Mapa conceptual. Programa Acompañamiento CUERPOS GEOMÉTRICOS. Matemática

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Mapa conceptual. Programa Acompañamiento CUERPOS GEOMÉTRICOS. Matemática"

Transcripción

1 Programa Acompañamiento Matemática Cuadernillo de ejercitación Ejercitación Área y volumen de sólidos Mapa conceptual Tienen CUERPOS GEOMÉTRICOS Figuras geométricas que ocupan un lugar en el espacio. Se componen de tres dimensiones. Qué son? Clasificación Volumen Mide el espacio ocupado por un cuerpo. Poliedros CUBO Cuerpos formados por caras planas. PARALELEPÍPEDO Cuerpos formados por al menos una superficie curva. Cuerpos redondos CONO CILINDRO ESFERA Área Mide la superficie de un cuerpo. A = 6 a2 A=2 V = a3 V= A = 2(I h + a h + I a) V=I a h CUACAC020MT22-A16V1 r2 + 2 r h r2 h A= V= r2 + A=4 r2 4 V= 3 r3 r g r2 h 3 1

2 MATEMáTICA Ejercicios PSU 1. El área total de un cubo de arista 5 cm es A) 10 cm 2 D) 125 cm 2 B) 25 cm 2 E) 150 cm 2 C) 60 cm 2 2. El volumen de un cubo, en unidades cúbicas, de arista igual a un tercio de 9 es A) 9 D) 243 B) 27 E) 729 C) El paralelepípedo de la fi gura tiene un largo igual a la mitad de la medida de la altura y un ancho igual a la mitad de la medida del largo. Si su altura es igual a 8, entonces el área del paralelepípedo, en unidades cuadradas, es A) 56 B) 64 C) 112 D) 128 E) Una piscina con forma de paralelepípedo tiene 4 m de ancho, 6 m de largo y 2 m de profundidad. Cuántos metros cúbicos puede contener la mitad de la piscina? A) 6 D) 48 B) 24 E) 88 C) 44 2

3 CUADERNILLO DE EJERCITACIóN 5. Cuál de las siguientes afi rmaciones es FALSA? A) El volumen de una esfera es 4 (radio) 2 B) El área total de un cubo es 6 (arista) 2 C) El volumen de un cono es (radio)2 altura 3 D) El área de un cilindro es (2 (radio) radio altura) E) El volumen de un paralelepípedo es (largo ancho alto) 6. Si un cubo posee un volumen de 64 cm 3, entonces su área total es A) 16 cm 2 D) 96 cm 2 B) 48 cm 2 E) 384 cm 2 C) 64 cm 2 7. Una caja cerrada con forma de paralelepípedo tiene un volumen de 150 cm 3 y su base es un rectángulo de 3 cm de ancho por 5 cm de largo. Cuánto mide el área de esta caja? A) 10 cm 2 D) 110 cm 2 B) 15 cm 2 E) 190 cm 2 C) 95 cm 2 8. En un cubo de arista x cm, cada una de sus aristas aumenta en 1 cm. Entonces, el área total del cubo, en cm 2, aumenta en A) 1 D) (8x + 4) B) 6 E) (12x + 6) C) (2x + 1) 9. Cuál(es) de las siguientes afi rmaciones es (son) siempre verdadera(s)? I) Al rotar indefi nidamente un rectángulo en torno a uno de sus lados, se genera un cilindro. II) Al rotar indefi nidamente un triángulo rectángulo en torno a un cateto, se genera una esfera. III) Al rotar indefi nidamente una semicircunferencia en torno al diámetro, se genera un cono. A) Solo I D) Solo I y II B) Solo II E) Solo II y III C) Solo III 3

4 MATEMáTICA 10. En la fi gura, O es el centro de la circunferencia. El área del cilindro, en unidades cuadradas, es A) 18 B) 30 C) 39 D) 42 E) 48 O El volumen de un cilindro es 180 cm 3. Si el área de la base del cilindro es 36 cm 2, cuánto mide el área total del cilindro, en cm 2? A) 60 D) 132 B) 96 E) 216 C) Un vaso cilíndrico tiene una altura de 12 cm y un diámetro de 10 cm. Entonces, con cuántos centímetros cúbicos de agua el vaso se llena hasta la mitad? A) 120 D) 600 B) 150 E) C) En la fi gura, la parte interior y exterior del anillo metálico tienen forma de cilindro. Si el diámetro exterior mide 10 mm y el interior mide 8 mm, entonces cuántos milímetros cúbicos de metal tiene el anillo? A) 144 B) 100 C) 64 D) 36 E) 16 4 mm 14. Si el radio de un cilindro disminuye en un 20% y su altura aumenta en un 50%, entonces su volumen A) disminuye en un 25%. D) aumenta en un 20%. B) disminuye en un 4%. E) aumenta en un 30%. C) aumenta en un 14%. 4

5 CUADERNILLO DE EJERCITACIóN 15. En la fi gura, AC = 5 y BC = 12. Si el triángulo gira indefi nidamente en torno al eje BC, entonces el área total del cuerpo generado, en unidades cuadradas, es B A) 25 B) 65 C) 90 D) 100 E) 300 C A 16. Si un cono tiene una altura igual a 8 y el radio de su base tiene un valor de 3, entonces su volumen, en unidades cúbicas, es A) 24 D) 192 B) 64 E) ninguno de los volúmenes anteriores. C) Una pelota esférica tiene un diámetro de 18 cm. Entonces, cuánto mide el área de la pelota? A) 72 cm 2 D) 972 cm 2 B) 144 cm 2 E) cm 2 C) 324 cm Si el radio de una esfera mide 6 cm, entonces el volumen de un cuarto de la esfera mide A) 72 cm 3 D) 864 cm 3 B) 216 cm 3 E) ninguno de los volúmenes anteriores. C) 288 cm En la fi gura, una naranja sin cáscara tiene forma de una esfera de radio 4 cm y está compuesta de 8 gajos de igual volumen. Cuál es el volumen de uno de esos gajos? A) 4 4 B) 4 3 cm 3 C) 24 cm 3 D) cm3 E) 8 cm 3 5

6 MATEMáTICA 20. En la fi gura se muestra una semiesfera y un cono unidos por la cara circular plana, cuyo diámetro es 6. El área total de la fi gura, en unidades cuadradas, es A) 33 B) 69 C) 90 D) 115 E) faltan datos para determinarla En la fi gura, un lápiz de cera de radio r está formado por una semiesfera y un cilindro, donde r = 1 cm y h = 10 cm. Cuánto mide el volumen del lápiz? A) B) C) D) h r E) 23 cm En la fi gura se muestra una semiesfera que cabe exactamente en una caja cilíndrica. El volumen de la caja NO ocupado por la semiesfera, en unidades cúbicas, es A) B) C) D) E) m 6

7 CUADERNILLO DE EJERCITACIóN 23. Cuál(es) de las siguientes afi rmaciones es (son) siempre verdadera(s)? I) Si la arista de un cubo se duplica, entonces el área total del cubo aumenta 4 veces. II) Un cilindro de radio y altura iguales a la unidad, tiene un volumen igual a. III) Un paralelepípedo tiene 6 vértices. A) Solo I D) Solo I y II B) Solo II E) Solo II y III C) Solo III 24. En la fi gura, se muestra un cono y un cilindro de radio r. Se puede determinar que el volumen del cilindro es menor que el volumen del cono si: (1) h 1 = 5 (2) h 2 = 10 h 1 h 1 h 2 r A) (1) por sí sola. B) (2) por sí sola. C) Ambas juntas, (1) y (2). D) Cada una por sí sola, (1) ó (2). E) Se requiere información adicional. r 25. En la fi gura, se puede determinar el valor numérico de la razón entre el área del paralelepípedo y el área total del cubo si: (1) a = 7 cm (2) b = 10 cm A) (1) por sí sola. B) (2) por sí sola. C) Ambas juntas, (1) y (2). D) Cada una por sí sola, (1) ó (2). E) Se requiere información adicional. a a a c a b 7

8 MATEMáTICA ü Tabla de corrección Ítem Alternativa Habilidad 1 Aplicación 2 Aplicación 3 Aplicación 4 Aplicación 5 Comprensión 6 Aplicación 7 Aplicación 8 ASE 9 ASE 10 Aplicación 11 Aplicación 12 Aplicación 13 Aplicación 14 ASE 15 Aplicación 16 Aplicación 17 Aplicación 18 Aplicación 19 Aplicación 20 Aplicación 21 Aplicación 22 Aplicación 23 ASE 24 ASE 25 ASE Registro de propiedad intelectual de Cpech. Prohibida su reproducción total o parcial. 8

SOLUCIONARIO Ejercitación Área y volumen de sólidos

SOLUCIONARIO Ejercitación Área y volumen de sólidos SOLUCIONARIO Ejercitación Área y volumen de sólidos SGUICAC00MT-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA EJERCITACIÓN DE ÁREA Y VOLUMEN DE SÓLIDOS Ítem Alternativa 1 E B C 4 B 5 A Comprensión 6 D 7 E

Más detalles

El radio de un cilindro mide 4 cm y su altura mide 6 cm. Cuánto mide su área?

El radio de un cilindro mide 4 cm y su altura mide 6 cm. Cuánto mide su área? PROGRM EGRESDOS Guía: uerpos redondos 1. 2. GUIEG07EM2-16V1. Matemática Ejercicios PSU El radio de un cilindro mide 4 cm y su altura mide 6 cm. uánto mide su área? ) 40 cm2 D) 64 cm2 ) 48 cm2 E) 80 cm2

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1 GUÍ DE EJERCITCIÓN VNZD Cuerpos geométricos Programa Entrenamiento Desafío GUICEN02MT22-16V1 Matemática Una semiesfera tiene un área total de 4π cm 2. Si se corta por la mitad, de manera de formar dos

Más detalles

Programa Entrenamiento MT-22

Programa Entrenamiento MT-22 Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8

Más detalles

Es el estudio de la geometría a través de técnicas análisis matemático y el álgebra. y = mx + n. La recta intersecta al eje Y en el punto (0, n).

Es el estudio de la geometría a través de técnicas análisis matemático y el álgebra. y = mx + n. La recta intersecta al eje Y en el punto (0, n). Programa Acompañamiento Cuadernillo de ejercitación Ejercitación Ecuación de la recta GEOMETRÍA ANALÍTICA Qué es? Es el estudio de la geometría a través de técnicas del análisis matemático el álgebra.

Más detalles

ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS REGULARES ESFERA

ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS REGULARES ESFERA ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS POLIEDROS REGULARES Tetraedro ( 4 triángulos equiláteros) Hexaedro o cubo( 6 cuadrados) Octaedro( 8 triángulos equiláteros) Dodecaedro ( 12

Más detalles

SOLUCIONARIO Cuerpos redondos

SOLUCIONARIO Cuerpos redondos SOLUCIONARIO Cuerpos redondos SGUICEG07EM2-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Cuerpos redondos Ítem Alternativa 1 E 2 D A 4 C 5 C 6 D 7 B 8 D 9 B 10 D 11 B 12 C 1 B 14 B 15 A 16 C 17 A 18 E 19 D

Más detalles

CUERPOS DE REVOLUCIÓN

CUERPOS DE REVOLUCIÓN PROPÓSITOS: Identificar los cuerpos redondos o de revolución. Resolver problemas, donde se aplique el volumen y área de cuerpos de revolución. CUERPOS DE REVOLUCIÓN Existen cuerpos geométricos que no tienen

Más detalles

14 CUERPOS GEOMÉTRICOS. VOLÚMENES

14 CUERPOS GEOMÉTRICOS. VOLÚMENES EJERCICIOS PARA ENTRENARSE Poliedros 14.33 Calcula la suma de los ángulos de las caras que concurren en un vértice de los poliedros regulares. Qué observas? TETRAEDO: En un vértice concurren tres triángulos

Más detalles

CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio.

CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio. CUERPOS GEOMÉTRICOS 07 Comprende que son los cuerpos geométricos e identifica las partes que los componen. En Presentación de Contenidos recuerdan qué son los polígonos para comprender cómo se forman los

Más detalles

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides.

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. a) b) c) Prisma es un poliedro que tiene por caras dos bases

Más detalles

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,

Más detalles

Examen estandarizado A

Examen estandarizado A Examen estandarizado A Elección múltiple 1. Qué figura es un poliedro? A B 7. Halla el área de la superficie de la pirámide regular. A 300 pies 2 15 pulg B 340 pies 2 C D C 400 pies 2 D 700 pies 2 10 pulg

Más detalles

11Soluciones a los ejercicios y problemas

11Soluciones a los ejercicios y problemas Soluciones a los ejercicios y problemas PÁGINA 9 Pág. P R A C T I C A D e s a r r o l l o s y á r e a s Dibuja el desarrollo plano y calcula el área total de los siguientes cuerpos geométricos: a) b) cm

Más detalles

Geometría en el espacio

Geometría en el espacio Geometría en el espacio 3º E.S.O. PARTE TEÓRICA 1.- Define los siguientes conceptos: Poliedro: Vértice de un poliedro: Cara de un poliedro: Arista de un poliedro: Poliedro regular: 2.- Di cuáles son los

Más detalles

Un poliedro es un cuerpo geométrico que tiene todas sus caras planas y formadas por polígonos.

Un poliedro es un cuerpo geométrico que tiene todas sus caras planas y formadas por polígonos. CUERPOS GEOMÉTRICOS Los cuerpos geométricos son figuras geométricas tridimensionales (tienen alto, ancho y largo) que ocupan un lugar en el espacio. 1. POLIEDROS. 1.1. DEFINICIÓN. Un poliedro es un cuerpo

Más detalles

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras.

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras. CLASIFICASION DE CUERPOS GEOMETRICOS 1 2 Cuerpos Geométrico s Ángulo diedro: es el ángulo formado por dos caras del poliedro. El ángulo formado por tres o más caras que concurren en un vértice, se denomina

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Logaritmos y propiedades GUICEN025MT21-A16V1. Si el a% de b 5

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Logaritmos y propiedades GUICEN025MT21-A16V1. Si el a% de b 5 GUÍA DE EJERCITACIÓN AVANZADA Logaritmos y propiedades Programa Entrenamiento Si el a% de b 5 Desafío es 0, con a y b mayores que 1, entonces es siempre correcto afirmar que Matemática I) log b = 4 II)

Más detalles

POLIEDROS, PRISMAS Y PIRÁMIDES

POLIEDROS, PRISMAS Y PIRÁMIDES POLIEDROS, PRISMAS Y PIRÁMIDES 1. Completa la siguiente tabla. 2. Indica si son verdaderas o falsas (V o F) las siguientes afirmaciones. a) La suma de las caras y los vértices del cubo es 12. b) El menor

Más detalles

Ejercicios PSU. ( p π ) 2

Ejercicios PSU. ( p π ) 2 Programa Acompañamiento Cuadernillo de ejercitación Ejercitación Números irracionales Mapa conceptual Se define como IRRACIONALES Cómo se ordenan? Matemática Números que NO pueden ser expresados como una

Más detalles

1. Calcula el área y volumen de los siguientes cuerpos geométricos:

1. Calcula el área y volumen de los siguientes cuerpos geométricos: 1. Calcula el área y volumen de los siguientes cuerpos geométricos: 2.- Dibuja los siguientes cuerpos geométricos y calcula su área. a) Prisma de altura 24 cm y cuya base es un rombo de diagonales 18 y

Más detalles

Cuerpos geométricos. Volúmenes

Cuerpos geométricos. Volúmenes 4 uerpos geométricos. Volúmenes. Poliedros Un poliedro es un cuerpo geométrico limitado por cuatro o más polígonos planos. Los elementos de un poliedro son: aras: son los polígonos que lo delimitan. ristas:

Más detalles

Ámbito científico tecnológico

Ámbito científico tecnológico Dirección Xeral de Educación, Formación Profesional e Innovación Educativa Educación secundaria para personas adultas Ámbito científico tecnológico Educación a distancia semipresencial Módulo Unidad didáctica

Más detalles

Tercero Medio MATEMÁTICA

Tercero Medio MATEMÁTICA Guía de ejercitación Funciones: eponencial, logarítmica raíz cuadrada Programa Tercero Medio MATEMÁTICA I. Mapa conceptual FUNCIONES Son de la forma Son de la forma Son de la forma f() = a f() = log a

Más detalles

Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Matemáticas 3º Eso.

Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Matemáticas 3º Eso. Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Sistemas Ejercicios de a reas y volu menes I 1Calcula el volumen, en centímetros cúbicos, de una habitación que tiene 5 m de largo, 40 dm de ancho

Más detalles

EGRESADOS. Matemática PROGRAMA. Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano. Ejercicios PSU

EGRESADOS. Matemática PROGRAMA. Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano. Ejercicios PSU PROGRAMA EGRESADOS Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano Ejercicios PSU 1. Si P(3, 4) y Q(8, 2), entonces el punto medio de PQ es A) (11, 2) D) (5, 2) B) ( 5 2, 3 ) E)

Más detalles

5to Parcial de Geometría Euclidiana. 2) Sea p un polígono tal que se puede descomponer en n polígonos simples

5to Parcial de Geometría Euclidiana. 2) Sea p un polígono tal que se puede descomponer en n polígonos simples 5to Parcial de Geometría Euclidiana AREAS y VOLUMENES Definición 55 (Área) Se define el área como una función A definida del conjunto de todos los polígonos P en R + (A : P R + ), con las siguientes propiedades:

Más detalles

MATEMÁTICAS 2º DE ESO LOE

MATEMÁTICAS 2º DE ESO LOE MATEMÁTICAS º DE ESO LOE TEMA XII: POLIEDROS Y CUERPOS REDONDOS Poliedros: o Elementos. o Tipos. Poliedros regulares. Cubos. Prismas: elementos, clases. Pirámides: elementos, clases. Áreas laterales y

Más detalles

TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales

TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales TEMA 7 Las formas y las medidas que nos rodean 1. Introducción 1.1. Qué es la geometría? Es una rama de la matemática que se ocupa del estudio de las propiedades de las figuras geométricas en el plano

Más detalles

Geometría Tridimensional. Capítulo de Preguntas. 1. Cuáles son las diferencias entre prismas y pirámides, y entre cilindros y conos?

Geometría Tridimensional. Capítulo de Preguntas. 1. Cuáles son las diferencias entre prismas y pirámides, y entre cilindros y conos? Geometría Tridimensional. Capítulo de Preguntas 1. Cuáles son las diferencias entre prismas y pirámides, y entre cilindros y conos? 2. Qué es volumen y cómo lo encontramos? 3. Cómo se relacionan los volúmenes

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Función afín, función lineal y constante GUICEN037MT21-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Función afín, función lineal y constante GUICEN037MT21-A16V1 GUÍA DE EJERCITACIÓN AVANZADA Función afín, función lineal constante Matemática Programa Entrenamiento Desafío Un vendedor de libros gana mensualmente un sueldo base de $ 200.000. Además, por cada libro

Más detalles

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS SOLUCIONES MINIMOS º ESO TEMA 8 CUERPOS GEOMÉTRICOS Ejercicio nº 1.- Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº.- Cuáles de las siguientes figuras son poliedros? Por

Más detalles

CENTRO EDUCATIVO PAULO FREIRE TALLER

CENTRO EDUCATIVO PAULO FREIRE TALLER CENTRO EDUCATIVO PAULO FREIRE TALLER 1: Una plaza circular está limitada por una circunferencia de longitud 188,4m. Determinar el diámetro y el área de la plaza. 2: Si el área de un círculo es 144 cm 2,

Más detalles

ELEMENTOS DE UN POLIEDRO. PRINCIPALES POLIEDROS REGULARES

ELEMENTOS DE UN POLIEDRO. PRINCIPALES POLIEDROS REGULARES OBJETIVO 1 ELEMENTOS DE UN POLIEDRO. PRINCIPALES POLIEDROS REGULARES NOMBRE: CURSO: ECHA: CONCEPTO DE POLIEDRO Vértice Arista Cara Un poliedro es un cuerpo geométrico cuyas caras son polígonos. Los elementos

Más detalles

Examen A del capítulo

Examen A del capítulo Eamen A del capítulo Usar después del capítulo Indica si el sólido es un poliedro. Si es así, halla el número de caras, vértices y aristas.. 2. 3.. Determina si el poliedro es regular y/o conveo. 2. 4.

Más detalles

FIGURAS DEL ESPACIO. ÁREAS Y VOLÚMENES

FIGURAS DEL ESPACIO. ÁREAS Y VOLÚMENES POLIEDROS : Cuerpo sólido limitado por polígonos, llamados caras; en la que algunas de las caras confluyen en líneas rectas, llamadas aristas; y algunas de las aristas confluyen en puntos,llamados vértices.

Más detalles

Geometría. Cuerpos Geométricos. Trabajo

Geometría. Cuerpos Geométricos. Trabajo Geometría Cuerpos Geométricos Trabajo CUERPOS GEOMÉTRICOS 1. Clasifique los cuerpos geométricos. Dos grupos de sólidos geométricos del espacio presentan especial interés: 1.1. Poliedros: Aquellos cuerpos

Más detalles

FICHA TEMA 9: CUERPOS GEOMETRICOS NOMBRE Y APELLIDOS: Ejercicio nº 1.-Escribe el nombre de cada uno de los elementos de este poliedro:

FICHA TEMA 9: CUERPOS GEOMETRICOS NOMBRE Y APELLIDOS: Ejercicio nº 1.-Escribe el nombre de cada uno de los elementos de este poliedro: FICHA TEMA 9: CUERPOS GEOMETRICOS CURSO: 2 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº 2.- Cuáles de las siguientes figuras

Más detalles

INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS

INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS Sep. 18 de 2015 Señores Estudiantes grados Novenos El siguiente trabajo ya lo estamos realizando en clase, pero los datos que a continuación aparecen son refuerzo para terminar las figuras geométricas

Más detalles

Untitled.notebook February 01, Geometría 3 D

Untitled.notebook February 01, Geometría 3 D Geometría 3 D Tabla de Contenidos Sólidos 3 Dimensional Redes Volumen Prismas y Cilindros Haga clic en el tema para ir a esa sección Pirámides, Conos y Esferas Área de la Superficie Prismas Pirámides Cilindros

Más detalles

1. El cubo de la figura tiene vértices A, B, C, D, E, F, G y H. Si AE = 5 cm, cuál de las siguientes afirmaciones es FALSA? H

1. El cubo de la figura tiene vértices A, B, C, D, E, F, G y H. Si AE = 5 cm, cuál de las siguientes afirmaciones es FALSA? H onvenio Nº Guía práctica Planos en el espacio Ejercicios PSU 1. El cubo de la figura tiene vértices,,, D, E, F, G y H. Si E = 5 cm, cuál de las siguientes afirmaciones es FLS? H G ) G = 5 2 cm F E ) EH

Más detalles

Las edades de los 24 participantes de un taller de arte se representan en la tabla adjunta. Según los datos, el valor numérico de z es

Las edades de los 24 participantes de un taller de arte se representan en la tabla adjunta. Según los datos, el valor numérico de z es PROGRAMA EGRESADOS Ejercicios PSU 1. Las edades de los 24 participantes de un taller de arte se representan en la tabla adjunta. Según los datos, el valor numérico de z es A) B) C) D) E) 2. 8 9 15 18 faltan

Más detalles

Mapa conceptual. Programa Acompañamiento FUNCIONES. Matemática CUACAC043MT22-A16V1

Mapa conceptual. Programa Acompañamiento FUNCIONES. Matemática CUACAC043MT22-A16V1 Programa Acompañamiento Cuadernillo de ejercitación Ejercitación funciones de comportamiento lineal Matemática Mapa conceptual FUNCIONES Su notación es de la forma: Funciones de comportamiento lineal Si

Más detalles

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea

Más detalles

ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS BÁSICOS. POLIEDROS REGULARES Y NO REGULARES

ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS BÁSICOS. POLIEDROS REGULARES Y NO REGULARES ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS BÁSICOS. POLIEDROS REGULARES Y NO REGULARES 1º. Comprueba si se cumple o no la fórmula de Euler en este poliedro. 2º. Rellena la siguiente tabla: Poliedro Caras

Más detalles

Cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS PRISMAS PIRÁMIDES CILINDROS CONOS ESFERAS

Cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS PRISMAS PIRÁMIDES CILINDROS CONOS ESFERAS UNIDAD DIDÁCTICA CUERPOS GEOMÉTRICOS 1. CUERPOS GEOMÉTRICOS En nuestro entorno observamos continuamente objetos de diversas formas: pelotas, botes, cajas, pirámides, etc. Todos estos objetos son cuerpos

Más detalles

Slide 1 / 139. Geometría 3-D

Slide 1 / 139. Geometría 3-D Slide 1 / 139 Geometría 3-D Tabla de Contenidos Sólidos 3-Dimensional Redes Volumen Prismas y Cilindros Pirámides, Conos y Esferas Área de la Superficie Prismas Pirámides Cilindros Esferas Más Práctica/Revisión

Más detalles

Trabajo de Investigación Cuerpos Geométricos

Trabajo de Investigación Cuerpos Geométricos Saint George s College Área de Matemáticas y sus Aplicaciones Tercera Unidad Trabajo de Investigación Cuerpos Geométricos Integrantes: -Stefan Jercic -Ignacio Larrain -Cristian Majluf Curso: 10 E Profesora:

Más detalles

IDEAS PREVIAS. 1. Planos paralelos. 2.Planos perpendiculares

IDEAS PREVIAS. 1. Planos paralelos. 2.Planos perpendiculares IDEAS PREVIAS 1. Planos paralelos..planos perpendiculares .Planos oblicuos. CUERPO GEOMÉTRICO Un Sólido o Cuerpo Geométrico es una figura geométrica de tres dimensiones (largo, ancho y alto), que ocupa

Más detalles

Figura plana Área Ejemplo Cuadrado. Área =

Figura plana Área Ejemplo Cuadrado. Área = ersión: Septiembre 01 Áreas y volúmenes Por Sandra Elvia Pérez Márquez Áreas de figuras planas Las aplicaciones de las figuras planas requieren, por lo general, conocer (o calcular) dos características

Más detalles

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo GUICEN041MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo GUICEN041MT22-A16V1 GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo Desafío Una población estadística está compuesta de cuatro números enteros consecutivos, siendo n el menor de ellos. La desviación

Más detalles

EGRESADOS. Matemática PROGRAMA. Guía: Función exponencial. Ejercicios PSU

EGRESADOS. Matemática PROGRAMA. Guía: Función exponencial. Ejercicios PSU PROGRAMA EGRESADOS Ejercicios PSU. I) f(0) = II) f( ) = III) f Solo I Solo II Solo III () = 8 E) Solo I y III I, II y III Sea la función real f() = 7. Cuál(es) de las siguientes afirmaciones es (son) FALSA(S)?

Más detalles

Geometría del espacio

Geometría del espacio Áreas y volumenes de cuerpos geométricos Un poliedro es un cuerpo geométrico que está limitado por cuatro o más polígonos. Los elementos de un poliedro son: Caras del poliedro: son los polígonos que lo

Más detalles

10 VOLUMEN DE CUERPOS GEOMÉTRICOS

10 VOLUMEN DE CUERPOS GEOMÉTRICOS 10 OLUMEN DE CUERPOS GEOMÉTRICOS 10.1.- OLUMEN DE UN CUERPO. OLUMEN, CAPACIDAD Y MASA. DENSIDAD DE UN CUERPO. 10.2.- OLUMEN DE UN ORTOEDRO Y DEL CUBO. 10..- OLUMEN DE PRISMAS Y CILINDROS. 10.4.- OLUMEN

Más detalles

1) Si una pizza de 32cm de diámetro se corta en 8 porciones exactamente iguales, 2) Determine el área de cada una de las partes sombreadas:

1) Si una pizza de 32cm de diámetro se corta en 8 porciones exactamente iguales, 2) Determine el área de cada una de las partes sombreadas: Plantear y resolver los siguientes problemas: 1) Si una pizza de 32cm de diámetro se corta en 8 porciones exactamente iguales, determinar el área de cada porción. 2) Determine el área de cada una de las

Más detalles

G - 9. Guía Cursos Anuales. Matemática. Circunferencia y Círculo I

G - 9. Guía Cursos Anuales. Matemática. Circunferencia y Círculo I G - 9 Guía Cursos nuales Matemática 2008 Circunferencia y Círculo I Guía Cursos nuales Introducción La presente guía tiene por objetivo proporcionarte distintas instancias didácticas relacionadas con el

Más detalles

VOLUMENES DE CUERPOS GEOMETRICOS

VOLUMENES DE CUERPOS GEOMETRICOS PreUnAB VOLUMENES DE CUERPOS GEOMETRICOS Clase # 20 Octubre 2014 CONCEPTOS PREVIOS Volumen: El volumen es una magnitud definida como la extensión en tres dimensiones de un cuerpo en el espacio. Es, por

Más detalles

Geometría en 3D: Preguntas del Capítulo

Geometría en 3D: Preguntas del Capítulo Geometría en 3D: Preguntas del Capítulo 1. Cuáles son las similitudes y las diferencias entre prismas y pirámides? 2. Cómo se nombran los poliedros? 3. Cómo encuentras la sección transversal de una figura

Más detalles

E SAYO º 1 Geometría

E SAYO º 1 Geometría ᒬ 01) En el triángulo ABC de la figura AD = BD;

Más detalles

Los puntajes de Mario en tres pruebas de la universidad fueron 60, 80 y 50 puntos. El rango de los puntajes de Mario es

Los puntajes de Mario en tres pruebas de la universidad fueron 60, 80 y 50 puntos. El rango de los puntajes de Mario es PROGRAMA EGRESADOS Ejercicios PSU 1. 2. Los puntajes de Mario en tres pruebas de la universidad fueron 60, 80 y 50 puntos. El rango de los puntajes de Mario es A) 5 puntos. B) 10 puntos. C) 15 puntos.

Más detalles

Examen de Mitad de Periodo, MM-111

Examen de Mitad de Periodo, MM-111 Examen de Mitad de Periodo, MM-111 arlos ruz October 27, 2015 Nombre: Registro Estudiantil: Instrucciones: Resuelva cada ejercicios de forma clara honesta y ordenada mostrando todo su procedimiento de

Más detalles

Mapa conceptual. Programa Acompañamiento. Matemática (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = CUACAC027MT22-A16V1. Racionales.

Mapa conceptual. Programa Acompañamiento. Matemática (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = CUACAC027MT22-A16V1. Racionales. Programa Acompañamiento Cuadernillo de ejercitación Ejercitación Números racionales Mapa conceptual Cómo representar un número con muchos decimales? Racionales Matemática Por ejemplo, aproximando a la

Más detalles

TEMA 9: ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS UNIDADES DE ÁREA Y VOLUMEN Unidades de área o superficie Kilómetro cuadrado.

TEMA 9: ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS UNIDADES DE ÁREA Y VOLUMEN Unidades de área o superficie Kilómetro cuadrado. TEMA 9: ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS UNIDADES DE ÁREA Y VOLUMEN Unidades de área o superficie Kilómetro cuadrado Km 2 1.000.000 m 2 Hectómetro cuadrado hm 2 10.000 m 2 Decámetro cuadrado dam

Más detalles

MYP (MIDDLE YEARS PROGRAMME)

MYP (MIDDLE YEARS PROGRAMME) MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa

Más detalles

IES FONTEXERÍA MUROS. 14-II-2014 Nombre y apellidos:.

IES FONTEXERÍA MUROS. 14-II-2014 Nombre y apellidos:. IES FONTEXERÍA MUROS MATEMÁTICAS º E.S.O-A (Desdoble 1) 1º Examen (ª Evaluación) 14-II-014 Nombre y apellidos:. 1. Completa las siguientes definiciones: a) Un poliedro es un cuerpo geométrico tridimensional

Más detalles

ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO

ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO 1. Área y volumen del ortoedro y del cubo. 1.1. Área y volumen del ortoedro. 1.2. Cálculo de la diagonal del ortoedro. 1.3. Área y volumen del cubo. 2. Área y

Más detalles

DuocUC MAT 1001 GUÍA DE EJERCICIOS Nº 9 AP LICACIONES DE ECUACIONES DE P RIMER GRADO EVALUACIÓN DE EXP RESIONES ALGEBRAICAS

DuocUC MAT 1001 GUÍA DE EJERCICIOS Nº 9 AP LICACIONES DE ECUACIONES DE P RIMER GRADO EVALUACIÓN DE EXP RESIONES ALGEBRAICAS GUÍA DE EJERCICIOS Nº 9 AP LICACIONES DE ECUACIONES DE P RIMER GRADO EALUACIÓN DE EXP RESIONES ALGEBRAICAS 1. Si al doble de un número se le aumenta 7, resulta ser 5. Determine el número.. El triple de

Más detalles

CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS)

CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede

Más detalles

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas.

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS CUERPOS GEOMÉTRICOS.- Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. Clasificamos, en el siguiente esquema, los cuerpos geométricos: POLIEDROS.-

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Función exponencial y función logarítmica GUICEN033MT21-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Función exponencial y función logarítmica GUICEN033MT21-A16V1 GUÍA DE EJERCITACIÓN AVANZADA Función eponencial función logarítmica Matemática Programa Entrenamiento Desafío Cierto medicamento, una vez que es inectado, decrece de manera eponencial a lo largo del tiempo

Más detalles

EXAMEN A: Ejercicio nº 1.- Página 1 de 25 Indica el valor de los ángulos señalados en cada figura: Ejercicio nº 2.- La siguiente figura es una esfera de centro C y radio 3 unidades. Cómo definirías dicha

Más detalles

MATEMÁTICAS (GEOMETRÍA)

MATEMÁTICAS (GEOMETRÍA) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA) GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 8 / 07 / 15 Guía Didáctica 3-2 Desempeños: * Reconoce y clasifica

Más detalles

Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos

Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos Cierto, mires por donde mires no podrás dejar de ver cuerpos geométricos de todo tipo. Por eso es importante

Más detalles

EJERCICIOS de ÁREAS y VOLÚMENES 3º ESO

EJERCICIOS de ÁREAS y VOLÚMENES 3º ESO EJERCICIOS de ÁREAS y VOLÚMENES 3º ESO FICHA 1: Teorema de Pitágoras 1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, cuando proceda): a) Hallar

Más detalles

RECTAS, PLANOS EN EL ESPACIO.

RECTAS, PLANOS EN EL ESPACIO. COMUNICACIÓN MATEMÁTICA: Grafica rectas, planos y sólidos geométricos en el espacio RESOLUCIÓN DE PROBLEMAS Resuelve problemas geométricos que involucran rectas y planos en el espacio. Resuelve problemas

Más detalles

Matemáticas II Magisterio (Primaria) Curso Problemas de repaso

Matemáticas II Magisterio (Primaria) Curso Problemas de repaso Matemáticas II Magisterio (rimaria) urso 2013-2014 1. alcula la medida del ángulo a de la figura. roblemas de repaso 116 105 a Sol: a = 49. 2. Sabiendo que los puntos, y R están sobre una circunferencia

Más detalles

Autor: 2º ciclo de E.P.

Autor: 2º ciclo de E.P. 1 Autor: 2º ciclo de E.P. Una línea recta es una línea que no tiene principio ni fin. Una semirrecta es una línea que tiene principio pero no tiene final. o Un punto divide a una recta en dos semirrectas.

Más detalles

2 Calcula la superficie total de cada cuerpo:

2 Calcula la superficie total de cada cuerpo: 8 Pág. Calcula la superficie total de cada cuerpo: A cm B C D cm A Área lateral πrh π,5 5π Área bases (πr ) π,5,5π Área total 5π +,5π 7,5π 86, B Área lateral πrg π 5 5π Área base πr π 9π Área total 5π

Más detalles

CUERPOS EN EL ESPACIO

CUERPOS EN EL ESPACIO CUERPOS EN EL ESPACIO 1. Poliedros. 2. Fórmula de Euler. 3. Prismas. 4. Paralelepípedos. Ortoedros. 5. Pirámides. 6. Cuerpos de revolución. 6.1. Cilindros. 6.2. Conos. 6.3. Esferas. 6.4. Coordenadas geográficas.

Más detalles

TEMA 9 CUERPOS GEOMÉTRICOS

TEMA 9 CUERPOS GEOMÉTRICOS Tel: 98 9 6 91 Fax: 98 1 89 96 TEMA 9 CUERPOS GEOMÉTRICOS Objetivos / Criterios de evaluación O.1.1 Conocer las fórmulas de áreas y volúmenes de figuras geométricas sencillas de D. O.1. Resolver problemas

Más detalles

Área del rectángulo y del cuadrado

Área del rectángulo y del cuadrado 59 Área del rectángulo y del cuadrado El área del rectángulo es el producto de su base por su altura. El área del cuadrado es su lado elevado al cuadrado. 1. Mide con una regla y completa. Área del rectángulo:

Más detalles

ELEMENTOS Y CLASES DE ÁNGULOS

ELEMENTOS Y CLASES DE ÁNGULOS Apellidos: Curso: Grupo: Nombre: Fecha: ELEMENTOS Y CLASES DE ÁNGULOS Dos rectas que se cortan forman 4 regiones llamadas ángulos. Las partes de un ángulo son: los lados: son las semirrectas que lo forman.

Más detalles

14 CUERPOS GEOMÉTRICOS. VOLÚMENES

14 CUERPOS GEOMÉTRICOS. VOLÚMENES 14 UERPOS GEOMÉTRIOS. VOLÚMENES EJERIIOS PROPUESTOS 14.1 Qué condiciones debe cumplir un prisma triangular para ser regular? ibújalo Para que un prisma triangular se regular su base tiene que ser un triángulo

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Potencias y propiedades GUICEN002MT21-A16V1. Si N es un número entero, entonces la expresión

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Potencias y propiedades GUICEN002MT21-A16V1. Si N es un número entero, entonces la expresión GUÍA DE EJERCITACIÓN AVANZADA Potencias y propiedades Programa Entrenamiento Desafío Si N es un número entero, entonces la expresión Matemática I) N N siempre es un número real. II) (N ) N es un número

Más detalles

TALLER DE SOLIDOS. Ejemplo 1: Hallar la diagonal de un cubo cuya arista mide 3 cm. Solución:

TALLER DE SOLIDOS. Ejemplo 1: Hallar la diagonal de un cubo cuya arista mide 3 cm. Solución: 3 TALLER DE SOLIDOS Ejemplo 1: Hallar la diagonal de un cubo cuya arista mide 3 cm. D = d a ; pero d a a a D a a ; D 3a D a 3 D 3 3 cm. Ejemplo : Hallar el área lateral de un prisma recto octagonal regular

Más detalles

Cuerpos Geométricos Son aquellos elementos que ocupan un volumen en el espacio se componen de tres partes: alto, ancho y largo.

Cuerpos Geométricos Son aquellos elementos que ocupan un volumen en el espacio se componen de tres partes: alto, ancho y largo. CUERPOS GEOMÉTRICOS 06 Describe qué son e identifica las características de los cuerpos geométricos. El maestro comenta qué es, cómo se forman y cuáles son las partes de un cuerpo geométrico. Los alumnos

Más detalles

EGRESADOS. Matemática PROGRAMA. Guía: Teoremas de proporcionalidad en la circunferencia. Ejercicios PSU

EGRESADOS. Matemática PROGRAMA. Guía: Teoremas de proporcionalidad en la circunferencia. Ejercicios PSU OGM EGESOS Guía: Teoremas de proporcionalidad en la circunferencia Ejercicios SU 1. En la figura, y son cuerdas, E =, E = 0 y E = 5. uál es el valor de? ) 9 ) 5 ) 1 ) 1 E) Ninguno de los valores anteriores.

Más detalles

Tutorial MT-a4. Matemática Tutorial Nivel Avanzado. Figuras inscritas y circunscritas

Tutorial MT-a4. Matemática Tutorial Nivel Avanzado. Figuras inscritas y circunscritas 134567890134567890 M ate m ática Tutorial MT-a4 Matemática 006 Tutorial Nivel vanzado Figuras inscritas y circunscritas Matemática 006 Tutorial Figuras inscritas y circunscritas 1. Figuras inscritas: Se

Más detalles

PÁGINA Describe y calcula la longitud del trayecto más corto que debe recorrer la lagartija para ir de A a B en cada caso.

PÁGINA Describe y calcula la longitud del trayecto más corto que debe recorrer la lagartija para ir de A a B en cada caso. PÁGIN 213 Pág. 1 0 Describe y calcula la longitud del trayecto más corto que debe recorrer la lagartija para ir de a en cada caso. 1 m 1 m 3 m En el tercer caso, y son centros de dos caras en una pirámide

Más detalles

PARA TENER EN CUENTA: 1000cc=1litro 1 pulgada=2,54 cm. Formula general de Simpson Cavalieri: H 6

PARA TENER EN CUENTA: 1000cc=1litro 1 pulgada=2,54 cm. Formula general de Simpson Cavalieri: H 6 PARA TENER EN CUENTA: 1000cc=1litro 1 pulgada=2,54 cm. Formula general de Simpson Cavalieri: H V= ( Si + Ss + 4Sm) 6 Ejercicios de aplicación. 1.-Se tiene un cubo de lado 10 cm. Calcule 1.1.- La superficie

Más detalles

10 FIGURAS Y CUERPOS GEOMÉTRICOS

10 FIGURAS Y CUERPOS GEOMÉTRICOS 10 FIGURAS Y CUERPOS GEOMÉTRICOS EJERCICIOS PROPUESTOS 10.1 Indica cuál de estos poliedros es cóncavo y cuál es convexo. a) Cóncavo b) Convexo 10. Completa la siguiente tabla. Caras (C ) Vértices (V )

Más detalles

Mini-Repaso Prueba Nivel NM - 4. = es: a) b) c) d) e)

Mini-Repaso Prueba Nivel NM - 4. = es: a) b) c) d) e) 1 Centro Educacional San Carlos de Aragón Sector: Matemática. Prof.: Ximena Gallegos H. Nivel: NM - 4 Mini-Repaso Prueba Nivel NM - 4 4 Biólogo Nombre: Curso: Fecha. Funciones y Logaritmos. 1) La gráfica

Más detalles

Geometría 3D: Preguntas de Capítulo

Geometría 3D: Preguntas de Capítulo Geometría 3D: Preguntas de Capítulo 1. Cuáles son las similitudes y diferencias entre los prismas y las pirámides? 2. Cómo se nombran los poliedros? 3. Cómo se encuentra la sección transversal de figuras

Más detalles

Tema 10: Cuerpos geométricos y transformaciones geométricas

Tema 10: Cuerpos geométricos y transformaciones geométricas Tema 10: Cuerpos geométricos y transformaciones geométricas Regla. Escuadra. Cartabón. Compás. Transportador de ángulos. Calculadora Portaminas. Goma 10.1 Polígonos MATERIAL DE CLASE OBLIGATORIO PROBLEMAS

Más detalles

VOLUMENES. Los cuerpos en el espacio (sólidos) poseen tres dimensiones: largo, ancho y profundidad

VOLUMENES. Los cuerpos en el espacio (sólidos) poseen tres dimensiones: largo, ancho y profundidad VOLUMENES Los cuerpos en el espacio (sólidos) poseen tres dimensiones: largo, ancho y profundidad POLIEDROS Un poliedro es un cuerpo limitado por polígonos Los polígonos que limiten el poliedro, se llaman

Más detalles

PÁGINA 98. a) Tetraedro = 2 Cubo = 2 Octaedro = 2 Dodecaedro = 2 Icosaedro = 2

PÁGINA 98. a) Tetraedro = 2 Cubo = 2 Octaedro = 2 Dodecaedro = 2 Icosaedro = 2 PÁGINA 98 Pág. 1 1 Haz una tabla con el número de caras, vértices y aristas de los cinco poliedros regulares. a) Comprueba que los cinco cumplen la fórmula de Euler. [Recuerda: c + v = a + ]. b) Comprueba

Más detalles

EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 2º E.S.O. PENDIENTES 2º PARCIAL

EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 2º E.S.O. PENDIENTES 2º PARCIAL de º de E.S.O. (º Parcial) EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE º E.S.O. PENDIENTES º PARCIAL Fecha tope para entregarlos: 17 de abril de 015 Examen el 3 de abril de 015 I.E.S.

Más detalles

SeCrece, Inc. Matemáticas. Unidad: Geometría. Grupo: Tornasol

SeCrece, Inc. Matemáticas. Unidad: Geometría. Grupo: Tornasol SeCrece, Inc. Matemáticas Unidad: Geometría Grupo: Tornasol I. Propiedades Geométricas a. Tipos de Polígonos Nombres de Polígonos Nombre Lados Ángulos Triángulo 3 3 Cuadrilátero 4 4 Pentágono 5 5 Hexágono

Más detalles

Elementos del cilindro

Elementos del cilindro Definición de cilindro Un cilindro es un cuerpo geométrico engendrado por un rectángulo que gira alrededor de uno de sus lados. Desarrollo del cilindro Elementos del cilindro Eje Es el lado fijo alrededor

Más detalles