LABORATORIO DE FISICOQUIMICA. PRACTICA No. 1 PROPIEDADES DE LOS GASES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LABORATORIO DE FISICOQUIMICA. PRACTICA No. 1 PROPIEDADES DE LOS GASES"

Transcripción

1 LABORAORIO DE FISICOQUIMICA RACICA No. 1 ROIEDADES DE LOS GASES OBJEIVOS. Al terminar la práctica el alumno será capaz de: 1. Comprobar experimentalmente la ley de Boyle. 2. Comprobar experimentalmente la ley de Charles y Gay-Lussac 3. Diferenciar entre gas ideal y gas real. INRODUCCION. Algunos de los sustratos y productos del metabolismo son gases, por ejemplo: oxígeno, dióxido de carbono, nitrógeno e hidrógeno. or tanto, es importante entender algunas de sus propiedades características. El estado gaseoso es el más simple de los tres estados fundamentales de la materia (gaseoso, líquido y sólido). Un gas difiere de la materia en estado líquido o sólido en que no posee un volumen intrínseco, es decir, que ocupa todo el volumen de cualquier espacio cerrado donde se encuentra. Esta y otras propiedades de los gases se interpretan en términos de la teoría cinética de los gases. En principio, se debe puntualizar que cuando se habla de un "gas" generalmente estamos considerando un "gas perfecto o ideal", cuyo comportamiento está dictado por las diversas leyes de los gases. odos los "gases reales" (He, Cl 2, CO 2, NH 3 ), difieren en algún grado de los imaginarios gases perfectos, pero es más conveniente definir las propiedades de un gas perfecto y señalar luego las desviaciones particulares con respecto a este ideal. De acuerdo con la teoría cinética, el gas perfecto está compuesto por partículas extremadamente pequeñas (sus moléculas) que poseen un movimiento continuo, al azar e independiente. Durante su movimiento al azar, las moléculas chocan incesantemente contras las paredes del recipiente y es este continuo bombardeo de las paredes lo que se conoce como, presión del gas. Las "partículas" componentes del gas perfecto son absolutamente elásticas y rebotan con una energía igual a la que tenían en el momento del choque. Esto parece razonable, porque si no fuera así, la presión de un gas contenido en un recipiente a volumen y temperatura constantes disminuiría progresivamente con el tiempo. Además las moléculas de un gas perfecto no deben ocupar volumen (lo cual confirma que el gas perfecto es una ficción útil). En virtud del movimiento independiente y al azar de sus moléculas, cuando un gas de una determinada densidad se introduce en un volumen mayor que el que ocupaba anteriormente a la misma temperatura, las moléculas se redistribuyen de forma que cada una tiene una libertad máxima de movimiento. El gas ocupa

2 totalmente el nuevo volumen con la disminución correspondiente de su densidad. Esta tendencia de las moléculas gaseosas a moverse de una zona de densidad mayor a otra de densidad menor y así conseguir una densidad media de equilibrio, se conoce como fuerza de difusión. De aquí se deduce que se debe comprimir un gas para aumentar su densidad-fuerza de compresión. El efecto de los cambios de la temperatura sobre un gas también se puede interpretar por medio de la teoría cinética. Un aporte de calor aumenta la energía cinética de las moléculas, favorece su tendencia a moverse incluso a más distancia unas de otras y por tanto provoca una expansión del gas a presión constante. El descenso de temperatura disminuye la movilidad de las moléculas y la tendencia del gas a presión constante es a contraerse. or tanto, en cierto sentido, el aumento de la presión y el descenso de la temperatura tienden al mismo fin, a la disminución del volumen del gas. De aquí se deduce que la condición de un gas perfecto está afectada por tres variables independientes: (i) volumen, (ii) presión y (iii) temperatura. El análisis del efecto de los cambios de presión y/o temperatura sobre el volumen de una masa dada de gas ideal ha determinado el establecimiento de ciertas relaciones entre estos factores, las cuales se conocen como leyes de gas ideal. La mayoría de estas leyes llevan el nombre de sus descubridores. LA RELACIÓN RESIÓN-VOLUMEN: LEY DE BOYLE. Si la temperatura se mantiene constante, se cumple que "el volumen de una masa dada de gas es inversamente proporcional a la presión ejercida sobre ella. Esto significa que un aumento isotérmico de la presión disminuirá proporcionalmente el volumen de una cierta cantidad de gas y viceversa. Esto se puede representar con la siguiente relación: V 1 Donde el símbolo significa proporcional a. ara cambiar por un signo de igual, debemos escribir: V= K i x 1 donde K I es una llamada constante de proporcionalidad. Esta ecuación es una expresión de la ley de Boyle. Rearreglando, queda V = K i Las gráficas de la fig. 1 muestran dos formas convencionales de expresar gráficamente la ley de Boyle. La fig. 1(a) es una gráfica de la ecuación V= K i y la

3 fig. 1(b) es una gráfica de la ecuación equivalente = K i x 1/V. Esta última toma la forma de una ecuación lineal y=mx+b, donde b=0. 1 cte 2 V 1 V 2 V a) b) 1/V Fig. 1. Variación del volumen con respecto a la presión Aunque los valores individuales de presión y volumen pueden variar mucho para una muestra dada de un gas, en la medida que la temperatura permanezca constante y la cantidad de gas no cambie, el producto V siempre es el mismo. or consiguiente, para una muestra de un gas bajo dos conjuntos de condiciones distintas a temperatura constante, se tiene 1 V 1 = K I 2 V 2 = K i O 1 V 1 = 2 V 2 donde V 1 y V 2 son los volúmenes a las presiones 1 y 2, respectivamente. LA RELACIÓN EMERAURA - VOLUMEN: LEY DE CHARLES Y GAY LUSSAC. Los primeros investigadores que estudiaron la relación de cambio de temperatura sobre el volumen de un gas, fueron los científicos franceses Jacques Charles y Joseph Gay Lussac. Sus estudios mostraron que a presión constante, el volumen de una muestra de gas se expande cuando se calienta y se contrae cuando se enfría. A cualquier presión dada, la relación gráfica entre el volumen y la temperatura es una línea recta. Extrapolando la(s) recta(s) al volumen cero, se encuentra que la intersección en el eje de temperatura tiene un valor de C, a cualquier temperatura, como se observa en la fig. 2 (En la práctica se puede medir el volumen de un gas únicamente en un margen limitado de temperatura, ya que todos los gases se condensan a temperaturas bajas para formar líquidos).

4 V [K] Fig. 2 Variación de la temperatura con respecto al volumen En 1884, Lord Kelvin comprendió el significado de este fenómeno. Identificó la temperatura de C como el cero absoluto, es decir, la temperatura teórica más baja posible. omando el cero absoluto como punto de partida, estableció una escala de temperatura absoluta, ahora conocida como escala de temperatura Kelvin. En la esala Kelvin, un grado kelvin (K) es de igual magnitud que un grado Celsius; la diferencia es la posición del cero en cada escala. Los puntos importantes de las dos escalas se comparan de la forma siguiente: cero absoluto: O K = C punto de congelación del agua: K =O C punto de ebullición del agua: K = 1OO C or convención, se usa para expresar la temperatura absoluta (Kelvin) y t para indicar la temperatura en la escala Celsius. La dependencia del volumen de un gas con respecto a la temperatura, está dada por V V = K2 V = K 2 donde K 2 es la constante de proporcionalidad. Las igualdades representan a la Ley de Charles y Gay Lussac, la cual establece que el volumen de una cantidad fija de gas mantenida a presión constante, es directamente proporcional a la temperatura absoluta del gas.

5 Se pueden comparar dos conjuntos de condiciones de volumen y temperatura para una muestra dada de gas a presión constante. De la ecuación: V = K 2 podemos escribir: V 1 1 = K 2 V = 2 2 donde V 1 y V 2 son los volúmenes de los gases a las temperaturas 1 y 2, respectivamente. De la misma manera, la dependencia de la presión con la temperatura queda representada de la siguiente manera: 1 = LA RELACIÓN VOLUMEN - CANIDAD: LEY DE AVOGADRO. El trabajo del italiano Amadeo Avogadro complentó los estudios de Boyle, Charles y Gay Lussac. El volumen de cualquier gas debe ser proporcional al número de moles de moléculas presentes, es decir: V n V = K 3 n donde n representa el número de moles y K 3 es la constante de proporcionalidad. La última ecuación es la expresión matemática de Ley de Avogadro, la cual establece que a presión y temperatura constantes, el volumen de un gas es directamente proporcional al número de moles del gas presente. ECUACIÓN DEL GAS IDEAL Resumiendo las leyes de los gases que se han analizado hasta el momento: Ley de Boyle: V 1 (a n y constante) Ley de Gay-Lussac: V Ley de Avogadro: V n (a n y constante) (a y constante)

6 Ley de Charles: α (a y constante) Se pueden combinar las tres expresiones anteriores para obtener una sola ecuación que describa el comportamiento de los gases: V n V = R n V = nr donde R, es la constante de proporcionalidad y se denomina la constante universal de los gases y la ecuación se conoce como la ecuación del gas ideal y describe la relación entre las cuatro variables, V, y n. Un gas ideal es un gas hipotetico cuyo comportamiento de presión, volumen y temperatura se puede describir completamente por la ecuación del gas ideal. CÁLCULO DE LA CONSANE UNIVERSAL DE LOS GASES. A O C ( K) y 1 atm de presión, muchos gases reales se comportan como un gas ideal. Exprimentalmente se puede demostrar que en estas condiciones, 1 mol de un gas ideal ocupa un volumen de L. Las condiciones de O C y 1 atm se denominan temperatura y presión estándar (E). De la ecuación del gas ideal, se puede escribir: R = V n = (1 atm) ( L) (1 mol) ( K) = l atm K mol ÉCNICA. a) Ley de Charles y Gay-Lussac 1. repara 4 diferentes baños: hielo, hielo/agua/sal, agua a 50 C y agua hierviendo. 2. Coloca una gota de aceite de nujol (2-3 mm) en un tubo Wintrobe, perfectamente limpio usando una pipeta asteur.

7 3. Anota la temperatura ambiente y mide la longitud de la columna de aire contenida en la parte inferior del tubo. 4. Coloca el tubo verticalmente en un baño de hielo ciudando que el tubo se sumerja hasta el límite inferior de la gota de aceite. Deja reposar el tubo de 2-3 mm. anota la temperatura el baño y la longitud de la columna de aire del tubo. 5. Repite el procedimiento en los baños restantes (hielo/agua/sal, 50 C y agua hierviendo). 6. Repite de 2 a 5 en un segundo tubo. 7. Grafica los datos de longitud de columna de aire vs. temperatura. Extrapola la línea hasta la intersección con el eje de la temperatura y determina el valor de temperatura que corresponde al volumen cero. b) Ley de Boyle. En este experimento se observará el cambio de volumen de una muestra de aire al aplicar diferentes presiones sobre el émbolo de una jeringa. Estas presiones serán diferentes según la masa utilizada, y deben convertirse a unidades absolutas con la siguiente información: a) El área de la cabeza del émbolo es πr 2 b) La masa empleada se divide cada vez entre el área obtenida c) La presión manométrica se calcula considerando que la masa de 1 g sobre un área de 1 cm 2 ejerce una presión de a. d) La presión absoluta se obtiene sumando la manométrica y la atmosférica. 1.- Introduce una jeringa sin aguja sobre un tapón de hule y sujétela a un soporte sobre una mesa de tal manera que se mantenga vertcal. 2.- Succiona a un volumen fijo el aire 3.- Agrega pesas una auna sobre una plataforma del émbolo iniciando con las de menor valor. ermita que el sistema se estabilice por unos minutos y mida el volumen de aire 4.- Después de cada adición permite que el émbolo regrese a su volumen original. Haga diez mediciones Repite el procedimiento agregando los pesos en la misma secuencia Reporta todos los datos Haz una gráfica de V vs 1/

8 REGUNAS DE RELABORAORIO 1. Qué tipo de curva se obtiene al graficar vs V (n,t constantes)? 2. Define presión y fuerza 3. Cómo se mide la presión? 4. Averigua la presión atmosférica en el área de trabajo REGUNAS DE OSLABORAORIO 1. Describe al menos cuatro propiedades físicas que definen por completo el estado físico de un gas 2. Menciona el nombre de la ley que relaciona presión-volumen a temperatura y flujo molar constante 3. ara la Ley de Charle, qué propiedades físicas se mantienen constantes? 4. Un gas ideal es sometido a una compresión isotérmica reduciendo su volumen en 4.50 cm 3. La presión y volumen final del gas son 5.78 x 10 3 mm Hg y 6.55 cm 3 respectivamente. Calcula la presión inicial del gas en (a) a, (b) atm 5. En un proceso industrial se calienta nitrógeno en un recipiente a volumen constante hasta 500 K. Si el gas entra en el recipiente a una presión de 100 atm y una temperatura de 300 K Qué presión ejerce el gas a la temperatura de trabajo? Supón un comportamiento ideal. 6. Una masa dada de oxígeno ocupa un volumen de 500 ml a 760 mmhg y 20 C de temperatura, qué presión ocuparán 450 ml si se mantiene constante la temperatura? BIBLIOGRAFÍA 1. Chang R. Fisicoquímica con Aplicaciones a Sistemas Biológicos CECSA, México, Atkins.W. Fisicoquímica Addison-Wesley Iberoamericana. México, 1991.

II. ESTADOS DE AGREGACIÓN. TEORÍA CINÉTICO-MOLECULAR

II. ESTADOS DE AGREGACIÓN. TEORÍA CINÉTICO-MOLECULAR II. ESTADOS DE AGREGACIÓN. TEORÍA CINÉTICO-MOLECULAR 1 Índice 1. Los estados de agregación de la materia 2. Los gases y la teoría cinética 3. Las leyes de los gases 4. La teoría cinético-molecular 2 1

Más detalles

Tema 12. Gases. Química General e Inorgánica A ESTADOS DE AGREGACION DE LA MATERIA

Tema 12. Gases. Química General e Inorgánica A ESTADOS DE AGREGACION DE LA MATERIA Tema 12 Gases Química General e Inorgánica A ESTADOS DE AGREGACION DE LA MATERIA 2.1 2.1 Variables que determinan el estado de agregación Tipo de material o materia Temperatura Presión 2.2 Elementos que

Más detalles

ESTADO GASEOSO LEYES PARA GASES IDEALES

ESTADO GASEOSO LEYES PARA GASES IDEALES ESTADO GASEOSO LEYES PARA GASES IDEALES Estados de agregación COMPORTAMIENTO DE LOS GASES No tienen forma definida ni volumen propio Sus moléculas se mueven libremente y al azar ocupando todo el volumen

Más detalles

Unidad I Transformaciones de la materia. Tema 1. Los gases y sus leyes.

Unidad I Transformaciones de la materia. Tema 1. Los gases y sus leyes. Unidad I Transformaciones de la materia. Tema 1. Los gases y sus leyes. 1. Los gases 1.1. Teoría cinético molecular de los gases. 1. Los gases consisten en un número grande de partículas que están a grandes

Más detalles

P V = n R T LEYES DE LOS GASES

P V = n R T LEYES DE LOS GASES P V = n R T LEYES DE LOS GASES Estado gaseoso Medidas en gases Leyes de los gases Ley de Avogadro Leyes de los gases Ley de Boyle y Mariotte Ley de Charles y Gay-Lussac (1ª) Ley de Charles y Gay-Lussac

Más detalles

LEYES DE LOS GASES. Leyes de los gases. Leyes de los gases

LEYES DE LOS GASES. Leyes de los gases. Leyes de los gases LEYES DE LOS GASES Estado gaseoso Medidas en gases Ley de Avogadro Ley de Boyle y Mariotte Ley de Charles y Gay-Lussac (1ª) Ley de Charles y Gay-Lussac (2ª) Ecuación n general de los gases ideales Teoría

Más detalles

GASES. Contenidos. Leyes de los gases y su aplicación en la resolución de problemas numéricos.

GASES. Contenidos. Leyes de los gases y su aplicación en la resolución de problemas numéricos. GASES Contenidos Postulados de la teoría cinética de los gases y su relación con las características (expansión, comprensión y difusión) y las propiedades ( presión, volumen y temperatura) que los definen.

Más detalles

QUÍMICA GENERAL GASES IDEALES

QUÍMICA GENERAL GASES IDEALES QUÍMICA GENERAL GASES IDEALES INTRODUCCIÓN TEORÍA CINÉTICA DE LOS GASES LEYES DE LOS GASES IDEALES TEORÍA CINÉTICA DE LOS GASES DEFINICIÓN Entre 1850 y 1880 Clausius y Boltzmann desarrollaron esta teoría,

Más detalles

UNIVERSIDAD DE PUERTO RICO EN HUMACAO DEPARTAMENTO DE QUÍMICA (http://cuhwww.upr.clu.edu/~quimgen) QUIM Módulo de Gases

UNIVERSIDAD DE PUERTO RICO EN HUMACAO DEPARTAMENTO DE QUÍMICA (http://cuhwww.upr.clu.edu/~quimgen) QUIM Módulo de Gases Al finalizar este módulo usted podrá: UNIVERSIDAD DE PUERTO RICO EN HUMACAO DEPARTAMENTO DE QUÍMICA (http://cuhwww.upr.clu.edu/~quimgen) QUIM 3003 Módulo de Gases Enunciar las Leyes de: 1. Boyle 2. Charles

Más detalles

EL ESTADO GASEOSO P R E S I Ó N

EL ESTADO GASEOSO P R E S I Ó N EL ESTADO GASEOSO El aire está compuesto, principalmente, de los elementos oxígeno y nitrógeno. Otros elementos no metálicos existen en la naturaleza como gases en condiciones ordinarias como hidrógeno

Más detalles

UNIDAD 2: ESTADO GASEOSO

UNIDAD 2: ESTADO GASEOSO UNIDAD 2: ESTADO GASEOSO 1 CARACTERISTICAS DE LOS GASES Los gases poseen masa y ocupan un determinado volumen en el espacio, este volumen queda determinado por el volumen del recipiente que los contiene.

Más detalles

Algunas sustancias gaseosas a T y P ambiente

Algunas sustancias gaseosas a T y P ambiente LOS GASES Algunas sustancias gaseosas a T y P ambiente Fórmula Nombre Características O2 Oxígeno Incoloro,inodoro e insípido H 2 Hidrógeno Inflamable, más ligero que el aire. He Helio Incoloro, inerte,

Más detalles

CARÁCTERÍSTICAS DE LOS GASES

CARÁCTERÍSTICAS DE LOS GASES DILATACIÓN EN LOS GASES - CARACTERÍSTICAS DE LOS GASES - PRESIÓN EN LOS GASES: CAUSAS Y CARACTERÍSTICAS - MEDIDA DE LA PRESIÓN DE UN GAS: MANÓMETROS - GAS EN CONDICIONES NORMALES - DILATACIÓN DE LOS GASES

Más detalles

GASES IDEALES. P. V = n. R. T

GASES IDEALES. P. V = n. R. T GASES IDEALES Lic. Lidia Iñigo A esta altura de tus estudios seguramente ya sabés que hay muchas sustancias formadas por moléculas, qué es una molécula, y que una sustancia determinada puede presentarse

Más detalles

Sustancia que se caracteriza porque sus moléculas. no tiene forma definida. adquiere la forma del recipiente que lo contiene.

Sustancia que se caracteriza porque sus moléculas. no tiene forma definida. adquiere la forma del recipiente que lo contiene. Qué es un gas? Sustancia que se caracteriza porque sus moléculas están en desorden. tienen gran energía. están muy separadas entre sí. prácticamente no se atraen entre sí. Una sustancia gaseosa no tiene

Más detalles

TEMA 2 EL ESTADO DE LA MATERIA

TEMA 2 EL ESTADO DE LA MATERIA TEMA 2 EL ESTADO DE LA MATERIA 1- ESTADOS DE AGREGACIÓN 2- LEYES DE LOS GASES 2.1- LEY DE BOYLE 2.2- LEY DE AOGADRO 2.3- LEY DE CHARLES Y GAY-LUSSAC 2.4- LEY COMBINADA DE LOS GASES 2.- LA ECUACIÓN DE ESTADO

Más detalles

La materia y sus estados

La materia y sus estados La materia y sus estados Física y Química La materia Oxford University Press España, S. A. Física y Química 3º ESO 2 Todo lo que existe en el universo está constituido por materia. La materia se presenta

Más detalles

La materia y sus estados

La materia y sus estados La materia y sus estados Física y Química La materia Oxford University Press España, S. A. Física y Química 3º ESO 2 Todo lo que existe en el universo está constituido por materia. La materia se presenta

Más detalles

EL ESTADO GASEOSO. Los gases son fluidos y están compuestos de partículas en movimientos constante y al azar.

EL ESTADO GASEOSO. Los gases son fluidos y están compuestos de partículas en movimientos constante y al azar. GASES EL ESTADO GASEOSO Los gases son fluidos y están compuestos de partículas en movimientos constante y al azar. Los gases se expanden hasta llenar el recipiente que los contiene y también, se pueden

Más detalles

Leyes de los Gases. Prof. Sergio Casas-Cordero E.

Leyes de los Gases. Prof. Sergio Casas-Cordero E. Leyes de los Gases Prof. Sergio Casas-Cordero E. Sustancias gaseosas a 25 ºC y 1 atm Elemento H 2 (Hidrógeno) O 2 (Oxígeno) O 3 (Ozono) F 2 (Fluor) Cl 2 (Cloro) N 2 (Nitrógeno) He (Helio) Ne (neón) Ar

Más detalles

Contenidos 1.- Leyes de los gases: 1.1. Ley de Boyle-Mariotte Ley de Charles Gay.Lussac Ecuación general de un gas ideal

Contenidos 1.- Leyes de los gases: 1.1. Ley de Boyle-Mariotte Ley de Charles Gay.Lussac Ecuación general de un gas ideal Los gases 1 2 Contenidos 1.- Leyes de los gases: 1.1. Ley de Boyle-Mariotte. 1.2. Ley de Charles Gay.Lussac. 2.- Gases ideales. 3.- Teoría cinética de los gases. 4.- Ecuación general de un gas ideal. 5.-

Más detalles

PROPIEDADES DE LA MATERIA. Departamento de Física y Química 2º ESO

PROPIEDADES DE LA MATERIA. Departamento de Física y Química 2º ESO PROPIEDADES DE LA MATERIA Departamento de Física y Química 2º ESO 0. Mapa conceptual Estados de agregación Sólido Líquido Gaseoso Propiedades MATERIA Teoría cinética Generales Específicas Leyes de los

Más detalles

Ley de Charles. Por qué ocurre esto?

Ley de Charles. Por qué ocurre esto? Ley de Charles En 1787, Jack Charles estudió por primera vez la relación entre el volumen y la temperatura de una muestra de gas a presión constante y, observó que cuando se aumentaba la temperatura el

Más detalles

Los gases y la Teoría Cinética

Los gases y la Teoría Cinética Para practicar Utiliza tu cuaderno y trata de resolver los siguientes ejercicios: 1.-En una tabla similar a la siguiente, introduce las propiedades características de un SÓLIDO, un LÍQUDO o un GAS, como

Más detalles

EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11 FUENTE: VALORACIONES: FECHA: CUAUTITLAN IZCALLI, MEX. MATERIA: QUÍMICA II

EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11 FUENTE: VALORACIONES: FECHA: CUAUTITLAN IZCALLI, MEX. MATERIA: QUÍMICA II Diagnóstico 1PTO: NO ENTREGADA EN TIEMPO Y FORMA. 2PTS: ACTIVIDAD INCOMPLETA. 3PTS: ACTIVIDA COMPLETA. 1 TEMÁTICA INTEGRADORA ESCENARIO DIDÁCTICO PREGUNTA GENERADORA 2 Desarrolla, analiza e interpreta

Más detalles

DILATACIÓN DE LOS GASES 1

DILATACIÓN DE LOS GASES 1 Describa los siguiente conceptos. Propiedad de los gases. Presión. Volumen. emperatura. Biografias de: Joseph Louis Gay-Lussac. Jacques Charles. Robert Boyle. Ley de Boyle Formula ley de Boyle. Ley de

Más detalles

Universidad Nacional Autónoma de México Facultad de Química

Universidad Nacional Autónoma de México Facultad de Química Universidad Nacional Autónoma de México Facultad de Química Departamento de Fisicoquímica Laboratorio de Termodinámica DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES Profesores: Gerardo Omar Hernández

Más detalles

Física y Química 1º Bach.

Física y Química 1º Bach. Física y Química 1º Bach. Leyes de los gases. Teoría cinético-molecular 05/11/10 DEPARTAMENTO FÍSICA E QUÍMICA Nombre: OPCIÓN 1 1. Observa el aparato de la Figura. Si la temperatura del aceite se eleva

Más detalles

1. Una cierta cantidad de gas ocupa 500 ml a 1.5 atm y 20 C Qué volumen ocupará a 720 mmhg y 80 C?

1. Una cierta cantidad de gas ocupa 500 ml a 1.5 atm y 20 C Qué volumen ocupará a 720 mmhg y 80 C? Tema: GASES 1. Una cierta cantidad de gas ocupa 500 ml a 1.5 atm y 20 C Qué volumen ocupará a 720 mmhg y 80 C? 2. A cuántas atmosferas deben someterse 40 L de H 2 que están a 40 C y 0.5 atm para que el

Más detalles

UNIVERSIDAD TECNICA LUIS VARGAS TORRES" DE ESMERALDAS

UNIVERSIDAD TECNICA LUIS VARGAS TORRES DE ESMERALDAS UNIVERSIDAD TECNICA LUIS VARGAS TORRES" DE ESMERALDAS FACULTAD DE INGENIERIAS Y TECNOLOGIAS ING. PAUL VISCAINO VALENCIA DOCENTE Esmeraldas, 06 de Julio del 2016 UNIVERSIDAD TECNICA "LUIS VARGAS TORRES"

Más detalles

Los siguientes son elementos que pueden existir como gases a una temperatura de 25 C y 1 atm de presión

Los siguientes son elementos que pueden existir como gases a una temperatura de 25 C y 1 atm de presión Gases Los siguientes son elementos que pueden existir como gases a una temperatura de 25 C y 1 atm de presión Sustancias que existen como gases a una temperatura de 25 C y 1 atm de presión Características

Más detalles

INTRODUCCIÓN Con C t on act act T o é T rmi Equi librio T o é T rmi

INTRODUCCIÓN Con C t on act act T o é T rmi Equi librio T o é T rmi INTRODUCCIÓN La Temperatura es una propiedad que no es fácil de describir. La Temperatura esta comúnmente asociada, con que tanto calor o frio se siente en un objeto. Entender el concepto de Temperatura

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PUEBLA

UNIVERSIDAD TECNOLÓGICA DE PUEBLA TÉRMICA. PRÁCTICA NÚMERO 5 Simulación de Ley de Boyle. OBJETIVO: Confirmar de manera experimental la ley de Boyle. Analizar con base en gráficos obtenidos a partir de los datos experimentales de presión

Más detalles

Gases...1. Características: Volumen:...1. Temperatura:

Gases...1. Características: Volumen:...1. Temperatura: Índice de contenido Gases......1 Características:......1 Volumen:......1 Temperatura:......1 Presión:......2 Medición de presiones:......2 Ley de Boyle (relación presión volumen):......2 Ley de Charles

Más detalles

GUÍA ACUMULATIVA/ 8º MEDIO ( Desarrollo de Ejercicios: Leyes de los Gases) Nombre del Alumno: Curso: Fecha:

GUÍA ACUMULATIVA/ 8º MEDIO ( Desarrollo de Ejercicios: Leyes de los Gases) Nombre del Alumno: Curso: Fecha: Sector: Naturaleza Nivel: 8 Básico Nombre Profesora: Nancy Erazo Rosa Unidad V : Leyes de los gases GUÍA ACUMULATIVA/ 8º MEDIO ( Desarrollo de Ejercicios: Leyes de los Gases) Nombre del Alumno: Curso:

Más detalles

LA MATERIA 1. Teoría atómica de Dalton. 2. La materia. 3. Leyes químicas. 4. El mol. 5. Leyes de los gases ideales. 6. Símbolos y fórmulas.

LA MATERIA 1. Teoría atómica de Dalton. 2. La materia. 3. Leyes químicas. 4. El mol. 5. Leyes de los gases ideales. 6. Símbolos y fórmulas. LA MATERIA 1. Teoría atómica de Dalton. 2. La materia. 3. Leyes químicas. 4. El mol. 5. Leyes de los gases ideales. 6. Símbolos y fórmulas. Química 1º bachillerato La materia 1 1. TEORÍA ATÓMICA DE DALTON

Más detalles

Etapa 4 GASES SUS LEYES Y COMPORTAMIENTO. Nombre Grupo Matrícula PROPIEDAD DESCRIPCIÓN UNIDADES DE MEDICION PRESION (P)

Etapa 4 GASES SUS LEYES Y COMPORTAMIENTO. Nombre Grupo Matrícula PROPIEDAD DESCRIPCIÓN UNIDADES DE MEDICION PRESION (P) Etapa 4 GASES SUS LEYES Y COMPORTAMIENTO Nombre Grupo Matrícula PROPIEDADES DE LOS GASES: I. Completa correctamente la siguiente tabla. PROPIEDAD DESCRIPCIÓN UNIDADES DE MEDICION PRESION (P) VOLUMEN (V)

Más detalles

TEMA Nº6. ESTUDIO DEL ESTADO GAS.

TEMA Nº6. ESTUDIO DEL ESTADO GAS. TEMA Nº6. ESTUDIO DEL ESTADO GAS. 1.- Qué nos dice la Teoría Cinético - Molecular sobre el estado Gas? Respuesta La Teoría Cinética de los gases se enuncia en los siguientes postulados, teniendo en cuenta

Más detalles

U1 T5. Los gases. Pre-conocimiento. file:///c:/users/belen/desktop/qu_u1_t5_contenidos/index.html

U1 T5. Los gases. Pre-conocimiento. file:///c:/users/belen/desktop/qu_u1_t5_contenidos/index.html 1 de 19 06/07/2012 2:45 U1 T5. Los gases Pre-conocimiento Serías capaz de medir la cantidad de aire que hay en una habitación?, o en una botella?... La verdad que no parece fácil, estamos acostumbrados

Más detalles

UNIDAD 3 ESTADO GASEOSO

UNIDAD 3 ESTADO GASEOSO UNIDAD DIDÁCTICA 3 UNIDAD 3 ESTADO GASEOSO En la naturaleza, las sustancias se puede presentar en tres diferentes estados de agregación: sólido, líquido y gaseoso, cada uno de los cuales se distingue por

Más detalles

Termodinámica. Calor y Temperatura

Termodinámica. Calor y Temperatura Termodinámica Calor y Temperatura 1 Temas 3. GASES IDEALES Y ESTADOS TERMODINÁMICOS. 3.1 Concepto y características del gas ideal. 3.2 Ley de Boyle, Ley de Charles, Ley de Gay- Lussac e hipótesis de Avogadro.

Más detalles

GUÍA 2. Unidad I. Transformaciones de la materia. Tema 1: Los gases y sus leyes. 7 básico. Ley de Boyle.

GUÍA 2. Unidad I. Transformaciones de la materia. Tema 1: Los gases y sus leyes. 7 básico. Ley de Boyle. Saint Louis School Departamento de Ciencias Profesor: Leandro Díaz V. Actividad 1. Conversión. 1. Expresar en grados Kelvin: a) 27 C b) 5 C c) 17 C d) 0 C GUÍA 2. Unidad I. Transformaciones de la materia.

Más detalles

FÍSICA Y QUÍMICA 2º ESO Tema 2: LA MATERIA Propiedades características Estados de agregación de la materia

FÍSICA Y QUÍMICA 2º ESO Tema 2: LA MATERIA Propiedades características Estados de agregación de la materia FÍSICA Y QUÍMICA 2º ESO Estados de agregación de la materia Como ya sabes, la materia se puede encontrar en estado sólido, líquido y gaseoso. Son los llamados estados físicos de la materia. Existe un cuarto

Más detalles

Propiedades térmicas de la materia

Propiedades térmicas de la materia 1 Propiedades térmicas de la materia Ahora que hemos comprendido los conceptos de calor y temperatura, procederemos a estudiar el comportamiento térmico de la materia. Para esto, nos interesan cuatro cantidades

Más detalles

SESIÓN 13 EQUILIBRIO QUÍMICO EN FASE GASEOSA

SESIÓN 13 EQUILIBRIO QUÍMICO EN FASE GASEOSA I. CONTENIDOS: 1. Leyes de los gases. 2. Presión y temperatura. 3. Principio de Le Chatelier. 4. Constante de equilibrio. SESIÓN 13 EQUILIBRIO QUÍMICO EN FASE GASEOSA II. OBJETIVOS: Al término de la Sesión,

Más detalles

GUÍA DE EJERCICIOS GASES

GUÍA DE EJERCICIOS GASES GUÍA DE EJERCICIOS GASES Área Química Resultados de aprendizaje Aplicar conceptos básicos de gases en la resolución de ejercicios. Desarrollar pensamiento lógico y sistemático en la resolución de problemas.

Más detalles

BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA

BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA Unidad 2: Los gases ideales Teresa Esparza araña 1 Índice 1. Los estados de agregación de la materia a. Los estados de la materia b. Explicación según la teoría

Más detalles

TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES

TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES FUNDAMENTO TEÓRICO: La materia puede estar en tres estados: sólido, líquido y gaseoso. Los gases, no tienen forma ni volumen fijo, las fuerzas que mantienen

Más detalles

Guía de ejercicios de Gases Ideales

Guía de ejercicios de Gases Ideales Guía de ejercicios de Gases Ideales 1. Traducir los siguientes valores de temperatura entre escalas Celsius, Kelvin y Farenheit: Escala Celsius Escala Kelvin Escala Farenheit 22ºC 350 ºK 32 ºF 100ºC 2.

Más detalles

LOS GASES Y LAS DISOLUCIONES. Departamento de Física y Química 3º ESO

LOS GASES Y LAS DISOLUCIONES. Departamento de Física y Química 3º ESO LOS GASES Y LAS DISOLUCIONES Departamento de Física y Química 3º ESO 0. Mapa conceptual SÓLIDO ESTADOS DE LA MATERIA LÍQUIDO Presión atmosférica GAS Solubilidad Disolución saturada Disoluciones Soluto

Más detalles

PRINCIPIOS FISICOQUÍMICOS EN GEOFÍSICA I

PRINCIPIOS FISICOQUÍMICOS EN GEOFÍSICA I RINCIIOS FISICOQUÍMICOS EN GEOFÍSICA I Introducción Conceptos Básicos de Termodinámica ropiedades Físicas de los Gases Gases Ideales Ecuaciones de Estado INTRODUCCIÓN La fisicoquímica se divide en 4 áreas:

Más detalles

Capítulo 17. Temperatura. t(h) = 100 h h 0

Capítulo 17. Temperatura. t(h) = 100 h h 0 Capítulo 17 Temperatura t(h) = 100 h h 0 h 1 00 h 0 rincipio cero de la termodinámica. Temperatura empírica. La temperatura empírica de un sistema en equilibrio termodinámico se puede asignar mediante

Más detalles

TAREA 1. Nombre Núm. de lista Grupo Turno Núm. de Expediente Fecha

TAREA 1. Nombre Núm. de lista Grupo Turno Núm. de Expediente Fecha TAREA 1 Nombre Núm. de lista Grupo Turno Núm. de Expediente Fecha INSTRUCCIONES: Investiga como es el puente de Hidrógeno en las estructuras del H 2 O, NH 3 y HF. Dibuja los modelos resaltando con color

Más detalles

RESUMEN TERMO 2A_1C 2016

RESUMEN TERMO 2A_1C 2016 RESUMEN TERMO 2A_1C 2016 entorno o exterior sistema Universo sistema abierto cerrado aislado materia y energía energía nada Olla con agua sobre una hornalla Agua en un termo perfecto Persona o cualquier

Más detalles

GUÍA DE CIENCIAS NATURALES EL COMPORTAMIENTO DE LOS GASES

GUÍA DE CIENCIAS NATURALES EL COMPORTAMIENTO DE LOS GASES Nombre GUÍA DE CIENCIAS NATURALES EL COMPORTAMIENTO DE LOS GASES UNIDAD: Comportamiento de la materia y su clasificación OBJETIVO DE APRENDIZAJE: Se espera que las y los estudiantes sean capaces de Investigar

Más detalles

P/T = k V y n ctes. P y T ctes. P y n ctes. T y n ctes. presión. temperatura. escala. absoluta. empírica. absoluta atmosférica manométrica

P/T = k V y n ctes. P y T ctes. P y n ctes. T y n ctes. presión. temperatura. escala. absoluta. empírica. absoluta atmosférica manométrica presión volumen mol temperatura escala absoluta atmosférica manométrica absoluta empírica Boyle Charles Gay Lussac Avogadro PV = k T y n ctes V/T = k P y n ctes P/T = k V y n ctes V/n = Vm P y T ctes PV

Más detalles

INSTITUTO SANTA CECILIA FISICOQUIMICA 2 AÑO. PROFESORA: Jorgelina Anabel Ferreiro ALUMNO:

INSTITUTO SANTA CECILIA FISICOQUIMICA 2 AÑO. PROFESORA: Jorgelina Anabel Ferreiro ALUMNO: INSTITUTO SANTA CECILIA FISICOQUIMICA 2 AÑO PROFESORA: Jorgelina Anabel Ferreiro ALUMNO: MODULO DE RECUPERACION DE CONTENIDOS SEGUNDO TRIMESTRE LAS LEYES EXPERIMENTALES DE LOS GASES 1) Completa el siguiente

Más detalles

LEYES DE LOS GASES. El volumen es directamente proporcional a la cantidad de gas:

LEYES DE LOS GASES. El volumen es directamente proporcional a la cantidad de gas: LEYES DE LOS GASES LEY DE AVOGADRO: Esta ley, descubierta por Avogadro a principios del siglo XIX, establece la relación entre la cantidad de gas y su volumen cuando se mantienen constantes la temperatura

Más detalles

Dos experimentos sobre leyes de los gases

Dos experimentos sobre leyes de los gases Dos experimentos sobre leyes de los gases Walter Bussenius Cortada Instituto de Matemática y Física Universidad de Talca En este artículo se exponen dos experimentos en relación a las leyes de los gases.

Más detalles

Gases Ideales. Mauricio A. Briones Bustamante SEMESTRE I Liceo de Hombres Manuel Montt Termodinámica - Cuarto Medio.

Gases Ideales. Mauricio A. Briones Bustamante SEMESTRE I Liceo de Hombres Manuel Montt Termodinámica - Cuarto Medio. Liceo de Hombres Manuel Montt Termodinámica - Cuarto Medio SEMESTRE I 2018 Gas ideal En las clases anteriores, cuando estudiamos el calor y la temperatura, no se hizo ninguna mención de la influencia de

Más detalles

PROPIEDADES DE LOS GASES. AE: Identificar las características y propiedades de los gases y las variables que inciden en su comportamiento

PROPIEDADES DE LOS GASES. AE: Identificar las características y propiedades de los gases y las variables que inciden en su comportamiento PROPIEDADES DE LOS GASES AE: Identificar las características y propiedades de los gases y las variables que inciden en su comportamiento Un gas se comporta diferente respecto a los sólidos y líquidos!

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Cantidades fundamentales Cantidades básicas y unidaded Unidad I: ropiedades y Leyes de la ermodinámica Cantidades fundamentales ropiedades de estado Función de estado y ecuación de

Más detalles

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales

Más detalles

INSTITUCIÓN EDUCATIVA FE Y ALEGRÍA NUEVA GENERACIÓN Formando para el amor y la vida - AREA CIENCIAS NATURALES: FISICA.

INSTITUCIÓN EDUCATIVA FE Y ALEGRÍA NUEVA GENERACIÓN Formando para el amor y la vida - AREA CIENCIAS NATURALES: FISICA. GUIA Nº 3 NOMBRE: GRADO: FECHA: El estado gaseoso La teoría cinética Comprensibilidad Expansibilidad Boyle Charles Gay-Lussac Dalton Graham V 1 V 2 = P 2 P 1 V 1 V 2 = T 1 T 2 P 1 P 2 = T 1 T 2 Mezclas

Más detalles

Conocer y describir cuales son los factores que determinan el comportamiento de los gases en la naturaleza.

Conocer y describir cuales son los factores que determinan el comportamiento de los gases en la naturaleza. Miss María Cuevas Conocer y describir cuales son los factores que determinan el comportamiento de los gases en la naturaleza. Los Estados de la materia Propiedades de gases, líquidos y sólidos Gas Líquido

Más detalles

GASES INDUSTRIALES

GASES INDUSTRIALES GASES INDUSTRIALES CONCEPTO Los gases industriales son un grupo de gases manufacturados que se comercializan con usos en diversas aplicaciones. Principalmente son empleados en procesos industriales, tales

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Química

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Química Gases RECUERDEN QUE: En los ejercicios de gases SIEMPRE deben trabajar con la temperatura en K ( C + 273). Además, por conveniencia, en esta unidad cuando hablemos de masa molar en gases, usaremos la sigla

Más detalles

Termodinámica. Calor y Temperatura. Gases. Temas

Termodinámica. Calor y Temperatura. Gases. Temas Termodinámica Calor y Temperatura Temas 3. GSES IDELES Y ESTDOS TERMODINÁMICOS. 3. Concepto y características del gas ideal. 3. Ley de Boyle, Ley de Charles, Ley de Gay- Lussac e hipótesis de vogadro.

Más detalles

Director de Curso Francisco J. Giraldo R.

Director de Curso Francisco J. Giraldo R. Director de Curso Francisco J. Giraldo R. EL AIRE El aire seco es una mezcla de gases: El 78% es Nitrógeno. El 21% es Oxígeno. El 1% es Argón. El Dioxido de carbono (CO 2 ), Helio (He), Neón (Ne), Kripton

Más detalles

DETERMINACIÓN DE LA MASA MOLECULAR POR ELEVACIÓN DEL PUNTO DE EBULLICIÓN DE UNA DISOLUCIÓN

DETERMINACIÓN DE LA MASA MOLECULAR POR ELEVACIÓN DEL PUNTO DE EBULLICIÓN DE UNA DISOLUCIÓN DETERMINACIÓN DE LA MASA MOLECULAR POR ELEVACIÓN DEL PUNTO DE EBULLICIÓN DE UNA DISOLUCIÓN OBJETIVO El alumno determinará la masa molecular de un compuesto puro, por elevación del punto de ebullición de

Más detalles

LEY DE BOYLE. La presión (p) de un gas ideal varía inversamente a su volumen (V) si la temperatura (T) se mantiene constante.

LEY DE BOYLE. La presión (p) de un gas ideal varía inversamente a su volumen (V) si la temperatura (T) se mantiene constante. Gas un GAS IDEAL tiene las propiedades siguientes: está formado por partículas llamadas moléculas. Estas se mueven irregularmente y obedecen las leyes de Newton del movimiento. El número total de moléculas

Más detalles

UNIDAD IV GASES PROPIEDADES FISICAS DE LOS GASES

UNIDAD IV GASES PROPIEDADES FISICAS DE LOS GASES UNIDAD IV GASES PROPIEDADES FISICAS DE LOS GASES Muchas sustancias familiares para nosotros existen a temperatura y presión normal en forma gaseosa, éstas incluyen muchos sustancias elementales (H 2, N

Más detalles

Unidad III. Sistemas Monofásicos

Unidad III. Sistemas Monofásicos UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA Ingeniería Química Unidad III. Balance de materia Sistemas Monofásicos

Más detalles

FUNDAMENTOS DE TERMODINÁMICA PROBLEMAS

FUNDAMENTOS DE TERMODINÁMICA PROBLEMAS FUNDAMENOS DE ERMODINÁMICA ROBLEMAS 1.- Clasifique cada propiedad como extensiva o intensiva: a) temperatura, b) masa, c) densidad, d) intensidad del campo eléctrico, e) coeficiente de dilatación térmica,

Más detalles

MOL. Nº AVOGADRO GASES. TEMA 4 Pág. 198 libro (Unidad 10)

MOL. Nº AVOGADRO GASES. TEMA 4 Pág. 198 libro (Unidad 10) MOL. Nº AVOGADRO GASES TEMA 4 Pág. 198 libro (Unidad 10) CONCEPTOS PREVIOS Supuestos de Dalton Teoría atómica de Dalton Elementos constituidos por átomos, partículas separadas e indivisibles Átomos de

Más detalles

INSTITUTO TECNICO MARIA INMACULADA Ciencia, Virtud y Labor Resolución de aprobación 1627 del 23 de abril de 2013 nit

INSTITUTO TECNICO MARIA INMACULADA Ciencia, Virtud y Labor Resolución de aprobación 1627 del 23 de abril de 2013 nit INSTITUTO TECNICO MARIA INMACULADA Ciencia, Virtud y Labor Resolución de aprobación 1627 del 23 de abril de 2013 nit. 890501953-3 EJE TEMATICO GASES: Ley de Boyle, ley de charles, ley de gay-lussac, ley

Más detalles

UNIDAD Nº 2: GASES IDEALES Y CALORIMETRIA

UNIDAD Nº 2: GASES IDEALES Y CALORIMETRIA UNIDAD Nº 2: GASES IDEALES Y CALORIMETRIA UNIVERSIDAD CATÓLICA DE SALTA FAC. DE CS AGRARIAS Y VETERINARIAS AÑO 2008 Farm. Pablo F. Corregidor 1 TEMPERATURA 2 TEMPERATURA Termoreceptores: Externos (piel)

Más detalles

FENÓMENOS DE TRANSPORTE

FENÓMENOS DE TRANSPORTE FENÓMENOS DE TRANSPORTE UNIDAD I CONTENIDO LEY CERO DE LA TERMODINÁMICA LEY CERO DE LA TERMODINÁMICA Cuando tocamos un objeto, el sentido del tacto nos proporciona la sensación que calificamos como caliente

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION

INSTITUCION EDUCATIVA LA PRESENTACION INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : CIENCIAS NATURALES Y EDUCACION AMBIENTAL ASIGNATURA: QUIMICA DOCENTE: OSCAR GIRALDO HERNANDEZ TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO

Más detalles

Química General. Cap. 3: Gases. Departamento de Química. Universidad Nacional Experimental del Táchira (UNET) San Cristóbal 2007

Química General. Cap. 3: Gases. Departamento de Química. Universidad Nacional Experimental del Táchira (UNET) San Cristóbal 2007 Química General Departamento de Química Cap. 3: Gases Universidad Nacional Experimental del Táchira (UNET) San Cristóbal 2007 Propiedades de los Gases: Presión del Gas Presión del gas Fuerza (N) P (Pa)

Más detalles

LEY DE LOS GASES IDEALES 1

LEY DE LOS GASES IDEALES 1 LEY DE LOS GASES IDEALES 1 QUÍMICA GENERAL QUÉ SON LOS GASES IDEALES? 2 ; 3 Las moléculas de los gases se mueven libremente chocando contra las paredes del recipiente que los contiene, lo que origina la

Más detalles

Unidad III HIDROESTÁTICA

Unidad III HIDROESTÁTICA Unidad III OBJETIVOS Conocer los cambios de presión en función de la altura o profundidad. Aplicar el principio de Pascal y Arquímides a la resolución de problemas. Analizar la dependencia de la presión

Más detalles

Unidad 4: Estado Gaseoso Introducción Teórica

Unidad 4: Estado Gaseoso Introducción Teórica Unidad 4: Estado Gaseoso Introducción Teórica En esta unidad vamos a ampliar y explicar algunas de las características del estado gaseoso que ya han sido tratadas en la Unidad 1, como por ejemplo la de

Más detalles

Auxiliar: Univ. MIGUEL ANGEL GUTIERREZ FISICOQUIMICA (QMC 206)

Auxiliar: Univ. MIGUEL ANGEL GUTIERREZ FISICOQUIMICA (QMC 206) Auxiliar: Univ. FISICOQUIMICA (QMC 206) FACULTAD TECNICA Lp SEPTIEMBRE 2005 CARRERA DE QUIMICA INDUSTRIAL 1.- a-explique la Ley de Amagat. b-determine las constantes a,b,r en el punto critico para los

Más detalles

Calor y temperatura. Cap. 13, 14 y 15 Giancoli 6ta ed.

Calor y temperatura. Cap. 13, 14 y 15 Giancoli 6ta ed. Calor y temperatura Cap. 13, 14 y 15 Giancoli 6ta ed. Contenido Definiciones Clasificación Leyes, principios Procedimientos Definiciones Termodinámica: es el estudio de los procesos en los que la energía

Más detalles

PRACTICA No. 3 EL ESTADO GASEOSO

PRACTICA No. 3 EL ESTADO GASEOSO PRACTICA No. 3 EL ESTADO GASEOSO INTRODUCCION: Las sustancias en Estado Gaseoso tienen propiedades físicas y químicas que las hacen diferentes de otras que se encuentran en un estado físico distinto. A

Más detalles

LEYES DE LOS GASES. Llave. (abierta) Gas

LEYES DE LOS GASES. Llave. (abierta) Gas LEYES DE LOS GASES IES La Magdalena. Avilés. Asturias La teoría cinética de la materia permite justificar el comportamiento de los gases. or ejemplo, la presión () de un gas depende de la cantidad de gas

Más detalles

Ecuación de estado del gas ideal

Ecuación de estado del gas ideal Prácticas de laboratorio de Física I Ecuación de estado del gas ideal Curso 2010/11 1 Objetivos Comprobación de la ecuación de estado del gas ideal experimentalmente Construcción de curvas a presión, temperatura

Más detalles

LA MATERIA: ESTADOS FÍSICOS ACTIVIDADES DE REFUERZO ACTIVIDADES FICHA 1

LA MATERIA: ESTADOS FÍSICOS ACTIVIDADES DE REFUERZO ACTIVIDADES FICHA 1 FICHA 1 DE REFUERZO 1. Justifica, aplicando la teoría cinética: «Los sólidos tienen forma propia, mientras que los líquidos adoptan la forma del recipiente que los contiene». 2. Expresa la presión de 780

Más detalles

a) Cuál será el volumen de una muestra de gas a 30 ºC, si inicialmente teníamos

a) Cuál será el volumen de una muestra de gas a 30 ºC, si inicialmente teníamos EJERCICIOS GASES 3ER CORTE I. Ejercicios integrales 1. Ley de Charles a) Cuál será el volumen de una muestra de gas a 30 ºC, si inicialmente teníamos 400 ml a 0 ºC, permaneciendo constante la presión?.

Más detalles

Unidad IV: Propiedades fundamentales de la materia.

Unidad IV: Propiedades fundamentales de la materia. Unidad IV: Propiedades fundamentales de la materia. Facultad de Ingeniería 2012 UPV Unidad IV: Propiedades fundamentales de la materia: Masa y densidad Concepto de masa Relación entre masa y volumen Concepto

Más detalles

Ley General del Estado Gaseoso

Ley General del Estado Gaseoso Ley General del Estado Gaseoso por Enrique Hernández James Clerk Maxwell Ludwig Boltzmann Figura 1. James Clerk Maxwell (Stodart, s.f.). Figura 2. Boltzmann age31 (unbekannt, 1875). Boltzmann y Maxwell

Más detalles

GUIA: GASES y LEYES QUE LOS RIGEN

GUIA: GASES y LEYES QUE LOS RIGEN DEPARTAMENTO DE CIENCIAS QUÍMICA Sèptimo Básico GUIA: GASES y LEYES QUE LOS RIGEN 1_ La ley de Gay-Lussac nos dice que, a volumen constante, la presión y la temperatura de un gas son directamente proporcionales

Más detalles

EJERCICIOS N 2 PRIMERA LEY DE LA TERMODINAMICA

EJERCICIOS N 2 PRIMERA LEY DE LA TERMODINAMICA EJERCICIOS N 2 PRIMERA LEY DE LA TERMODINAMICA 2.1.- La dilatación del mercurio se puede expresar mediante: V = V o (1 + 1,814610-4 t + 9,20510-9 t 2 ) FISICOQUIMICA I CARRERA : QUIMICA Y FARMACIA donde

Más detalles

Ley de Boyle. A temperatura constante, el volumen de una muestra dada de gas es inversamente proporcional a su presión

Ley de Boyle. A temperatura constante, el volumen de una muestra dada de gas es inversamente proporcional a su presión LOS GASES Un gas es una porción de materia cuya forma y volumen son variables ya que se adaptan a la del recipiente que lo contiene, el cual ocupan totalmente. LEYES DE LOS GASES Ley de Boyle Robert Boyle,

Más detalles

TEORÍA CINÉTICA DE LA MATERIA. ESCALA ABSOLUTA DE TEMPERATURAS. LEYES DE LOS GASES

TEORÍA CINÉTICA DE LA MATERIA. ESCALA ABSOLUTA DE TEMPERATURAS. LEYES DE LOS GASES EORÍA CINÉICA DE LA MAERIA. ESCALA ABSOLUA DE EMPERAURAS. LEYES DE LOS GASES IES La Magdalena. Avilés. Asturias Para poder explicar (ver preguntas) y entender el comportamiento de la materia existe un

Más detalles

Existe una relación de dependencia entre las variables termodinámicas de un sistema que se denomina ecuación

Existe una relación de dependencia entre las variables termodinámicas de un sistema que se denomina ecuación 2.0- Ecuaciones de estado Supongamos que una masa constante de un cierto gas, de composición asimismo constante, se encuentra contenida en un recipiente de volumen variable, como por ejemplo, un cilindro

Más detalles

Dispositivos Cilindro-Pistón

Dispositivos Cilindro-Pistón Presión ejercida sobre superficies sólidas: sistema cilindro-pistón Un sistema importante desde el punto de vista termodinámico es el sistema cilindro-pistón, ya que se puede estudiar con él el comportamiento

Más detalles