http://www.iit.comillas.edu/aramos/ Adres.Ramos@comillas.edu TEORÍA DE COLAS 1 Ua cola se produce cuado la demada de u servicio por parte de los

Más detalles

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas Sistemas Automáticos. Ig. Orgaizació Cov. Juio 05. Tiempo: 3,5 horas NOTA: Todas las respuestas debe ser debidamete justificadas. Problema (5%) Ua empresa del sector cerámico dispoe de u horo de cocció

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO.-.3 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y,

Más detalles

Los sistemas operativos en red

Los sistemas operativos en red 1 Los sistemas operativos e red Objetivos del capítulo Coocer lo que es u sistema operativo de red. Ver los dos grupos e que se divide los sistemas oeprativos e red. Distiguir los compoetes de la arquitectura

Más detalles

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates 014 (Modelo ) Solucioes Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 014 MODELO OPIÓN A EJERIIO 1 (A) (1 75 putos) Represete gráficamete la regió

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 011 (Modelo 1) Euciado Germá-Jesús Rubio Lua SOLUCIONES PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: MATERIA: MATEMÁTICAS APLICADAS A LAS CC SS - Cada alumo debe elegir sólo ua de las pruebas (A o B).

Más detalles

PRUEBA A ( ) ( ) p z p z 0.4988 1 0.4988 0.4988 1 0.4988 0.4988 1.96,0.4988 + 1.96 = 0.4521, 0.5455 441 441

PRUEBA A ( ) ( ) p z p z 0.4988 1 0.4988 0.4988 1 0.4988 0.4988 1.96,0.4988 + 1.96 = 0.4521, 0.5455 441 441 PRUEBAS DE ACCESO A LA UNIVERSIDAD LOGSE CURSO 007-008 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC SS - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe respoder

Más detalles

Estadística Descriptiva

Estadística Descriptiva Igacio Cascos Ferádez Dpto. Estadística e I.O. Uiversidad Pública de Navarra Estadística Descriptiva Estadística ITT Soido e Image curso 2004-2005 1. Defiicioes fudametales La Estadística Descriptiva se

Más detalles

Planificación contra stock

Planificación contra stock Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

Estimación puntual y por intervalos

Estimación puntual y por intervalos 0/1/011 Aálisis de datos gestió veteriaria Estimació putual por itervalos Departameto de Producció Aimal Facultad de Veteriaria Uiversidad de Córdoba Córdoba, 30 de Noviembre de 011 Estimació putual por

Más detalles

Valoración de permutas financieras de intereses (IRS) *

Valoración de permutas financieras de intereses (IRS) * Valoració de permutas fiacieras de itereses (IRS) * JOSÉ E. ROMERO FERNÁNDEZ Agecia Estatal de Admiistració Tributaria SUMARIO 1. INTRODUCCIÓN. 2. INSTRUMENTOS FINANCIEROS DERIVADOS. 3. LOS MERCADOS. 4.

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SEPTIEMBRE 013 MODELO OPCIÓN A EJERCICIO 1 (A) Sea R la regió factible defiida por las iecuacioes x 3y, x 5, y 1. (0 5 putos) Razoe si el puto (4 5,1 55) perteece

Más detalles

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones Modulo IV Iversioes y Criterios de Decisió Aálisis de Iversioes 1. Iversió e la empresa 2. Métodos aproximados de valoració y selecció de iversioes 3. Criterio del valor actualizado eto (VAN) 4. Criterio

Más detalles

Revisión de conceptos: S 2 p ( 1 p ) Distribución binomial: Programa de Efectividad Clínica 2003 Bioestadística Vilma E. Irazola.

Revisión de conceptos: S 2 p ( 1 p ) Distribución binomial: Programa de Efectividad Clínica 2003 Bioestadística Vilma E. Irazola. Programa de Efectividad Clíica 003 Bioestadística Vilma E. Irazola DATOS CATEGORICOS COMPARACION DE PROPORCIONES Revisió de coceptos: Cotiuos Tipos de datos Discretos Categóricos Ejemplo: Variable a a

Más detalles

Ajustando Distribuciones a los Datos.

Ajustando Distribuciones a los Datos. Ajustado Distribucioes a los Datos. Prof. Mariela J. Curiel H. Eero, 2009 (por icluir la bibliografía) Técicas para ajustar ua distribució teórica Establecer ua Hipótesis acerca de la Distribució. Aálisis

Más detalles

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN 3 INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN Págia 99 REFLEXIONA Y RESUELVE Cuátas caras cabe esperar? Repite el razoamieto aterior para averiguar cuátas caras cabe esperar si lazamos 00 moedas

Más detalles

14 Intervalos de confianza

14 Intervalos de confianza Solucioario 14 Itervalos de cofiaza ACTIVIDADES INICIALES 14.I. Calcula tal que P z < Z z α α = 0,87. P zα < Z zα = P Z zα P Z < zα = P Z zα 1= 0,87 P Z P Z P Z = 1,87 = 0,935. Buscado e el iterior de

Más detalles

Medios de Transmisión

Medios de Transmisión 39 Medios de Trasmisió 3. Fibra Optica La fibra óptica trasporta iformació e forma de u haz de luz que fluctúa e su itesidad. Luz es ua oda electromagética que se propaga a ua frecuecia mayor que la que

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

Propuesta A. { (x + 1) 4. Se considera la función f(x) =

Propuesta A. { (x + 1) 4. Se considera la función f(x) = Pruebas de Acceso a Eseñazas Uiversitarias Oficiales de Grado (0) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumo deberá cotestar a ua de las dos opcioes propuestas A o B. Se podrá utilizar

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva Itroducció Se defie alguos coceptos básicos para ua compresió ituitiva de la Estadística. Se itroduce los primeros coceptos sobre el uso y maejo de datos uméricos, que permite distiguir

Más detalles

Capítulo I. La importancia del factor de potencia en las redes. eléctricas

Capítulo I. La importancia del factor de potencia en las redes. eléctricas La importacia del factor de potecia e las redes eléctricas. Itroducció Las fuetes de alimetació o geeradores de voltaje so las ecargadas de sumiistrar eergía e las redes eléctricas. Estas so de suma importacia,

Más detalles

CAL. CONTROL Y ASEGURAMIENTO DE CALIDAD

CAL. CONTROL Y ASEGURAMIENTO DE CALIDAD MCAL103/03 LIBRO: PARTE: TÍTULO: CAL. CONTROL Y ASEGURAMIENTO DE CALIDAD 1. CONTROL DE CALIDAD 03. Aálisis Estadísticos de Cotrol de Calidad A. CONTENIDO Este Maual cotiee los procedimietos para aalizar,

Más detalles

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir IES Fco Ayala de Graada Sobrates de 008 (Modelo Juio) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 008 (MODELO ) OPCIÓN A EJERCICIO _A 0 a b Sea las matrices A= y B= 0 6 a) ( 5 putos)

Más detalles

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 375 REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 376 Revisió de alguos idicadores para medir desigualdad Medidas de Desigualdad Para medir el grado de desigualdad e la

Más detalles

SUCESIONES TI 83. T 3 España T 3 EUROPE

SUCESIONES TI 83. T 3 España T 3 EUROPE SUCESIONES TI 83 T 3 España T 3 EUROPE Ferado Jua Alfred Mollá Oofre Mozó José Atoio Mora Pascual Pérez Tomás Queralt Julio Rodrigo Salvador Caballero Floreal Gracia Sucesioes TI83 ÍNDICE. Itroducció...

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5) IES Fco Ayala de Graada Sobrates de 008 (Modelo 5) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 008 (MODELO 5) OPCIÓN A EJERCICIO 1_A De las restriccioes que debe cumplir las

Más detalles

OPCIÓN A EJERCICIO 1 (A)

OPCIÓN A EJERCICIO 1 (A) IES Fco Ayala de Graada Juio de 01 (Geeral Modelo 6) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 01 MODELO (COMÚN) OPCIÓN A EJERCICIO 1 (A) -1-1 1 Sea las matrices A =

Más detalles

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2) Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos

Más detalles

CADENAS DE MARKOV. Métodos Estadísticos en Ciencias de la Vida

CADENAS DE MARKOV. Métodos Estadísticos en Ciencias de la Vida CADENAS DE MARKOV Itroducció U proceso o sucesió de evetos que se desarrolla e el tiempo e el cual el resultado e cualquier etapa cotiee algú elemeto que depede del azar se deomia proceso aleatorio o proceso

Más detalles

Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B

Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B Métodos Estadísticos de la Igeiería Tema 9: Iferecia Estadística, Estimació de Parámetros Grupo B Área de Estadística e Ivestigació Operativa Licesio J. Rodríguez-Aragó Abril 200 Coteidos...............................................................

Más detalles

7.2. Métodos para encontrar estimadores

7.2. Métodos para encontrar estimadores Capítulo 7 Estimació putual 7.1. Itroducció Defiició 7.1.1 U estimador putual es cualquier fució W (X 1,, X ) de la muestra. Es decir, cualquier estadística es ua estimador putual. Se debe teer clara la

Más detalles

Señales y sistemas discretos (1) Transformada Z. Definiciones

Señales y sistemas discretos (1) Transformada Z. Definiciones Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas

Más detalles

TEMA 3.- OPERACIÓN FINANCIERA

TEMA 3.- OPERACIÓN FINANCIERA . DEFINICIÓN Y CLASIFICACIÓN. TEMA 3.- OPEACIÓN FINANCIEA Se deomia operació fiaciera a todo itercambio o simultáeo de capitales fiacieros pactado etre dos agetes, siempre que se verifique la equivalecia,

Más detalles

EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. 11-Septiembre-2014.

EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. 11-Septiembre-2014. EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. -Septiembre-04. APELLIDOS: DNI: NOMBRE:. Se quiere hacer u estudio sobre las persoas que usa iteret e ua regió dode el 40% de los habitates so mujeres.

Más detalles

Programación Entera (PE)

Programación Entera (PE) Programació Etera (PE) E geeral, so problemas de programació lieal (PPL), e dode sus variables de decisió debe tomar valores eteros. Tipos de PE Cuado se requiere que todas las variables de decisió tome

Más detalles

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES Las medidas de PML a ser implemetadas, se recomieda e base a las opcioes de PML calificadas como ecoómicamete factibles.

Más detalles

Informe sobre el Cálculo de Errores de Muestreo Encuesta sobre Condiciones de Vida - ECV

Informe sobre el Cálculo de Errores de Muestreo Encuesta sobre Condiciones de Vida - ECV Iforme sobre el Cálculo de Errores de Muestreo Ecuesta sobre Codicioes de Vida - ECV EUSKAL ESTATISTIKA ERAKUNDA INDICE. Itroducció...3 2. Método de expasió de Taylor...3 3. Cálculo de errores....4 3.

Más detalles

SOLUCIONES Modelo 2 PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 2010-2011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

SOLUCIONES Modelo 2 PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 2010-2011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II IES Fco Ayala de Graada Sobrates de 011 (Modelo ) Germá-Jesús Rubio Lua SOLUCIONES Modelo PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN

Más detalles

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida.

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida. UNIDAD 8 MODELO DE ASIGNACIÓN características de asigació. método húgaro o de matriz reducida. Ivestigació de operacioes Itroducció U caso particular del modelo de trasporte es el modelo de asigació,

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 2006 (Modelo 5 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A Sea la regió defiida por las siguietes iecuacioes: x/2 + y/3 1 ; - x + 2y 0; y 2. (2 putos) Represete

Más detalles

MUESTREO ESTADÍSTICO PARA LA AUDITORÍA INTERNA DE GOBIERNO

MUESTREO ESTADÍSTICO PARA LA AUDITORÍA INTERNA DE GOBIERNO DOCUMENTO TÉCNICO N 64 Versió 0.1 MUESTREO ESTADÍSTICO PARA LA AUDITORÍA INTERNA DE GOBIERNO CONCEPTOS GENERALES MINISTERIO SECRETARÍA GENERAL DE LA PRESIDENCIA Este documeto es parte de ua serie de guías

Más detalles

Soluciones Hoja de Ejercicios 2. Econometría I

Soluciones Hoja de Ejercicios 2. Econometría I Ecoometría I. Solucioes Hoja 2 Carlos Velasco. MEI UC3M. 2007/08 Solucioes Hoja de Ejercicios 2 Ecoometría I 1. Al pregutar el saldo Z (e miles de euros) de su cueta de ahorro cojuta a u matrimoio madrileño

Más detalles

APLICACIÓN DEL PROGRAMA SPSS EN EL CONTROL DE CALIDAD DE PROCESOS Y PRODUCTOS QUÍMICOS

APLICACIÓN DEL PROGRAMA SPSS EN EL CONTROL DE CALIDAD DE PROCESOS Y PRODUCTOS QUÍMICOS APLICACIÓN DEL PROGRAMA SPSS EN EL CONTROL DE CALIDAD DE PROCESOS Y PRODUCTOS QUÍMICOS Esperaza Mateos, Aa Elías, Gabriel Ibarra Uiversidad del País Vasco iapmasae@lg.ehu.es Resume Ua de las asigaturas

Más detalles

Análisis en el Dominio del Tiempo para Sistemas Discretos

Análisis en el Dominio del Tiempo para Sistemas Discretos OpeStax-CNX module: m12830 1 Aálisis e el Domiio del Tiempo para Sistemas Discretos Do Johso Traslated By: Erika Jackso Fara Meza Based o Discrete-Time Systems i the Time-Domai by Do Johso This work is

Más detalles

INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS

INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS 1. El peso medio de ua muestra aleatoria de 100 arajas de ua determiada variedad es de 272 g. Se sabe que la desviació típica poblacioal es de 20 g. A u ivel

Más detalles

Para construir intervalos de confianza recordemos la distribución muestral de la proporción muestral $p :

Para construir intervalos de confianza recordemos la distribución muestral de la proporción muestral $p : Itervalos de Cofiaza para ua proporció Cuado hacemos u test de hipótesis decidimos sobre u valor hipotético del parámetro. Qué proporció de mujeres espera compartir las tareas de la casa co su pareja?

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Juio de 03 (Reserva Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 03 MODELO (RESERVA ) OPCIÓN A EJERCICIO (A) ( 5 putos) U fabricate elabora

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

Herramientas de Control de Procesos

Herramientas de Control de Procesos Autor del presete maual: Edgardo Ojeda Barcos Profesor de Cotrol de Calidad y Estadística Iacap Uiversidad Tecológica de Chile Liceciado e Orgaizació Idustrial Uiversidad Argetia de La Empresa Postgrado

Más detalles

Variables aleatorias. Distribución binomial y normal

Variables aleatorias. Distribución binomial y normal Variables aleatorias. Distribució biomial y ormal Variable aleatoria Def.- Al realizar u experimeto aleatorio teemos u espacio muestral E. A cualquier ley o aplicació que a cualquier suceso de E le asocie

Más detalles

4. Estilos y Paradigmas de Interacción

4. Estilos y Paradigmas de Interacción Coteidos 1. 2. El Factor Humao 3. Diseño Gráfico 4. Estilos de Iteracció 5. Metáforas 6. Iteracioalizació 7. Soporte al Usuario 8. Usabilidad Web 9. Guías y Estádares 10. Accesibilidad 11. Trabajo cooperativo

Más detalles

ANEXO I ANEXO I CONCEPTOS SÍSMICOS BÁSICOS

ANEXO I ANEXO I CONCEPTOS SÍSMICOS BÁSICOS AEXO I COCEPTOS SÍSMICOS BÁSICOS E este aeo se compila alguos de los coceptos sísmicos básicos pero ecesarios. Se itroduce los tipos de movimietos vibratorios, así como su descripció y otació matemática.

Más detalles

MODELOS Y MÉTODOS DE SIMULACIÓN ESTOCÁSTICA. APLICACIÓN EN LA VALORACIÓN DE OPCIONES FINANCIERAS

MODELOS Y MÉTODOS DE SIMULACIÓN ESTOCÁSTICA. APLICACIÓN EN LA VALORACIÓN DE OPCIONES FINANCIERAS E INVESTIGACIÓN OPERATIVA I MODELOS Y MÉTODOS DE SIMULACIÓN ESTOCÁSTICA. APLICACIÓN EN LA VALORACIÓN DE OPCIONES FINANCIERAS Begoña Vitoriao bvitoriao@mat.ucm.es Uiversidad Complutese de Madrid ÍNDICE

Más detalles

MATEMÁTICA. Unidad 3 Utilicemos funciones Reales de variable Real. Utilicemos medidas de tendencia central. Trabajemos con medidas de posición

MATEMÁTICA. Unidad 3 Utilicemos funciones Reales de variable Real. Utilicemos medidas de tendencia central. Trabajemos con medidas de posición MATEMÁTICA Uidad Utilicemos fucioes Reales de variable Real. Utilicemos medidas de tedecia cetral. Trabajemos co medidas de posició Objetivos de la Uidad: Resolverás situacioes que implique la utilizació

Más detalles

0-3 2 0 4-2 -2 0-1 0-1 0-3-13-1

0-3 2 0 4-2 -2 0-1 0-1 0-3-13-1 IS Fco Ayala de Graada Sobrates 009 (Modelo 6) Solució Germá-Jesús Rubio Lua OPCIÓN A JRCICIO 1 ( putos) Sea las matrices: -1 4-1 - 1 5 - -6 A ; B 0-1 y C 0-1 1 0 1-0 -1 Determie X e la ecuació matricial

Más detalles

Matemáticas 2º de Bachillerato Ciencias Sociales

Matemáticas 2º de Bachillerato Ciencias Sociales ESTADÍSTICA DESCRIPTIVA VARIABLES ALEATORIAS TEORÍA DE MUESTRAS INTERVALOS DE CONFIANZA TEST DE HIPÓTESIS Matemáticas º de Bachillerato Ciecias Sociales Profesor: Jorge Escribao Colegio Imaculada Niña

Más detalles

Ejercicios Tema 4. Estructuras de Repetición

Ejercicios Tema 4. Estructuras de Repetición Ejercicios Tema 4. Estructuras de Repetició 1. Calcular el factorial de u úmero etero itroducido por teclado. 2. Calcular de la suma y la media aritmética de N úmeros reales. Solicitar el valor de N al

Más detalles

UNIVERSIDAD CENTRAL DE VENEZUELA ESCUELA DE QUIMICA FACULTAD DE CIENCIAS INSTRUMENTAL ANALITICO GUIA DE CROMATOGRAFÍA

UNIVERSIDAD CENTRAL DE VENEZUELA ESCUELA DE QUIMICA FACULTAD DE CIENCIAS INSTRUMENTAL ANALITICO GUIA DE CROMATOGRAFÍA UNIVESIDD CENTL DE VENEZUEL ESCUEL DE QUIMIC FCULTD DE CIENCIS INSTUMENTL NLITICO GUI DE COMTOGFÍ Caracas 2008 Tabla de Coteido DEFINICIONES IMPOTNTES...3 Cromatografía...3 Clasificació de los Métodos

Más detalles

Ciclo de Vida completo de control de Costos en proyectos

Ciclo de Vida completo de control de Costos en proyectos Ciclo de Vida completo de cotrol de Costos e proyectos EcoSys EPC es la ueva geeració e solució de software para plaificació y cotrol de costos etregado las mejores prácticas e el ciclo de vida del proyecto,

Más detalles

ANÁLISIS DE VARIANZA

ANÁLISIS DE VARIANZA ANÁLISIS DE VARIANZA Se supoe el caso de u fabricate y tres cosumidores de latas cuyo fodo tega al meos 0.25 libras de recubrimieto de estaño. Mediate u tratamieto químico, se puede medir el peso de este

Más detalles

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES La serie estadística de Ídice de Precios al por Mayor se iició e 1966, utilizado e

Más detalles

Estadística Inferencial

Estadística Inferencial Estadística Iferecial El presete documeto es ua guía para el curso de iferecia estadística impartido e el Istituto Nacioal de Estadística Geografía e Iformática (INEGI), e el edificio de capacitació; y

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució LITERATURA Y MATEMÁTICAS El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía cuidadosamete los

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució L I T E R A T U R A Y M A T E M Á T I C A S El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía

Más detalles

IMPACTO DE EVENTOS EXTREMOS EN LA GESTIÓN DE PORTAFOLIOS

IMPACTO DE EVENTOS EXTREMOS EN LA GESTIÓN DE PORTAFOLIOS IMPACTO DE EVENTOS EXTREMOS EN LA GESTIÓN DE PORTAFOLIOS INTRODUCCIÓN Flavia E. Matsuda Yamada Javier I. García Froti E el desarrollo de procedimietos para la gestió de riesgos fiacieros, la herramieta

Más detalles

ESCUELA DE FISICA FACULTAD DE CIENCIAS NATURALES Y MATEMATICA UNIVERSIDAD DE EL SALVADOR 2. OSCILACIONES Y ONDAS

ESCUELA DE FISICA FACULTAD DE CIENCIAS NATURALES Y MATEMATICA UNIVERSIDAD DE EL SALVADOR 2. OSCILACIONES Y ONDAS ESCUELA DE FISICA FACULTAD DE CIENCIAS NATURALES Y MATEMATICA UNIVERSIDAD DE EL SALVADOR. OSCILACIONES Y ONDAS CONTENIDO.1. MOVIMIENTO ARMONICO SIMPLE.. RELACION ENTRE MOVIMIENTO ARMONICO SIMPLE Y CIRCULAR

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

PRESENTACIONES ESTADISTICAS. Número de Trabajadores (frecuencia)

PRESENTACIONES ESTADISTICAS. Número de Trabajadores (frecuencia) Distribucioes de frecuecia: PRESENTACIONES ESTADISTICAS So tablas e las que se agrupa lo valores posibles de ua variable y se registra el úmero de valores observados que correspode a cada clase. Como ejemplo

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3 IES Fco Ayala de Graada Sobrates de 007 (Modelo 5) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( puto) U taller de carpitería ha vedido 5 muebles, etre sillas, silloes y butacas, por u total de

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- II FUNDAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- II FUNDAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- II FUNDAMENTOS DE DIRECCIÓN FINANCIERA Tema 3- Parte I Etapas del Modelo de Markowitz I. DETERMINACIÓN DEL CONJUNTO DE POSIBILIDADES DE INVERSIÓN - Se

Más detalles

La desventaja de la media aritmética: cómo tratarla en clases

La desventaja de la media aritmética: cómo tratarla en clases http://www.siewto.org/umeros ISSN: 1887-1984 Volume 74, julio de 2010, págias 39 44 La desvetaja de la media aritmética: cómo tratarla e clases Carlos M. Rodríguez Arteaga (Cetro Uiversitario. Isla de

Más detalles

En ningún caso este porcentaje de disponibilidad, podrá ser inferior a un 99,9%.

En ningún caso este porcentaje de disponibilidad, podrá ser inferior a un 99,9%. EDICOM, Service Level Agreemet Terms ad Coditios www.edicomgroup.com Co el Compromiso de Calidad de Servicio (CCS), EDICOM se compromete co sus clietes de la Plataforma e-commerce, a cumplir co tres variables

Más detalles

REPRESENTACIONES GRÁFICAS

REPRESENTACIONES GRÁFICAS Capítulo 5 REPRESENTACIONES GRÁFICAS Autores: José María García Palaco Marta Sáchez-Cabezudo Tirado 5 REPRESENTACIONES GRÁFICAS Cualquier experimeto tiee por fialidad comprobar la validez de u modelo teórico,

Más detalles