Método de las Diferencias Finitas en el Dominio del Tiempo (FDTD)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Método de las Diferencias Finitas en el Dominio del Tiempo (FDTD)"

Transcripción

1 Méodos Numécos paa la esolucó de cuacoes feecales año 00 Méodo de las feecas Fas e el omo del Tempo FT. Resume l méodo de las feecas Fas e el omo del Tempo Fe ffeece Tme oma FT se ula paa esolve poblemas elecomagécos asoos ulado dfeecas fas. l méodo fue desaollado po Kae Yee e 966 paa esolve las cuacoes de Mawell []. sas ecuacoes e devadas pacales se eemplaa po u ssema de ecuacoes e dfeecas fas. lgedo coveeemee los puos e que se evalúa las compoees de los campos e esas ecuacoes la solucó al ssema de ecuacoes sasface las codcoes de bode que voluca supefces coducoas deales. se méodo es u caso pacula del méodo de feecas Fas que es u méodo sadad paa la esolucó de cuacoes e evadas Pacales P.. cuacoes de Mawell Las cuacoes de Mawell descbe la evolucó e el empo e el espaco de los campos magécos eléccos. Los dfeees poblemas se especfca co dsas codcoes de bode que descbe suacoes físcas como la poscó de los coducoes e u ccuo. Las ecuacoes so a geeales poees que esumedo la físca clásca e ocho ecuacoes cuao de ellas seía las de Mawell. u medo soópco las cuacoes de Mawell so las sguees: J Ampee 0 Faada ρ dode es la duccó magéca es el campo magéco es el desplaameo elécco J es la desdad de coee elécca es la IVRGNCIA de l veco es el ROTOR de l escala 0 També se ee que J 5 σ 6 Adaa Salva: pag. de 7

2 Méodos Numécos paa la esolucó de cuacoes feecales año 00 Adaa Salva: pag. de 7 7 sedo la pemeabldad la pemvdad σ la coducvdad. geeal σ puede vaa e fucó del empo la poscó. S se ee que el oo de es v Susuedo esa epesó e la ecuacó se obee el sguee ssema de ecuacoes J 8 J 9 J 0 Pocededo aálogamee paa la ecuacó esula 3 sas ses ecuacoes desacopladas so la base del algomo FT. 3. Algomo de Yee 966 Kae Yee [] popuso u couo de ecuacoes e dfeecas fas paa esolve las ecuacoes de Mawell. Paa ello la egó dmesoal que eesa se dvde e ua glla de celdas cúbcas de coodeadas

3 Méodos Numécos paa la esolucó de cuacoes feecales año 00 Adaa Salva: pag. 3 de 7 sedo los cemeos espacales. Cada fucó de espaco empo se escbe como F F sedo el evalo de empo. Las devadas espacales empoales de ua fucó se mplemeaá ulado ua apomacó e dfeecas fas ceadas evaluadas e gllas solapadas: F F F F F F Ulado la ecuacó se acuala el campo e cada sae de empo co la ecuacó se acuala el campo magéco e cada sae de empo ½. l méodo se basa e ula las ecuacoes aeoes paa calcula las devadas de los campos elecomagécos e las ecuacoes 8-3. Las gllas uladas paa evalua e el espaco ambé esá escaloadas: el véce de u cubo peeecee a ua glla se ecuea e el ceo de u cubo peeecee a la oa glla como se muesa e la Fgua. Fgua. Celda de Yee. Los compoees del campo se halla e la mad de las asas meas que las compoees de esá e el ceo de las caas. Al aplca ese méodo a las ecuacoes se obee u ssema de ecuacoes e dfeecas fas. Po eemplo la ecuacó e dfeecas fas coespodee a la ecuacó es 4

4 Méodos Numécos paa la esolucó de cuacoes feecales año 00 Adaa Salva: pag. 4 de 7 Fgua. Nodos de la glla que se ula paa calcula el campo e la ecuacó 4 la Fgua se obseva que los puos de la glla e que se evalúa el campo ulados e 4 paa calcula el campo ½ e el ceo de ua caa de la celda pepedcula al ee so los puos medos de las asas peeecees a esa caa. Las ecuacoes e dfeecas fas coespodees a las ecuacoes 3 se halla de la msma foma esulado 5 Fgua 3. Nodos de la glla que se ula paa calcula el campo e la ecuacó 5 6

5 Méodos Numécos paa la esolucó de cuacoes feecales año 00 Adaa Salva: pag. 5 de 7 Fgua 4. Nodos de la glla que se ula paa calcula el campo e la ecuacó 6 Luego paa la ecuacó 8 se ee que J 7 Fgua 5. Nodos de la glla que se ula paa calcula el campo e la ecuacó 7 ese caso los puos que se ula paa calcula e u puo de la glla so las compoees de -½ -½ que se ubca e los puos medos de los lados de u cuadado pepedcula al ee cuo ceo es el puo e que se desea calcula segú se dca e la Fgua 5. e foma smla se ee que las ecuacoes e dfeecas fas coespodees a las ecuacoes 9 0 so las sguees:

6 Méodos Numécos paa la esolucó de cuacoes feecales año 00 Adaa Salva: pag. 6 de 7 J 8 Fgua 6. Nodos de la glla que se ula paa calcula el campo e la ecuacó 8 J 9 Fgua 7. Nodos de la glla que se ula paa calcula el campo e la ecuacó 9

7 Méodos Numécos paa la esolucó de cuacoes feecales año 00 l couo de ecuacoes que se obee es mplíco los cálculos paa halla los valoes de los campos e los puos de la glla so mu secllos sumas esas lo que facla su mplemeacó; s las ecuacoes 8-3 se esolvea co dfeecas ceadas e ua glla omal se obedía u ssema de ecuacoes eplíco. 4. Codcoes de bode el elecomagesmo suge que las codcoes de bode apopadas paa ua supefce coducoa es que las compoees agecales del campo elécco se aule e la supefce que la compoee pepedcula a la supefce del campo magéco ambé se aule e la supefce. La supefce coducoa se apomaá po u couo de supefces de cubos cuos lados seá paalelos a los ees de coodeadas. Las supefces plaas pepedculaes al ee de las seá elegdas de foma al de coee puos e los cuales esé defdos. Las supefces plaas pepedculaes a los oos ees se elge de foma aáloga. [] 5. Ceo de esabldad l amaño de la glla debe se al que los campos elecomagécos o cambe susacalmee de u odo a oo de la glla. so sgfca que paa ee esulados sgfcavos la dmesó de la glla debeá se ua faccó de la logud de oda λ. Los dfeees aículos cosulados ecomeda de foma uáme u paso meo a λ/0. geeal ambé ula como ceo. La esabldad de la solucó se obee aplcado el ceo de Coua [5] que esablece la codcó c > L sedo c la velocdad de la oda L ua medda leal del elemeo como el acho de la celda o su lago es el evalo de empo. l ceo de esabldad de Coua geealado paa 3 dmesoes [7] [3] [8] es 0 c Ua ve elegda la glla la codcó aeo mpoe ua esccó paa el evalo de empo. el caso c 3 6. cuacoes de Mawell e dos dmesoes Paa lusa el méodo se cosdea u poblema e dos dmesoes. Paa smplfca se supoe que las compoees del campo o depede de la coodeada que so cosaes que J0. La úca fuee del poblema es la oda cdee. sa oda cdee se hace choca co u obsáculo cua dmesó seá de uas pocas logudes de oda. Noa: [] el ceo de esabldad que se aplca es > c Adaa Salva: pag. 7 de 7

8 Méodos Numécos paa la esolucó de cuacoes feecales año 00 Puede smplfcase aú más el poblema dado que e coodeadas clídcas s so cosaes el campo elécomagéco puede descompoese e campos asvesal elécco T asvesal magéco TM. Los dos modos de odas elecomagécas se caacea como.- Oda T 0 0 Susuedo e las ecuacoes 8-3 eedo e cuea Oda TM 0 0 Susuedo e las ecuacoes geeal puede cosdease ua supefce pefecamee coducoa C. sa supefce podá apomase po u polígoo cuos lados sea paalelos a los ees de coodeadas. S las dmesoes de la glla deo de esa supefce coducoa C so pequeñas compaadas co el acho de bada la apomacó podá ee esulados cossees. Sea c 7 Adaa Salva: pag. 8 de 7

9 Méodos Numécos paa la esolucó de cuacoes feecales año 00 Adaa Salva: pag. 9 de 7 8 A couacó se escbe las ecuacoes e dfeecas fas paa las odas TM T Oda T Ve cálculos e Apédce A Odas TM Ve cálculos e Apédce A emplo uméco paa ua oda TM Paa smplfca el poblema se cosdea ua oda TM po lo que se ulaá las ecuacoes e dfeecas fas l poblema que se esolveá es la dfaccó de ua oda TM cdee a u cuadado coduco deal. Las dmesoes del obsáculo así como el pefl de la oda cdee se muesa e la Fgua 8. Los valoes cales e 0 0 / ½ / -½ se obee a pa de ua oda cdee coocda; el valo de elegdo debeá se al que e 0 la oda cdee o haa chocado aú co el obsáculo. Los sguees valoes e el empo se obedá a pa de las ecuacoes e dfeecas fas 3-34 halladas aeomee. La oda cdee es ua oda susodal plaa de amplud que sólo ee compoees e e.

10 Méodos Numécos paa la esolucó de cuacoes feecales año 00 50α c π se 8α 0 50α c 8α sedo α ua udad de logud. La logud de oda λ coespodee a esa oda es λ6α ve Apédce. Se elge como amaño de la glla α 8 que epesado e fucó de la logud de oda λ queda como que es meo que λ/0. λ 8 Aplcado el ceo de esabldad de Coua 0 la ecuacó 7 se ee que c α 6 97 ½ 97 0 CORT UNA GUÍA ONAS ONA PLANA INCINT OSTÁCULO ½ Fgua 8. Poblema equvalee paa ua oda TM Adaa Salva: pag. 0 de 7

11 Méodos Numécos paa la esolucó de cuacoes feecales año 00 ebdo a que o ee sedo hace el esquema de dfeecas fas e odo el plao - como foma de acoa el poblema la egó de cálculo seá la mosada e la Fgua 8. Se supoe que e 0 la oda plaa esá ceca del obsáculo po u peíodo esgdo de empo puede eemplaase el poblema ogal po el mosado e la Fgua. Las codcoes de bode que se mpoe paa los campos elecomagécos deo de ua guía de odas es dec u psma ecagula o cldo ccula cuas paedes so coducoes pefecos [9] so smplemee que las compoees agecales del las compoees omales de sea ceo e la supefces coducoas. Po lo ao paa la oda TM e la egó de la Fgua 8 se ee que e la supefce coducoa la compoee del campo elécco sempe se aula po se agecal a la msma meas que se aula e las paedes vecales 0 se aula e las paedes hooales 0 Los esulados paa el poblema equvalee apoma a la solucó eal s 0 64 debdo a que e ese evalo de empo las codcoes de bode afcales o afeca a la solucó. Paa >64 sólo e alguos puos los esulados del poblema equvalee se apoma de foma coeca a los del poblema ogal. [] se pesea los esulados umécos de ese eemplo. Se uló el ssema de ecuacoes omado como codcó cal u seo meda oda e el caso de o ee el obsáculo. Se hace oa que las codcoes de bode o afeca a la oda cdee dado que la msma o ee compoee e. la Fgua 9 se muesa el esulado de eecua las ecuacoes duae 95 eacoes e el empo. La osclacó el esachameo del pulso se debe a la mpefeccó del ssema de dfeecas fas. La fala de pecsó del méodo se debe a la popagacó de eoes. Fgua 9. Resulados del cálculo de ulado las ecuacoes e auseca del obsáculo. Las odeadas so e Vols/meo la abscsa es el úmeo de cemeos hooales es el úmeo de los cclos de empo. La Fgua 0 muesa el valo del la oda TM e fucó de la coodeada paa u valo fo de la coodeada vecal 30. Al fal del quo cclo de empo la oda choca co el obsáculo. l obsáculo o se ecuea e la poscó 30 peo e esa poscó se esá lo sufceemee ceca del msmo como paa se afecados po ua oda pacalmee efleada. També ha ua oda pacalmee asmda. La fase de la oda efleada es opuesa a la de la oda cdee como lo equee la codcó de bode del obsáculo. Adaa Salva: pag. de 7

12 Méodos Numécos paa la esolucó de cuacoes feecales año 00 Fgua 0. de ua oda TM paa vaos saes de empo 30 Fgua. de ua oda TM e peseca de u obsáculo paa vaos saes de empo 30 la Fgua se muesa el valo de paa la oda TM e fucó de la coodeada hooal paa 50. esa coodeada 50 la oda se choca co el obsáculo po lo que apaece ua oda efleada que vaa haca la deecha. Luego de que la oda efleada ecuea la foea deecha vuelve a eflease uevamee. se efeco se muesa e los cclos de empo La Fgua es paa se ecuea el bode del obsáculo. ebdo a las codcoes de bode es ceo e los puos peeecees a la foea. A la deecha del obsáculo ha ua oda pacalmee efleada cua amplud es la mad de ua oda oalmee efleada. A la queda del obsáculo puede vese ua oda asmda después de 85 evalos de empo. Adaa Salva: pag. de 7

13 Méodos Numécos paa la esolucó de cuacoes feecales año 00 Fgua. de ua oda TM e peseca de u obsáculo paa vaos saes de empo Coclusoes l méodo FT es ua heamea úl fácl de mplemea paa esolve poblemas asoos que se compoa segú las ecuacoes de Mawell. Los algomos basados e el méodo FT so mu populaes debdo a su flebldad sedo además mu fácles de mplemea. Ua lmacó del méodo es que la esabldad del méodo depede de la glla ulada e la dsceacó del evalo de empo ulado paa eecua la egacó e el empo. Aalado el eemplo desaollado e [] se coclue que ese méodo se ula paa obee asoos de odas elecomagécas; que el campo elecomagéco e el sae cal debeá se coocdo e oda la oa de esudo paa pode desaolla las ecuacoes a pa de esa solucó cal. l méodo o fucoa be cuado se ee foeas cuvas ampoco puede esolve de foma adecuada pequeños dealles po la foma ufome e que se cosue la glla [8]. Adaa Salva: pag. 3 de 7

14 Méodos Numécos paa la esolucó de cuacoes feecales año 00 Adaa Salva: pag. 4 de 7 Apédce A cuacoes e dfeecas fas paa odas T TM A. Oda T La epesó e dfeecas fas de la ecuacó opeado se ee que ulado las defcoes susuedo 35 La ecuacó queda como de 36 susuedo

15 Méodos Numécos paa la esolucó de cuacoes feecales año 00 Adaa Salva: pag. 5 de 7 Paa la ecuacó 3 se ee que eagupado los émos susuedo 5 A. Oda TM La apomacó e dfeecas fas de 4 es eedo e cuea 36 Pocededo de foma aáloga paa la ecuacó 5 ulado 35 Po úlmo se ee que 6 puede escbse como susuedo 35

16 Méodos Numécos paa la esolucó de cuacoes feecales año 00 Apédce Paa ua oda de la foma Re { wβ e } 0 se defe la velocdad de fase [9] la logud de oda v fλ w β λ π β La oda que se esuda e el eemplo de ese abao es sedo 50α c π se 8α 0 50α c 8α β π 8α po lo ao su logud de oda es λ 6α Adaa Salva: pag. 6 de 7

17 Méodos Numécos paa la esolucó de cuacoes feecales año Refeecas [] Kae S.Yee. Numecal Soluo of al ouda Value Poblem Ivolvg Mawell s quaos Isoopc Meda I Tas. o Aeas ad popagao Vol 4. pp Ma 966. [] Algomo de Yee hp://www.m.mgh.havad.edu/~adu/papes/dsseao/ode3.hml [3] uel Uves UK. The Fe ffeece Tme oma Algohm hp://www.m.mgh.havad.edu/~adu/papes/dsseao/ode3.hml [4] MSC Compuaal Phscs. Tme depede Mawell s equaos hp://ugh30.phs.ug.l/msc_compphs/ft.hm [5] Modellg equemes fo egula gds hp://gd.soucefoge.e/gdocs/ode4.hm [6] FT Mehod. hp://www.elecomagecs.co.u/fdd.hm [7] Chale Che Tae-Woo Lee Naaaa Muugesa Susa agess. Geealed FT-AI: A Ucodoall sable Full-Wave Mawell s equaos. Solve fo VLSI Iecoec Modelg hp://vls.ece.wsc.edu/eseach/000ccad0.pdf [8] Ulf Adesso. The FT Mehod fo Compuaoal lecomagecs A Case sud hp://www.pdc.h.se/ag/00/summeschool/cousewo/ft/de.pdf [9] duad C. Joda Keh G. alma. Odas elecomagécas ssemas adaes. Adaa Salva: pag. 7 de 7

Figura 1. Figura 2. Para realizar este análisis asumiremos las siguientes condiciones:

Figura 1. Figura 2. Para realizar este análisis asumiremos las siguientes condiciones: Coverdor PUH PU El coverdor Push Pull es u coverdor que hace uso de u rasformador para eer aslameo ere la esó de erada y la esó de salda. Posee además ua ducaca magezae propa del rasformador que como al

Más detalles

Tema 5. DIAGONALIZACIÓN DE MATRICES

Tema 5. DIAGONALIZACIÓN DE MATRICES José Maía Maíe Mediao Tema DGONLZCÓN DE MTRCES oducció Poecia de ua mai Sea Supogamos que se desea calcula : 7 7 8 8 Deemia ua egla paa o esula imediao Compobemos, aes de segui adelae, que MDM, siedo M

Más detalles

Métodos Actuariales de Primas de Fianzas

Métodos Actuariales de Primas de Fianzas Méodos Acuaales de mas de Fazas o Ac. edo Agula Belá * pagula@csf.gob.mx Resume: La faza ee macadas dfeecas co las opeacoes de seguos. Los pocedmeos acuaales paa el cálculo de pmas de seguos, esula muy

Más detalles

OPTICA REFLEXIÓN Y REFRACCIÓN

OPTICA REFLEXIÓN Y REFRACCIÓN OPTICA REFLEXIÓN Y REFRACCIÓN IES La Magdalea. Avlés. Astuas La eflexó se poduce cuado ua oda ecueta ua supefce cota la cual ebota. E la eflexó el ayo cdete y el eflejado se popaga e el msmo medo. La velocdad

Más detalles

1.1.- Concepto Definición de cono Definición de función homogénea Interpretación económica de la función homogénea

1.1.- Concepto Definición de cono Definición de función homogénea Interpretación económica de la función homogénea Fucoes homogéeas FUNCIONES HOMOGÉNEAS (ESQUEMA).- Cocepo y propedades...- Cocepo Defcó de coo Defcó de fucó homogéea Ierpreacó ecoómca de la fucó homogéea..- Propedades (Operacoes co fucoes homogéeas)

Más detalles

VOLUMEN IV CAPITULO 3 METODOLOGÍA PARA LA ACTULIZACIÓN DE LAS CURVA DE COSTOS ÓPTIMOS DE RACIONAMIENTO DE ELECTRICIDAD Y GAS NATURAL

VOLUMEN IV CAPITULO 3 METODOLOGÍA PARA LA ACTULIZACIÓN DE LAS CURVA DE COSTOS ÓPTIMOS DE RACIONAMIENTO DE ELECTRICIDAD Y GAS NATURAL ESTUDO DE OSTOS DE RAONAMENTO DE ELETRDAD Y GAS NATURAL Volume V apulo 3 forme Fal Revsó. VOLUMEN V APTULO 3 METODOLOGÍA PARA LA ATULZAÓN DE LAS URVA DE OSTOS ÓPTMOS DE RAONAMENTO DE ELETRDAD Y GAS NATURAL

Más detalles

FUNDAMENTOS FÍSICOS Y TECNOLÓGICOS DE LA INFORMÁTICA

FUNDAMENTOS FÍSICOS Y TECNOLÓGICOS DE LA INFORMÁTICA FUNDAMENTOS FÍSIOS Y TENOLÓGIOS DE LA INFORMÁTIA TEMA I.- ELETROSTÁTIA FUNDAMENTOS FÍSIOS Y TENOLÓGIO DE LA INFORMÁTIA Tema.ELETROSTÁTIA- Tecología de omputadoes-datsi-fi-upm-madd - M. A. Pascual Iglesas

Más detalles

TEMA 5 SISTEMAS DE N GRADOS DE LIBERTAD. Sistemas de N Grados de Libertad

TEMA 5 SISTEMAS DE N GRADOS DE LIBERTAD. Sistemas de N Grados de Libertad Sstemas de N Gados de Lbetad ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 5. - ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 5. - 5. Plateameto matcal Se va a extede los esultados de gdl al caso geeal de N gdl. El estudo

Más detalles

PROBLEMAS DE ÓPTICA. FÍSICA 2 BACHILLERATO. Profesor: Félix Muñoz Jiménez

PROBLEMAS DE ÓPTICA. FÍSICA 2 BACHILLERATO. Profesor: Félix Muñoz Jiménez PROBEMS DE ÓPTIC. FÍSIC BCHIERTO. Pofeo: Félx Muñoz Jméez Poblema º Calcula el ídce de efaccó elatvo del vdo al acete. Halla la velocdad de popagacó y la logtud de oda, e el acete y e el vdo de u ayo de

Más detalles

Índice de materias 2.- MECÁNICA CUÁNTICA. POSTULADOS Y EJEMPLOS SENCILLOS DE APLICACIÓN...3

Índice de materias 2.- MECÁNICA CUÁNTICA. POSTULADOS Y EJEMPLOS SENCILLOS DE APLICACIÓN...3 Ídce de ateas.- MECÁNICA CUÁNTICA. POSTULADOS Y EJEMPLOS SENCILLOS DE APLICACIÓN...3..- FUNDAMENTOS MATEMÁTICOS DE LA MECÁNICA CUÁNTICA...3 Álgeba Leal Opeadoes ucoes popas....3.- LOS POSTULADOS DE LA

Más detalles

Analogía para derivar un teorema extendido de Pitágoras para N dimensiones

Analogía para derivar un teorema extendido de Pitágoras para N dimensiones Igeeía Ivestgacó y Tecología. ol. III, Núm.,, 75-84 ISSN 45-7743 FI-UNM atículo abtado alogía paa deva u teoema exteddo de Ptágoas paa N dmesoes alogy to Deve a Exteded Pytagoea Teoem to N Dmesos costa-robledo

Más detalles

TEMA 5: CAPITALIZACIÓN COMPUESTA ÍNDICE

TEMA 5: CAPITALIZACIÓN COMPUESTA ÍNDICE Maemácas Faceras Prof. Mª Mercedes Rojas de Graca TEMA 5: APITALIZAIÓN OMPUESTA ÍNDIE. APITALIZAIÓN OMPUESTA..... ONEPTO..... DESRIPIÓN DE LA OPERAIÓN....3. ARATERÍSTIAS DE LA OPERAIÓN....4. DESARROLLO

Más detalles

Matemáticas Aplicadas CC. SS. I -- I. E. S. Sabinar

Matemáticas Aplicadas CC. SS. I -- I. E. S. Sabinar Matemátcas Aplcadas. SS. I -- I. E. S. Saba MATEMÁTIAS INANIERAS EN 1º BTO.. SS. 1. PORENTAJES 1.1 Aumetos y dsmucoes pocetuales. Ídce de vaacó 1.2 Aumetos y dsmucoes pocetuales ecadeados. Ídce de vaacó

Más detalles

Un forward sobre commodities como el oro sufre una pequeña variación ya que se incluye la tasa de interés del oro (lease rate) con la variable l

Un forward sobre commodities como el oro sufre una pequeña variación ya que se incluye la tasa de interés del oro (lease rate) con la variable l El Forward U corao fuuro o a plazo, s odo aqul cuya lqudacó o slm dfr hasa ua fcha posror spulada l msmo, s dcr s dos pas acurda hacr la rasaccó hasa u prodo fuuro dígas por jmplo 6 mss, so s u corao forward.

Más detalles

Espacios Afín y Euclídeo Resumen ESPACIOS AFÍN Y EUCLÍDEO

Espacios Afín y Euclídeo Resumen ESPACIOS AFÍN Y EUCLÍDEO ESACIOS AFÍN Y EUCLÍDEO Nota: Los pocedimietos expestos o so los úicos qe eselve los poblemas Defiició El espacio afí so los ptos coexistiedo jto al espacio vectoial V, co sistema de efeecia ( pto fijo

Más detalles

AYUDAS GRAFICAS CARTA DE SMITH Y APLICACIONES

AYUDAS GRAFICAS CARTA DE SMITH Y APLICACIONES 7 CAPITULO 4 AYUDAS GRAFICAS CARTA DE SMITH Y APLICACIONES Existe vaios métodos de ayudas gáficas paa el diseño, acople y solució de poblemas e líeas de tasmisió, que ha ido evolucioado co el tiempo. Keell

Más detalles

1. Una empresa estudia la evolución de los precios en euros de tres componentes (A, B, C) para una pieza en los últimos 5 años.

1. Una empresa estudia la evolución de los precios en euros de tres componentes (A, B, C) para una pieza en los últimos 5 años. Ejerccos Resuelos Números Ídces Faculad Cecas Ecoómcas y Emresarales Dearameo de Ecoomía Alcada Profesor: Saago de la Fuee Ferádez 1. Ua emresa esuda la evolucó de los recos e euros de res comoees (A,

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

Cinemática del Robot Industrial

Cinemática del Robot Industrial Cemátca del Robot Idustal M.C. Mguel de J. Ramíe C. CMfgT Automatacó de Sstemas de Maufactua Adatacó: Glbeto Reoso Estuctua Mecáca del Robot Idustal Mecácamete u obot es ua cadea cemátca fomada de eslaboes

Más detalles

Para caracterizar completamente una magnitud vectorial, como son la velocidad, aceleración, fuerza, etc, es preciso indicar tres cosas:

Para caracterizar completamente una magnitud vectorial, como son la velocidad, aceleración, fuerza, etc, es preciso indicar tres cosas: VECTORES Y ESCLRES Las magntudes escalaes son aquellas que quedan totalmente defndas al epesa la cantdad la undad en que se mde. Eemplos son la masa, el tempo, el tabao todas las enegías, etc. Las magntudes

Más detalles

A) Se considera el problema de contorno bidimensional constituido por la ecuación diferencial

A) Se considera el problema de contorno bidimensional constituido por la ecuación diferencial Elemetos tos bdmesoles. U vsó pelm A Se cosde el poblem de cotoo bdmesol costtdo po l eccó deecl (, e el domo, smplemete coeo ls codcoes de cotoo: (, coocd e α coocd e Recédese qe qe, s se deom l ccdte

Más detalles

Tomando como nivel de energía cero el nivel fundamental. Dada la diferencia de energía entre los niveles en la mayoría de los casos

Tomando como nivel de energía cero el nivel fundamental. Dada la diferencia de energía entre los niveles en la mayoría de los casos Capíulo. La fucó d pacó ) Spaacó d la fucó d pacó S ha dmosado aom - / k [.] La ía dl l s ual a: k [.] + + + [.] + S los ados d lbad o accoa [.4] - / k - / k... [.5] ) Fucó d pacó lcóca omado como l d

Más detalles

TEMA III: MATEMÁTICA FINANCIERA.

TEMA III: MATEMÁTICA FINANCIERA. TEMA III: MATEMÁTICA FINANCIERA. Sucesioes: Ua sucesió de úmeos eales es u cojuo odeado de úmeos eales: a, a2, a3, a4,....a cada uo de los úmeos que foma la sucesió se le llama émio de la sucesió. El émio

Más detalles

1/8 LA ESTRUCTURA TEMPORAL DE LOS TIPOS DE INTERES. 1.- Introducción

1/8 LA ESTRUCTURA TEMPORAL DE LOS TIPOS DE INTERES. 1.- Introducción LA ESTRUCTURA TEMORAL DE LOS TIOS DE INTERES.- Inoducción La esucua empoal de ipos de ineés o simplemene cuva de ipos ecoge la evolución de los ipos de ineés en función de su vencimieno, consideando po

Más detalles

Santiago de la Fuente Fernández. Regresión Lineal Múltiple

Santiago de la Fuente Fernández. Regresión Lineal Múltiple atago de la Fuete Feádez egesó Leal Múltple atago de la Fuete Feádez egesó Leal Múltple EGEIÓN LINEAL MÚLTIPLE egesó Leal Múltple Las téccas de egesó leal múltple pate de (k+) vaables cuattatvas, sedo

Más detalles

Puntos, rectas y planos en el espacio

Puntos, rectas y planos en el espacio Maemáicas II Geomeía del espacio Punos, ecas planos en el espacio Obsevación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Selecividad.. La eca coa a los es planos coodenados

Más detalles

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES.- Halla dos númeos que sumados den cuo poducto sea máimo. Sean e los númeos buscados. El poblema a esolve es el siguiente: máimo Llamamos p al poducto de los dos

Más detalles

FORMULARIO. Beneficio. % Dividendo = Beneficio PEC = TEMA 1 TEMA 2. Margen de Facturación: Retribución del capital en % sobre el dividendo:

FORMULARIO. Beneficio. % Dividendo = Beneficio PEC = TEMA 1 TEMA 2. Margen de Facturación: Retribución del capital en % sobre el dividendo: FORMULRIO TEM Rebucó del capal e % sobe el dvdedo: % Dvdedo Im poe de los dvdedos apal ocal oducvdad Ecoómca del apal: Mae de Facuacó: M a e eefco fa de Roacó del apal Ivedo: Neoco E eefco apal Ivedo T

Más detalles

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es (Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua

Más detalles

Tema 2 Teorías del consumo y el ahorro privados: agente representativo

Tema 2 Teorías del consumo y el ahorro privados: agente representativo Tema Teoías del osumo el ahoo pivados: agee epeseaivo. Codiioaes geeales del osumo el ahoo.. Modelos ieempoales..3 Modelos de ilo de vida. Bibliogafía: Gaía del aso Maoeoomía Avazada Asigaua de 5º uso

Más detalles

CAPÍTULO III TRABAJO Y ENERGÍA

CAPÍTULO III TRABAJO Y ENERGÍA TRAJO Y ENERGÍA CAPÍTULO III "De todos los conceptos físcos, el de enegía es pobablemente el de más vasto alcance. Todos, con fomacón técnca o no, tenen una pecepcón de la enegía y lo que esta palaba sgnfca.

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

REVISTA INVESTIGACION OPERACIONAL Vol. 22, No. 2, 2001

REVISTA INVESTIGACION OPERACIONAL Vol. 22, No. 2, 2001 REVISA INVESIGACION OPERACIONAL Vol., No., SOLUCIONES A DIFERENES PROBLEMAS DENRO DEL CAMPO DE LA COMUNICACION ESADISICA J. Navarro Moreo, J.C. Ruz Mola y R.M. Ferádez Alcalá, Deparameo de Esadísca e Ivesgacó

Más detalles

* Introducción * Principio de mínima energía * Transformaciones de Legendre * Funciones (o potenciales) termodinámicas. Principios de mínimo.

* Introducción * Principio de mínima energía * Transformaciones de Legendre * Funciones (o potenciales) termodinámicas. Principios de mínimo. 5. otencales emonámcos * Intouccón * ncpo e mínma enegía * ansomacones e Legene * Funcones (o potencales) temonámcas. ncpos e mínmo. * Enegía lbe (potencal) e Helmholtz lt * Entalpía. * Enegía lbe e Gbbs.

Más detalles

ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES

ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES Uversdad Rey Jua Carlos ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES Lus Rcó Córcoles Lceso J. Rodríguez-Aragó Programa. Itroduccó. 2. Defcó de redmeto. 3. Meddas para evaluar el redmeto. 4. Programas para

Más detalles

Taller de Preparación para el examen Models Life Contingencies (MLC) de la SOA.

Taller de Preparación para el examen Models Life Contingencies (MLC) de la SOA. Taller de Preparacó para el eame Models Lfe Cogeces MLC de la SO. Trdad Gozález Bolla El presee es u forme del rabajo desarrollado durae el aller de preparacó para el eame MLC de SO ue uo lugar e la Faculad

Más detalles

10. ANÁLISIS SENOIDAL POR FASORES

10. ANÁLISIS SENOIDAL POR FASORES . ANÁ ENODA PO FAOE.. NTODUÓN El nálss de uos ompleos on essens, nduns y pns p ends de po senodl esul muy dspendoso. El nálss senodl po soes es un mne smple de nlz les uos sn esole ls euones deenles, que

Más detalles

1.1 INTRODUCCION & NOTACION

1.1 INTRODUCCION & NOTACION 1. SIMULACIÓN DE SISEMAS DE COLAS Jorge Eduardo Ortz rvño Profesor Asocado Departameto de Igeería de Sstemas e Idustral Uversdad Nacoal de Colomba jeortzt@ual.edu.co 1.1 INRODUCCION & NOACION Clete Servdor

Más detalles

Una Estrategia de Acumulación de Reservas Mediante Opciones de Venta de Dólares. El Caso de Banco de México

Una Estrategia de Acumulación de Reservas Mediante Opciones de Venta de Dólares. El Caso de Banco de México Ua Esraega de Acumulacó de Reservas Medae Opcoes de Vea de Dólares. El Caso de Baco de Méxco INDICE I. REUMEN... II. INTRODUCCIÓN...3 III. IV. OPCIONE DE VENTA DE DÓLARE...4 III.. PRINCIPALE CARACTERÍTICA...4

Más detalles

Trabajos. Temario. Tema 6. El diodo. Tema 6: El diodo. Tema 6. El diodo. Introducción. Objetivos:

Trabajos. Temario. Tema 6. El diodo. Tema 6: El diodo. Tema 6. El diodo. Introducción. Objetivos: emaro rabajos. odo 7. El rassor. Magesmo 9. duccó elecromagéca. rcuos de corree alera. Odas elecromagécas. lcacoes ócas odo. odo Zeer. odo LE 3. Foododo. odo úel 5. odo Schoky El rassor. El JFE, fudameos

Más detalles

Introducción a la Estadística Descriptiva

Introducción a la Estadística Descriptiva Iroduccó a la Esadísca Descrpva ª Edcó Carla Re Graña María Raml Díaz ITRODUCCIÓ A LA ESTADÍSTICA DESCRIPTIVA. ª Edcó o esá permda la reproduccó oal o parcal de ese lbro, su raameo formáco, la rasmsódeguaformaoporcualquermedo,aseaelecróco,mecáco,porfoocopa,por

Más detalles

AJUSTES EN UNA ECONOMÍA AL ELIMINAR SUBVENCIONES LIGADAS A INFRAESTRUCTURAS

AJUSTES EN UNA ECONOMÍA AL ELIMINAR SUBVENCIONES LIGADAS A INFRAESTRUCTURAS AJUSTES EN UNA ECONOMÍA AL ELIMINAR SUBVENCIONES LIGADAS A INFRAESTRUCTURAS M. Doloes Soo Toes Depaameo de Ecoomía Aplicada Uivesidad de Valladolid e-mail: lolasoo@eco.uva.es Ramó Feádez Lechó Depaameo

Más detalles

Un generador matricial de claves frente a Blum Blum Shub.

Un generador matricial de claves frente a Blum Blum Shub. U geerador marcal de claves free a lum lum Sub. Rafael Álvarez, Joa-Josep Clme, eadro Torosa 3 y oo Zamora 4 Deparame de Cèca de la Compuacó Iel lgèca rfcal. Uversa d'laca, Campus de Sa Vce, p.correus

Más detalles

REVISTA INVESTIGACION OPERACIONAL Vol. 23, No.2, 2002

REVISTA INVESTIGACION OPERACIONAL Vol. 23, No.2, 2002 REVISTA INVESTIGACION OPERACIONAL Vol. 23, No.2, 2002 UN SISTEMA BASADO EN CASOS PARA LA TOMA DE DECISIONES EN CONDICIONES DE INCERTIDUMBRE Ilaa Guérrez Maríez, Rafael E. Bello Pérez y Adrés Tellería Rodríguez

Más detalles

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos Dreccó Facera Pág Sergo Alejadro Herado Westerhede, Igeero e Orgazacó Idustral 5. INTRODUCCIÓN Los prcpales métodos para la seleccó y valoracó de versoes se agrupa e dos modaldades: métodos estátcos y

Más detalles

FUNCIONES EXPONENCIALES

FUNCIONES EXPONENCIALES 1 FUNCIONES EXPONENCIALES Las fucioes epoeciales iee muchas aplicacioes, e especial ellas describe el crecimieo de muchas caidades de la vida real. Defiició.-La fució co domiio odos los reales y defiida

Más detalles

LAZOS DE AMARRE DE FASE

LAZOS DE AMARRE DE FASE LAZOS DE AMARRE DE FASE Maco Atoio Péez Ciseos *, Mak Readma * Divisió de Electóica Computació, CUCEI, Uivesidad de Guadalajaa, México. Cosulto Cotol Sstems Piciples RESUMEN: Este atículo peteece a la

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

Modelación hidrológica empleando isoyetas de relieve, una aproximación geoestadística

Modelación hidrológica empleando isoyetas de relieve, una aproximación geoestadística lmae Varably ad hage Hydrologcal Impacs Proceedgs of he Ffh FRIND World oferece held a Havaa uba November 006 IAHS Publ. 308 006. 6 odelacó hdrológca empleado soyeas de releve ua aproxmacó geoesadísca

Más detalles

Escapada Navideña 2013

Escapada Navideña 2013 Enadj un o, eha emo ega oe pe a equec at maha d eñadopa a NAVI DADenC at maho e e.al T EN ebenef a ádeunde uen ode 10% ob e ode p opue. Ap o e hamopa a e o da eque amb énd f u á deunde uen ode15% ob e

Más detalles

±. C inicial = C inicial. Índice de variación

±. C inicial = C inicial. Índice de variación Aitmética mecatil: coteidos 2.1 Aumetos y dismiucioes pocetuales 2.2 Iteeses bacaios 2.3 Tasa aual equivalete ( T.A.E.) 2.4 Amotizació de péstamos 2.5 Pogesioes geométicas 2.6 Aualidades Pocetajes: C fial

Más detalles

VECTORES. En este apartado vamos a trabajar exclusivamente con los vectores en el espacio a los que vamos a llamar F 3.

VECTORES. En este apartado vamos a trabajar exclusivamente con los vectores en el espacio a los que vamos a llamar F 3. Edcaga.com VECTORES En este apatado amos a tabaa eclsamente con los ectoes en el espaco a los qe amos a llama F. VECTOR FIJO Lo pmeo tendemos qe sabe qe es n ecto. Así qe llamamos ecto fo AB a n ecto qe

Más detalles

TEMA 2 MATEMÁTICAS FINANCIERAS

TEMA 2 MATEMÁTICAS FINANCIERAS Tema Matemáticas fiacieas 1 TEMA MATEMÁTICAS FINANCIERAS EJERCICIO 1 : Po u atículo que estaba ebajado u 1% hemos pagado, euos. Cuáto costaba ates de la ebaja? 1 Solució: El ídice de vaiació es: IV = 1

Más detalles

Reglas para el manejo de los índices de deuda de la BNV. Bolsa Nacional de Valores Version 4.4 13/07/2005

Reglas para el manejo de los índices de deuda de la BNV. Bolsa Nacional de Valores Version 4.4 13/07/2005 Reglas para el maejo de los ídces de deuda de la BV Bolsa acoal de Valores Verso 4.4 3/07/005 ága de 6 COTEIDO ITRODUCCIÓ... 4. erspecva geeral... 4 MAEJO DE LOS ÍDICES... 6. Comé de Ídces de íulos de

Más detalles

Sistemas Productivos

Sistemas Productivos Ssemas Producvos º Elemeos de dseño del proceso producvo A la hora de dseñar ua udad producva, hay que realzar ua sere de decsoes esraégcas que cluye ecesaramee:. Localzacó de la plaa: lugar dode físcamee

Más detalles

Análisis Estadístico de Datos Climáticos

Análisis Estadístico de Datos Climáticos Aálss Estadístco d Datos Clmátcos Rgrsó lal smpl (Wlks, cap. 6.) Vo Storch ad Zwrs (Cap. 8) 05 Rgrsó La rgrsó, gral, s utlza habtualmt para stmar modlos paramétrcos d la rlacó tr varabls ua scala cotua,

Más detalles

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS 6.. Gáficas de ectas usando m b Po ejemplo, paa gafica la ecta Maca el valo de b (odenada al oigen) sobe el eje, es deci el punto (0,). A pati de ese punto, como la pendiente es, se toma una unidad a la

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II)

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II) Dapotva Matemátca Facera TEMA OPERACIONES DE AMORTIZACION O PRESTAMO (II). Prétamo dcado 2. Prétamo co teree atcpado. Prétamo Alemá 3. Valor facero del prétamo. Uufructo y uda propedad Dapotva 2 Matemátca

Más detalles

CAPÍTULO 3 MARCO TEÓRICO. A lo largo de este capítulo se explican los conceptos básicos que se debieron tener y

CAPÍTULO 3 MARCO TEÓRICO. A lo largo de este capítulo se explican los conceptos básicos que se debieron tener y Capíulo 3 Marco eórico CAPÍTULO 3 MARCO TEÓRICO A lo largo de ese capíulo se explica los cocepos básicos que se debiero eer y cosiderar para la elaboració de la clasificació de maerias primas, los modelos

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier Series de Fourier. Traamieo Digial de Señal. Series de Fourier Series de Fourier. Preámbulo El aálisis de Fourier fue iroducido e 8 e la Théorie aalyiique de la chaleur para raar la solució de problemas

Más detalles

Juegos finitos n-personales como juegos de negociación

Juegos finitos n-personales como juegos de negociación Juegos ftos -persoales como uegos de egocacó A.M.Mármol L.Moro V. Rubales Departameto de Ecoomía Aplcada III. Uversdad de Sevlla. Avd. Ramó Caal.. 0-Sevlla. vrubales@us.es Resume Los uegos -persoales ftos

Más detalles

Posiciones relativas entre rectas y planos

Posiciones relativas entre rectas y planos Maemáicas II Geomeía del espacio Posiciones elaivas ene ecas planos Obsevación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Selecividad.. Discui según los valoes del

Más detalles

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE :

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE : Dpto. Ecoomía Facera y otabldad Pla de Estudos 994 urso 008-09. TEMA 3 Prof. María Jesús Herádez García. TEMA 3.- OPERAIONES DE AMORTIZAION : PRESTAMOS A INTERES VARIABLE 3..-LASIFIAIÓN DE LOS PRÉSTAMOS

Más detalles

Emilio Benitez Aguado Y Luis García-Asenjo Villamayor Ingeniero en Geodesia y Cartografía Ingeniero en Geodesia y Cartografía

Emilio Benitez Aguado Y Luis García-Asenjo Villamayor Ingeniero en Geodesia y Cartografía Ingeniero en Geodesia y Cartografía Emlo Betez Agado Ls Gacía-Aseo Vllamayo Igeeo e Geodesa y Catogafía Igeeo e Geodesa y Catogafía Ig. ec. e opogafía Ig. ec. e opogafía Pofeso asocado a tempo pacal, Depatameto de Pofeso tla del Depatameto

Más detalles

RESUMEN. Códigos de campo JEL: F0 C6 SUMMARY

RESUMEN. Códigos de campo JEL: F0 C6 SUMMARY RESUMEN El ema raado e ese rabao se emarca dero del esquema de Cueas Saéle del Tursmo. Maemácamee se desarrolla u ssema de ecuacoes e dferecas. Se pare de la ecuacó macroecoómca fudameal e equlbro para

Más detalles

Leyes de Kepler. Ley de Gravitación Universal

Leyes de Kepler. Ley de Gravitación Universal Leyes de Keple y Ley de Gavitación Univesal J. Eduado Mendoza oes Instituto Nacional de Astofísica Óptica y Electónica, México Pimea Edición onantzintla, Puebla, México 009 ÍNDICE 1.- PRIMERA LEY DE KEPLER

Más detalles

1 Ce.R.P. del Norte Rivera Julio de 2010 Departamento de Matemática Notas para el curso de Fundamentos de la Matemática

1 Ce.R.P. del Norte Rivera Julio de 2010 Departamento de Matemática Notas para el curso de Fundamentos de la Matemática Ce.R.P. del Norte Rvera Julo de Departameto de Matemátca Notas para el curso de Fudametos de la Matemátca CONGRUENCIAS NUMÉRICAS Y ECUACIONES DE CONGRUENCIA. RECORDANDO CONCEPTOS: La cogrueca es ua relacó

Más detalles

Primer Periodo ELEMENTOS DE TRIGONOMETRIA

Primer Periodo ELEMENTOS DE TRIGONOMETRIA Matemática 10 Gado. I.E. Doloes Maía Ucós de Soledad. INSEDOMAU Pime Peíodo Pofeso: Blas Toes Suáez. Vesión.0 Pime Peiodo ELEMENTOS DE TRIGONOMETRIA Indicadoes de logos: Conveti medidas de ángulos en adianes

Más detalles

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ARRERA: Igeería Electromecáca ASIGNATURA: DOENTES: Ig. Norberto laudo MAGGI Ig. Horaco Raúl DUARTE INGENIERÍA ELETROMEÁNIA INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ONEPTOS

Más detalles

Metodología Índice de Precios de Edificaciones Nuevas

Metodología Índice de Precios de Edificaciones Nuevas Meodología Ídce de recos de Edfcacoes Nuevas COLECCIÓN DOCUMENTOS - ACTUALIZACIÓN 29 Núm. 66 DEARTAMENTO ADMINISTRATIVO NACIONAL DE ESTADÍSTICA HÉCTOR MALDONADO GÓMEZ Drecor CARLOS EDUARDO SEÚLVEDA RICO

Más detalles

2.7 Cilindros, conos, esferas y pirámides

2.7 Cilindros, conos, esferas y pirámides UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos

Más detalles

11. COMPENSACIÓN DEL RADIO

11. COMPENSACIÓN DEL RADIO Capítlo 3: Desaollo del poama. COMPENSACIÓN DEL RADIO. Intodccón Los pntos tomados dectamente po palpacón sobe la spece de la peza en cestón no son pntos eales de dcha spece, ya qe el pnto ecodo tene las

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MAEMÁICAS FINANCIERAS Aloso ÍNDICE. INERÉS SIMPLE 4. CONCEPOS PREVIOS... 4.2 DEFINICIÓN DE INERÉS SIMPLE... 4.3 FÓRMULAS DERIVADAS... 6.4 INERPREACIÓN GRÁFICA... 8 2. INERÉS COMPUESO 9 2. DEFINICIÓN DE

Más detalles

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA 7 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA El aálii e el domiio de la frecuecia e u herramieta cláica e la teoría de cotrol, i bie e geeral lo itema que varía co ua periodicidad defiida o uele er lo má

Más detalles

ESTIMACION DEL HIDROGRAMA UNITARIO. ESTUDIO COMPARATIVO DE CUATRO METODOS LINEALES

ESTIMACION DEL HIDROGRAMA UNITARIO. ESTUDIO COMPARATIVO DE CUATRO METODOS LINEALES ESTIMACION DEL HIDROGRAMA NITARIO ESTDIO COMARATIVO DE CATRO METODOS LINEALES José Lus Ayuso, Adolfo eña y M a la Motesos Aea de oyectos de Igeeía ETS Igeeos Agóoos y de Motes vesdad de Códoba RESMEN:

Más detalles

INTEGRALES INDEFINIDAS

INTEGRALES INDEFINIDAS INTEGRALES INDEFINIDAS Pág.: ÍNDICE:.- FUNCIÓN PRIMITIVA..- INTEGRAL INDEFINIDA..- INTEGRALES INMEDIATAS...- INTEGRACIÓN INMEDIATA DE ALGUNAS FUNCIONES. 4.- PROPIEDADES DE LA INTEGRAL INDEFINIDA. 5.- MÉTODOS

Más detalles

Tema 5: Operación de amortización. Préstamos

Tema 5: Operación de amortización. Préstamos Te 5: Opecó de otzcó. Péstos.- Plteeto geel de l opecó de otzcó co teeses pospgbles. Recbe est deocó tod opecó de pestcó úc y cotpestcó últple: Pestcó - { 0,t 0 } otpestcó -{, t, t..., t } El cptl de l

Más detalles

PROBLEMAS DE ELECTROESTÁTICA

PROBLEMAS DE ELECTROESTÁTICA PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín

Más detalles

Tests basados en la distribución Binomial

Tests basados en la distribución Binomial Métd N aamétc I 8 Elea J. Matíez d cuat. 004 et baad e la dtbucó Bmal et bmal: E ua heameta útl e mucha alcace y també e utlza e ca que e quee btee u tet de lbe dtbucó. E mucha tuace e el tet má tete;

Más detalles

Tema 3. DINÁMICA DE UN SÓLIDO RÍGIDO.

Tema 3. DINÁMICA DE UN SÓLIDO RÍGIDO. Tema 3. DINÁMICA DE UN SÓLIDO RÍGIDO. CONTENIDOS: 3.1 Intoduccón 3. Cnemátca de la otacón alededo de un eje fjo. 3.3 Momento de una fueza y de un sstema de fuezas. 3.4 Momento angula del sóldo ígdo. 3.5

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

INSTITUTO DE EDUCACIÓN SUPERIOR TECNOLÓGICO PÚBLICO DE LAS FUERZAS ARMADAS ITINERARIO FORMATIVO

INSTITUTO DE EDUCACIÓN SUPERIOR TECNOLÓGICO PÚBLICO DE LAS FUERZAS ARMADAS ITINERARIO FORMATIVO RÚ d fa d lía paa la fa ó al d duaó y a u d duaó Sup Tlóg úbl d la uza Aada STTUT UAÓ SURR TLÓ ÚBL LAS URZAS ARAAS ala pfal STRU aó d la aa pfal: STRUÓ L ad SURR uaó: 240 HRAS TRAR RAT A: ALTA fdad la

Más detalles

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral ÁLISIS D DTOS CULITTIVOS José Vcés Otero va Meda Moral ero 005 . COSTRUCCIÓ D U TL D COTIGCI Para aalzar la relacó de depedeca o depedeca etre dos varables cualtatvas omales o actores, es ecesaro estudar

Más detalles

Gestión de operaciones

Gestión de operaciones Gestó de operacoes Modelado de restrccoes co varables baras Modelado de programacó o leal Pedro Sáchez pedro.sachez@upcomllas.es Cotedo Restrccoes especales Restrccoes lógcas Productos de varables Modelos

Más detalles

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC 9. IUITOS DE SEGUNDO ODEN Y 9.. INTODUIÓN En el capíulo aneror mos como los crcuos ressos con capacancas o los crcuos ressos con nducancas enen arables que son calculadas medane ecuacones dferencales de

Más detalles

III Game Campori Online

III Game Campori Online 2015 14-16 d ag vã www.gam.ampl.m puguê III Gam Camp Ol Gua dl Ev A Equp Rad Wb Avdad y glam Cdad Publdad Tadu Rla x Rd Sal Epaldad dl Ev Pdu y vd Múa Dg Tx 2 Thag Sf Hla quad! C ga algía l v a hé d aha

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles

Distribución conjunta de variables aleatorias

Distribución conjunta de variables aleatorias FCEyN - Estadístca para Quíca - do. cuat. 006 - Marta García Be Dstrbucó cojuta de varables aleatoras E uchos probleas práctcos, e el so expereto aleatoro, teresa estudar o sólo ua varable aleatora so

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

Tabla de Contenidos. 1 Conceptos básicos sobre regresión y correlación... 1. 2 Caracterización de rodales... 22

Tabla de Contenidos. 1 Conceptos básicos sobre regresión y correlación... 1. 2 Caracterización de rodales... 22 Tala de Coedo Preeacó... Cocepo áco ore regreó correlacó.... Supueo áco de regreó.... Lo upueo de regreó e Dedromería... 6. Emacó de lo parámero del modelo de regreó leal mple... 7.. El méodo de mímo cuadrado

Más detalles

Programa. COLEGIO DE BIBLIOTECARIOS DE CHILE A.G. Diagonal Paraguay 383 of. 122 Santiago Telefono: 56 2 222 56 52 Mail: cbc@bibliotecarios.

Programa. COLEGIO DE BIBLIOTECARIOS DE CHILE A.G. Diagonal Paraguay 383 of. 122 Santiago Telefono: 56 2 222 56 52 Mail: cbc@bibliotecarios. Programa COLEGIO DE BIBLIOTECARIOS DE CHILE A.G. Diagonal Paraguay 383 of. 122 Santiago Telefono: 56 2 222 56 52 Mail: cbc@bibliotecarios.cl Programa XVI Conferencia Internacional de Bibliotecología Buenas

Más detalles

Geometría Analítica. Ejercicio nº 1.-

Geometría Analítica. Ejercicio nº 1.- Geomeía Analíica Ejecicio nº.- a Aveigua el puno iméico de A ) con epeco a B ). b Halla el puno medio del egmeno de eemo A ) B ). Ejecicio nº.- a Halla el puno medio del egmeno cuo eemo on A( ) con epeco

Más detalles

ANÁLISIS GRÁFICO DE UN MOVIMIENTO RECTILÍNEO

ANÁLISIS GRÁFICO DE UN MOVIMIENTO RECTILÍNEO Insttuto de Poesoes Atgas Físca Expemental 1 Guía páctca Nº ANÁLISIS GRÁFICO DE UN MOVIMIENTO RECTILÍNEO DISPOSITIVO EXPERIMENTAL El dspostvo expemental se muesta en la gua 1. Un egstado electónco o tme

Más detalles

Diseño óptimo de cadenas de suministros considerando criterios ambientales

Diseño óptimo de cadenas de suministros considerando criterios ambientales 3º Simposio Ageio de Ifomaica Idusial SII 2014 Diseño ópimo de cadeas de suisos cosideado cieios ambieales Sada Campaella (1) Joge Moaga (1) Gabiela Cosao (1) (1) Isiuo de Desaollo y Diseño INGAR Coice-UTN.

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

Tema 1, 2 y 3. Magnitudes. Cinemática.

Tema 1, 2 y 3. Magnitudes. Cinemática. IES Pedo de Tolosa. SM de Valdeiglesias. 1 Tema 1, y 3. Magniudes. Cinemáica. MAGNITUDES FÍSICAS. LIBRO Pág. 1 Y 13. Recueda: magniud es cualquie popiedad de un cuepo o de un fenómeno físico que se pueda

Más detalles