Tamaño: px
Comenzar la demostración a partir de la página:

Download ""

Transcripción

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 Convolución y Convolución Discreta Definición de convolución Cuando hemos aplicado, en el apartado anterior, una función ventana o hemos muestreado una función dada, implícitamente hemos estado efectuando una operación de convolución que ha sido denotada con un símbolo (*) en las figuras 4.3, 4.4 y 4.5. Esta operación se produce de forma inevitable en el dominio tiempo, cuando tenemos un producto de espectros en el dominio frecuencia, o viceversa, cuando tenemos un producto de funciones en el dominio tiempo, ocurriendo una convolución en el dominio frecuencia. Por eso, llegados a este punto es necesario definir la operación convolución y conocer cuáles son sus principales propiedades. En consecuencia, definimos la convolución de dos funciones temporales como (Brigham, 1988) h 2 = = τ (t) f1 (t)*f2(t) f1( )f (t τ)dτ esta operación puede llevarse a cabo mediante la transformada de Fourier, cuando notamos que (Bath, 1974) f1(t) F 1( ω) f (t) F ( ω) 2 2 f 2 1(t)*f2(t) F1 ( ω)f ( ω) = H( ω) h(t) donde H(ω) es el espectro de Fourier de la función h(t) resultante de la convolución. Entonces si quiero conocer la convolución de dos funciones, en lugar de resolver la integral correspondiente, es más rápido obtener los espectros de Fourier de cada una de ellas y luego multiplicarlos. Análogamente hubiéramos podido definir la convolución en el dominio frecuencia, pues esta propiedad es igualmente cierta para dicha operación (Bath, 1974; Brigham, 1988). Así, notamos que la transformada de Fourier es una herramienta muy útil, para realizar multitud de operaciones habituales en el análisis de datos.

20 Teorema de Parseval Este importante teorema nos permite relacionar lo que se llama energía total de una función f(t), definida como 2 f (t) dt con el espectro de potencia de dicha función f(t) definido como mediante la expresión (Bath, 1974) f (t) 2 1 dt = 2π F( ω ) F( ω) dω = π 0 F( ω) donde debemos notar que el espectro de fase no juega ningún papel, para obtener la energía total de una función, pues ella se obtiene a través del espectro de potencia, que se escribe únicamente en función del espectro de amplitud. Esta propiedad será importante en el análisis de señales digitales, pues en muchas aplicaciones nos interesa determinar y conocer la potencia o energía asociada con una señal, más que esa señal propiamente dicha. 2 dω Convolución discreta Dado que las funciones empleadas en la operación de convolución deben ser discretizadas, como se indicó en el apartado anterior, puesto que para computar esta operación con un ordenador no tenemos otra forma de actuar, es necesario saber cómo actúa la transformada de Fourier, cuando realiza una convolución discreta. Para ello, vamos a considerar como ejemplo las funciones x(t) y h(t), representadas en la figura 5.1(a). El resultado teórico de realizar la convolución de dichas funciones es la función y(t), representada también en la figura 5.1(a). En primer, lugar muestreamos las funciones x(t) y h(t), tal como indica la figura 5.1(b), considerando un valor N (= 9) de muestreo total menor que la suma de P (= 6) y Q (= 6), siendo éstos últimos valores el número de muestras de la forma de onda de las funciones consideradas. Vemos entonces que se produce una distorsión del resultado, en comparación con el resultado que tendría que producirse teóricamente (figura 5.1(a)), si la convolución discreta estuviera bien realizada. Vemos que la función y(t) producida por la convolución discreta está truncada al final (figura 5.1(b)), parece que ha faltado espacio de muestreo para que se reproduzca el resultado completo esperado, a la vista de la figura 5.1(a). Puede comprobarse que este problema sucederá siempre que N < P + Q 1 (Brigham, 1988).

21 Fig Convolución continua y discreta: forma correcta de muestrear las funciones. En consecuencia, la regla de oro que debe respetarse en cualquier operación de convolución discreta, es que el muestreo total N de las funciones a considerar en la convolución, debe ser como mínimo N = P + Q 1, pues con valores de N más pequeños tenemos un problema como el mostrado en la figura 5.1(b). Esto puede comprobarse en la figura 5.1(c), en la cual se ha considerado N = = 11, obteniéndose buenos resultados.

22 En la figura 5.1(d) podemos ver que valores de N mayores que P + Q 1, también son posibles y dan buenos resultados, pero la realidad es que no mejoran en nada el resultado obtenido en la figura 5.1(c), siendo estos procedimientos más costosos en tiempo de computación, pues el ordenador debe calcular los valores de puntos que realmente no tienen ninguna información. Por ello, debemos quedarnos con el número mínimo de puntos N, que sea necesario para realizar bien la computación (N = P + Q 1), ya que, en caso contrario estamos desperdiciando recursos de computación. En este sentido, si queremos utilizar un gran número de puntos N, como en la convolución ilustrada en la figura 5.1(e), debemos disminuir la razón de muestreo de tal forma que incrementemos también los valores de P y Q, para que siempre se mantenga que Ν = P + Q 1. Observando ahora que los resultados de la convolución mostrados en la figura 5.1(e), son más parecidos al resultado teórico mostrado en la figura 5.1(a), que el resultado mostrado en la figura 5.1(c).

23 Correlación y Correlación Discreta Definición de correlación Otra importante aplicación de usar el análisis espectral, es la posibilidad de calcular la correlación de dos funciones, definida como la integral (Brigham, 1988) = = τ + τ τ z (t) x(t) h(t) x( )h(t )d esta operación puede llevarse a cabo mediante la transformada de Fourier, cuando notamos que (Bath, 1974) x(t) X( ω) * x(t) h(t) H( ω)x ( ω) = Z( ω) z(t) h(t) H( ω) donde Z(ω) es el espectro de Fourier de la función z(t) resultante de la correlación. Entonces si quiero conocer la correlación de dos funciones, en lugar de resolver la integral correspondiente, es más rápido obtener los espectros de Fourier de cada una de ellas y luego multiplicarlos, teniendo en cuenta que el segundo espectro es el complejo conjugado del original. Correlación discreta Dado que las funciones empleadas en la operación de correlación deben ser discretizadas, como se indicó en el apartado anterior, puesto que para computar esta operación con un ordenador no tenemos otra forma de actuar, es necesario saber cómo actúa la transformada de Fourier, cuando realiza una correlación discreta. Para ello, vamos a considerar como ejemplo las funciones x(t) y h(t), representadas en la figura 5.1(a), discretizadas en la forma en la que aparecen en la figura 6.1(a). En esta operación tendremos también en cuenta la regla de oro descubierta en el apartado anterior, cuando estudiábamos los resultados de la convolución discreta. Esta regla nos dice que N = P + Q 1. No obstante, en la correlación vemos que el orden en el que llevemos a cabo esta operación afecta al resultado final (Brigham, 1988), tal y como puede verse en las figuras 6.1(b) y 6.1(c). Por otra parte, el poner un gran número de ceros nos obliga a consumir recursos de computación, para calcular valores de puntos que no tienen ninguna información.

24 Fig Correlación discreta: efecto del cambio de orden en la correlación. Fig Correlación discreta con reestructuración de datos.

25 En consecuencia, debemos encontrar una forma más adecuada para realizar esta operación, sin desperdiciar recursos de computación en calcular valores para puntos que no tienen ninguna información. En este sentido, si volvemos a muestrear las funciones x(t) y h(t), representadas en la figura 5.1(a), en la forma en la que aparecen en la figura 6.2(a). Notamos que el resultado no sale como esperábamos (figura 6.1(b) o 6.1(c)). En la figura 6.2(b) el resultado aparece partido en dos trozos. Para evitar este problema, sin tener que incorporar muchos puntos adicionales sin información, podemos reestructurar los datos de la función x(t), muestreándola como indica la figura 6.2(c). Obteniendo ahora el resultado correcto, mostrado en la figura 6.2(d), en la que vemos que se han considerado el menor número posible de espacio vacío, para utilizar del modo más eficiente los recursos de computación. Prof. Dr. Víctor Corchete Department of Applied Physics Higher Polytechnic School - CITE II(A) UNIVERSITY OF ALMERIA ALMERIA. SPAIN FAX:

Análisis espectral de señales periódicas con FFT

Análisis espectral de señales periódicas con FFT Análisis espectral de señales periódicas con FFT 1 Contenido 7.1 Introducción a la Transformada Discreta de Fourier 3-3 7.2 Uso de la Transformada Discreta de Fourier 3-5 7.3 Método de uso de la FFT 3-8

Más detalles

Series y Transformada de Fourier

Series y Transformada de Fourier Series y Transformada de Fourier Series de Fourier Transformada de Fourier Series de Fourier Las series de Fourier describen señales periódicas como una combinación de señales armónicas (sinusoides). Con

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Análisis de Fourier. Análisis de Fourier. F. Javier Cara ETSII-UPM. Curso 2012-2013

Análisis de Fourier. Análisis de Fourier. F. Javier Cara ETSII-UPM. Curso 2012-2013 F. Javier Cara ETSII-UPM Curso 1-13 1 Contenido periódicas. Serie de Fourier. periódicas. Serie de Fourier compleja Espectro no periódicas. Serie de Fourier. no periódicas. Transformada de Fourier. Catalogo

Más detalles

Señales y Análisis de Fourier

Señales y Análisis de Fourier 2 Señales y Análisis de Fourier En esta práctica se pretende revisar parte de la materia del tema 2 de la asignatura desde la perspectiva de un entorno de cálculo numérico y simulación por ordenador. El

Más detalles

Representación de señales de audio

Representación de señales de audio Representación de señales de audio Emilia Gómez Gutiérrez Síntesi i Processament del So I Departament de Sonologia Escola Superior de Musica de Catalunya Curso 2009-2010 emilia.gomez@esmuc.cat 28 de septiembre

Más detalles

Introducción a la Teoría del Procesamiento Digital de Señales de Audio

Introducción a la Teoría del Procesamiento Digital de Señales de Audio Introducción a la Teoría del Procesamiento Digital de Señales de Audio Transformada de Fourier Discreta Resumen Propiedades de la Transformada de Fourier Linealidad Comportamiento de la fase Naturaleza

Más detalles

Capítulo 6 Filtrado en el Dominio de la Frecuencia

Capítulo 6 Filtrado en el Dominio de la Frecuencia Capítulo 6 Filtrado en el Dominio de la Frecuencia...39 6. Método en el Dominio de la Frecuencia...39 6. Filtros Espaciales en la frecuencia...40 6.. Convolución Lineal y la Transformada Discreta de Fourier...45

Más detalles

LABORATORIO DE SEÑALES Y SISTEMAS PRACTICA 1

LABORATORIO DE SEÑALES Y SISTEMAS PRACTICA 1 LABORATORIO DE SEÑALES Y SISTEMAS PRACTICA CURSO 005-006 PRÁCTICA SEÑALES Y SISTEMAS CONTINUOS Las presente practica trata distintos aspectos de las señales y los sistemas en tiempo continuo. Los diferentes

Más detalles

2.6. La integral de convolución

2.6. La integral de convolución 2.6. La integral de convolución 141 2.6. La integral de convolución La convolución entre dos funciones es un concepto físico importante en muchas ramas de la ciencia. Sin embargo, como sucede con muchas

Más detalles

Análisis de procesos estocásticos en el dominio de

Análisis de procesos estocásticos en el dominio de Análisis de procesos estocásticos en el dominio de la frecuencia F. Javier Cara ETSII-UPM Curso 202-203 Contenido Función de densidad espectral Definición Relación con la transformada de Fourier Propiedades

Más detalles

RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7)

RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7) Caracterización de las fuentes y formación de escalas de tiempo Rec. UIT-R TF.538-3 1 RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7)

Más detalles

SEÑALES Y ESPECTROS SEÑALES Y ESPECTROS 1

SEÑALES Y ESPECTROS SEÑALES Y ESPECTROS 1 SEÑALES Y ESPECTROS INTRODUCCIÓN. TERMINOLOGÍA USADA EN TRANSMISIÓN DE DATOS. FRECUENCIA, ESPECTRO Y ANCHO DE BANDA. DESARROLLO EN SERIE DE FOURIER PARA SEÑALES PERIÓDICAS. TRANSFORMADA DE FOURIER PARA

Más detalles

Introducción a la Teoría del Procesamiento Digital de Señales de Audio

Introducción a la Teoría del Procesamiento Digital de Señales de Audio Introducción a la Teoría del Procesamiento Digital de Señales de Audio Transformada de Fourier Resumen el análisis de Fourier es un conjunto de técnicas matemáticas basadas en descomponer una señal en

Más detalles

Complementos de matemáticas. Curso 2004-2005

Complementos de matemáticas. Curso 2004-2005 Univ. de Alcalá de Henares Ingeniería Técnica Industrial Complementos de matemáticas. Curso 004-005 Colección de ejercicios del tema 1 Las soluciones aparecen en color azul, y si disponéis de la posibilidad

Más detalles

Esther Pueyo Paules Teoría (primavera) Despacho: D3.20 epueyo@unizar.es

Esther Pueyo Paules Teoría (primavera) Despacho: D3.20 epueyo@unizar.es Asignatura: 11943 SEÑALES Y SISTEMAS II Área: TEORÍA DE LA SEÑAL Y COMUNICACIONES Departamento: INGENIERÍA ELECTRÓNICA Y COMUNICACIONES Plan de estudios: INGENIERO EN TELECOMUNICACIÓN (Plan 94) Curso:

Más detalles

3. LA DFT Y FFT PARA EL ANÁLISIS FRECUENCIAL. Una de las herramientas más útiles para el análisis y diseño de sistemas LIT (lineales e

3. LA DFT Y FFT PARA EL ANÁLISIS FRECUENCIAL. Una de las herramientas más útiles para el análisis y diseño de sistemas LIT (lineales e 3. LA DFT Y FFT PARA EL AÁLISIS FRECUECIAL Una de las herramientas más útiles para el análisis y diseño de sistemas LIT (lineales e invariantes en el tiempo), es la transformada de Fourier. Esta representación

Más detalles

3. Señales sísmicas y Ruido

3. Señales sísmicas y Ruido 3. Señales sísmicas y Ruido Una fuente importante de información de la estructura de la Tierra es obtenida de los datos del movimiento del suelo. La interpretación de estos datos necesita un buen conocimiento

Más detalles

Curso Completo de Electrónica Digital

Curso Completo de Electrónica Digital CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez Capítulo 3 ALGEBRA DE BOOLE 3.1. Introducción

Más detalles

Función de Transferencia del Gravímetro Superconductor SG064

Función de Transferencia del Gravímetro Superconductor SG064 Función de Transferencia del Gravímetro Superconductor SG064 Beatriz Córdoba, Marta Calvo Garcia-Maroto, Jose Manuel Serna, Jose Antonio López Fernandez INFORME TÉCNICO IT - CDT 2012-19 Contenidos Contenidos

Más detalles

Equipos analizadores de señal. - Introducción - Analizadores de Fourier - Analizadores de espectros heterodinos

Equipos analizadores de señal. - Introducción - Analizadores de Fourier - Analizadores de espectros heterodinos - Introducción - Analizadores de Fourier - Analizadores de espectros heterodinos Introducción El análisis del espectro de colores es una forma de análisis de componentes frecuenciales que para el caso

Más detalles

Integrales y ejemplos de aplicación

Integrales y ejemplos de aplicación Integrales y ejemplos de aplicación I. PROPÓSITO DE ESTOS APUNTES Estas notas tienen como finalidad darle al lector una breve introducción a la noción de integral. De ninguna manera se pretende seguir

Más detalles

Profr. Efraín Soto Apolinar. Función Inversa

Profr. Efraín Soto Apolinar. Función Inversa Función Inversa Una función es una relación entre dos variables, de manera que para cada valor de la variable independiente eiste a lo más un único valor asignado a la variable independiente por la función.

Más detalles

Capítulo 7 Modulación de Pulsos

Capítulo 7 Modulación de Pulsos 237 Capítulo 7 Modulación de Pulsos Introducción Las modulaciones de amplitud, frecuencia y fase tratadas en los capítulos anteriores se designan genéricamente como modulaciones de onda continua, en que

Más detalles

Tema 3. Problemas de valores iniciales. 3.1. Teoremas de existencia y unicidad

Tema 3. Problemas de valores iniciales. 3.1. Teoremas de existencia y unicidad Tema 3 Problemas de valores iniciales 3.1. Teoremas de existencia y unicidad Estudiaremos las soluciones aproximadas y su error para funciones escalares, sin que ésto no pueda extenderse para funciones

Más detalles

Ejercicios de Macroeconomía Avanzada

Ejercicios de Macroeconomía Avanzada Ejercicios de Macroeconomía Avanzada José L Torres Chacón Departamento de Teoría e Historia Económica Universidad de Málaga Septiembre 200 ii Indice I Sistemas dinámicos básicos 5 Introducción a la dinámica

Más detalles

FORMATO BINARIO DE NÚMEROS NEGATIVOS

FORMATO BINARIO DE NÚMEROS NEGATIVOS FORMATO BINARIO DE NÚMEROS NEGATIVOS Introducción: Como sabemos, con un número n determinado de bits se pueden manejar 2 n números binarios distintos. Hasta ahora hemos trabajado con números binarios puros,

Más detalles

Práctica 5: Modulaciones digitales

Práctica 5: Modulaciones digitales TEORÍA DE LA COMUNICACIÓN 2009/10 EPS-UAM Práctica 5: Modulaciones digitales Apellidos, nombre Apellidos, nombre Grupo Puesto Fecha El objetivo de esta práctica es familiarizar al alumno con los principios

Más detalles

Tecnología de las Comunicaciones

Tecnología de las Comunicaciones Tema 3. El dominio de la frecuencia. Aspectos teórico-prácticos para la construcción de un cañón de energía bioetérea Francisco Sivianes Castillo Departamento de Tecnología Electrónica Escuela Técnica

Más detalles

Tema 10. Estimación Puntual.

Tema 10. Estimación Puntual. Tema 10. Estimación Puntual. Presentación y Objetivos. 1. Comprender el concepto de estimador y su distribución. 2. Conocer y saber aplicar el método de los momentos y el de máxima verosimilitud para obtener

Más detalles

TRANSFORMADA DE FOURIER. Transformada de Fourier (Parte 1) Página 1 INTRODUCCION

TRANSFORMADA DE FOURIER. Transformada de Fourier (Parte 1) Página 1 INTRODUCCION Transformada de Fourier (Parte 1) Página 1 INTRODUCCION En una primera aproximación, podemos decir que todos los dominios transformados, que se utilizan dentro del tratamiento digital de imagen, tienen

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión:

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión: Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Propiedades de las funciones diferenciables. 1. Regla de la cadena Después de la generalización que hemos

Más detalles

Procesamiento Digital de Señal

Procesamiento Digital de Señal Procesamiento Digital de Señal ema 4: Análisis de Fourier en tiempo discreto ransformada de Fourier en tiempo discreto (DF) Serie de Fourier en tiempo discreto (DFS) ransformada de Fourier Discreta (DF)

Más detalles

Fundamentos para la Representación y Análisis de Señales Mediante Series de Fourier

Fundamentos para la Representación y Análisis de Señales Mediante Series de Fourier Fundamentos para la Representación y Análisis de Señales Mediante Series de Fourier Andrés Felipe López Lopera* Resumen. Existe una gran similitud entre vectores y las señales. Propiedades tales como la

Más detalles

Clase 4: Filtros: Distorsión de Fase

Clase 4: Filtros: Distorsión de Fase Clase 4: Filtros: Distorsión de Fase Como habíamos anticipado en las clases anteriores, los filtros causan desplazamientos temporales en mayor o menor medida para determinadas frecuencias. En esta clase

Más detalles

PROCESAMIENTO DIGITAL DE SEÑALES

PROCESAMIENTO DIGITAL DE SEÑALES BIBLIOGRAFÍA PROCESAMIENTO DIGITAL DE SEÑALES 1. Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1989. 2. Parks, T.W., and C.S. Burrus. Digital

Más detalles

Caracterización de los campos conservativos

Caracterización de los campos conservativos Lección 5 Caracterización de los campos conservativos 5.1. Motivación y enunciado del teorema Recordemos el cálculo de la integral de línea de un gradiente, hecho en la lección anterior. Si f : Ω R es

Más detalles

Práctica 1.2 Manejo del osciloscopio. Circuito RC. Carga y descarga de un condensador

Práctica 1.2 Manejo del osciloscopio. Circuito RC. Carga y descarga de un condensador Práctica 1.2 Manejo del osciloscopio. Circuito RC. Carga y descarga de un condensador P. Abad Liso J. Aguarón de Blas 13 de junio de 2013 Resumen En este informe se hará una pequeña sinopsis de la práctica

Más detalles

Introducción a la Teoría del Procesamiento Digital de Señales de Audio

Introducción a la Teoría del Procesamiento Digital de Señales de Audio Introducción a la Teoría del Procesamiento Digital de Señales de Audio Transformada de Fourier Discreta Resumen Análisis espectral de señales enventanado, derramamiento y resolución, tipo de ventanas,

Más detalles

Sistemas de Numeración

Sistemas de Numeración UNIDAD Sistemas de Numeración Introducción a la unidad Para la mayoría de nosotros el sistema numérico base 0 aparentemente es algo natural, sin embargo si se establecen reglas de construcción basadas

Más detalles

Introducción a los Sistemas Digitales. A continuación se enuncian algunos conceptos básicos

Introducción a los Sistemas Digitales. A continuación se enuncian algunos conceptos básicos Introducción a los Sistemas Digitales A continuación se enuncian algunos conceptos básicos Señal Una forma de dato que es usualmente concebida como una secuencia de valores de una escala cuantitativa (amplitud)

Más detalles

Módulo I - PowerPoint

Módulo I - PowerPoint Módulo I - PowerPoint Índice Conociendo la aplicación de PowerPoint... 2 Iniciando la aplicación de PowerPoint... 3 Abriendo una presentación existente... 4 Conociendo las partes del área de trabajo de

Más detalles

UNIVERSIDAD DE SEVILLA

UNIVERSIDAD DE SEVILLA UNIVERSIDAD DE SEVILLA Escuela Técnica Superior de Ingeniería Informática PRÁCTICA 5: DISEÑO DE MODULADORES (FSK), DEMODULADORES (ASK) Tecnología Básica de las Comunicaciones (Ingeniería Técnica Informática

Más detalles

La transformada de Laplace

La transformada de Laplace Capítulo 1 La transformada de Laplace 1.1. Introducción La transformada de laplace es un operador LINEAL muy útil para la resolución de ecuaciones diferenciales. Laplace demostró cómo transformar las ecuaciones

Más detalles

Carrera: ELB-0532 4-0-8. Participantes Representante de las academias de ingeniería eléctrica de los Institutos Tecnológicos.

Carrera: ELB-0532 4-0-8. Participantes Representante de las academias de ingeniería eléctrica de los Institutos Tecnológicos. .- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Señales y Sistemas ELB-05-0-8.- HISTORIA DEL PROGRAMA Lugar y fecha de elaboración

Más detalles

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales:

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales: ADICIÓN Y RESTA DE NUMEROS REALES ADICIÓN L a adición o suma de números reales se representa mediante el símbolo más (+) y es considerada una operación binaria porque se aplica a una pareja de números,

Más detalles

TRANSMISIÓN DIGITAL EN BANDA BASE. E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid.

TRANSMISIÓN DIGITAL EN BANDA BASE. E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid. TRANSMISIÓN DIGITAL EN BANDA BASE. Marcos Martín Fernández E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid. CONTENIDOS INDICE. DE FIGURAS VII 1. ELEMENTOS DE UN SISTEMA BINARIO EN

Más detalles

LA ACÚSTICA EN EL DOMINIO DE LA FRECUENCIA

LA ACÚSTICA EN EL DOMINIO DE LA FRECUENCIA LA ACÚSTICA EN EL DOMINIO DE LA FRECUENCIA Casado García, Mario Enrique Escuela de Ingenierías. Edificio Tecnológico Campus de Vegazana, s/n 24071 León España Tel: 644420130 E-Mail: mecg@mecg.es RESUMEN

Más detalles

Electrónica Analógica Respuesta en frecuencia. Transformada de Laplace

Electrónica Analógica Respuesta en frecuencia. Transformada de Laplace Electrónica Analógica espuesta en frecuencia. Transformada de Laplace Transformada de Laplace. Introducción La transformada de Laplace es una herramienta matemática muy útil en electrónica ya que gracias

Más detalles

TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL

TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL 1. Electrónica Digital Antes de empezar en el tema en cuestión, vamos a dar una posible definición de la disciplina que vamos a tratar, así como su ámbito

Más detalles

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Una de las primeras necesidades que surgen en las Ciencias Experimentales es la de poder expresar los valores

Más detalles

Transformada de Fourier

Transformada de Fourier Transformada de Fourier Transformada Inversa de Fourier Estas ecuaciones existen si f(x) es continua e integrable y si F(u) es integrable (casi siempre se cumplen en la práctica). Espectro de Fourier La

Más detalles

Actividades con GeoGebra

Actividades con GeoGebra Conectar Igualdad - "Netbooks Uno a Uno" Actividades con GeoGebra Nociones básicas, rectas Silvina Ponce Dawson Introducción. El GeoGeobra es un programa que permite explorar nociones matemáticas desde

Más detalles

Capitulo 2: Movimientos en 2 y 3 dimensiones

Capitulo 2: Movimientos en 2 y 3 dimensiones Capitulo 2: Movimientos en 2 3 dimensiones Índice 1. Posicionamiento en mas de una dimensión 2 1.1. Propiedades de Vectores................................. 5 1.2. Componentes de un Vector................................

Más detalles

4. FUNCIONES DE VARIAS VARIABLES

4. FUNCIONES DE VARIAS VARIABLES 4. FUNCIONES DE VARIAS VARIABLES INDICE 4 4.1. Definición de una función de dos variables...2 4.2. Gráfica de una función de dos variables..2 4.3. Curvas y superficies de nivel....3 4.4. Límites y continuidad....6

Más detalles

Valores propios y vectores propios

Valores propios y vectores propios Capítulo 6 Valores propios y vectores propios En este capítulo investigaremos qué propiedades son intrínsecas a una matriz, o su aplicación lineal asociada. Como veremos, el hecho de que existen muchas

Más detalles

D. REALIZACIÓN DE LA PRÁCTICA Y PRESENTACIÓN DE RESULTADOS

D. REALIZACIÓN DE LA PRÁCTICA Y PRESENTACIÓN DE RESULTADOS 22 Laboratorio de Tratamiento Digital de Señales D. REALIZACIÓN DE LA PRÁCTICA Y PRESENTACIÓN DE RESULTADOS 1. DISEÑO DE FILTROS IIR 1.1 Diseño de filtros IIR empleando prototipos analógicos En este apartado

Más detalles

Análisis Estadístico de Datos Climáticos

Análisis Estadístico de Datos Climáticos Análisis Estadístico de Datos Climáticos SERIES TEMPORALES 3 (Análisis espectral) 2015 Dominio temporal vs. dominio de frecuencias Son dos enfoques para encarar el análisis de las series temporales, aparentemente

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

FORMACIÓN Y PROCESADO ÓPTICO DE IMÁGENES

FORMACIÓN Y PROCESADO ÓPTICO DE IMÁGENES FORMACIÓN Y PROCESADO ÓPTICO DE IMÁGENES Autor. Moisés Valenzuela Gutiérrez. 2009. Moisés Valenzuela Gutiérrez Portada diseño: Celeste Ortega (HUwww.cedeceleste.comUH) Edición cortesía de HUwww.publicatuslibros.comUH.

Más detalles

ESTRUCTURAS ALGEBRAICAS 1

ESTRUCTURAS ALGEBRAICAS 1 ESTRUCTURAS ALGEBRAICAS Se da la relación entre dos conjuntos mediante el siguiente diagrama: (, ) (2, 3) (, 4) (, 2) (7, 8) (, ) (3, 3) (5, ) (6, ) (, 6)........ 5 6......... 2 5 i) Observa la correspondencia

Más detalles

Tema 14: Cálculo diferencial de funciones de varias variables II

Tema 14: Cálculo diferencial de funciones de varias variables II Tema 14: Cálculo diferencial de funciones de varias variables II 1 Desarrollos de Taylor en varias variables Vamos ahora a generalizar los desarrollos de Taylor que vimos para funciones de una variable.

Más detalles

Página 1 de 16 TRANSFORMADA DE FOURIER Y EL ALGORITMO FFT INTRODUCCION

Página 1 de 16 TRANSFORMADA DE FOURIER Y EL ALGORITMO FFT INTRODUCCION Página 1 de 16 FCEFy Universidad acional de Cordoba ITRODUCCIO El estudio de las señales cotidianas en el dominio de la frecuencia nos proporciona un conocimiento de las características frecuenciales de

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

Capítulo 3.- Generación de sonidos 3D

Capítulo 3.- Generación de sonidos 3D Capítulo 3 Generación de sonidos 3D La generación de sonidos 3D se refiere al proceso en el cual las señales de audio son modificadas con el fin de producir sensaciones de realismo al espectador. En esta

Más detalles

Introducción a los Filtros Digitales. clase 10

Introducción a los Filtros Digitales. clase 10 Introducción a los Filtros Digitales clase 10 Temas Introducción a los filtros digitales Clasificación, Caracterización, Parámetros Filtros FIR (Respuesta al impulso finita) Filtros de media móvil, filtros

Más detalles

Universidad de Las Palmas de Gran Canaria MÁSTER EN SISTEMAS INTELIGENTES Y APLICACIONES NUMÉRICAS EN INGENIERÍA. Autora: Cristina Freire Obregón

Universidad de Las Palmas de Gran Canaria MÁSTER EN SISTEMAS INTELIGENTES Y APLICACIONES NUMÉRICAS EN INGENIERÍA. Autora: Cristina Freire Obregón Universidad de Las Palmas de Gran Canaria MÁSTER EN SISTEMAS INTELIGENTES Y APLICACIONES NUMÉRICAS EN INGENIERÍA Implementación y validación del método mejorado de descomposición en el dominio de la frecuencia

Más detalles

Teoría de la Comunicación

Teoría de la Comunicación Teoría de la Comunicación Enero 2009 Realice cada ejercicio en hojas separadas. No se permite uso de teléfono móvil. Escriba su nombre en todas las hojas. Indique claramente el apartado al que está respondiendo.

Más detalles

TRANSFORMADA DE LAPLACE

TRANSFORMADA DE LAPLACE TRANSFORMADA DE LAPLACE DEFINICION La transformada de Laplace es una ecuación integral que involucra para el caso específico del desarrollo de circuitos, las señales en el dominio del tiempo y de la frecuencia,

Más detalles

MEJORA DE LA IMAGEN EN EL DOMINIO DE LA FRECUENCIA: TRANSFORMADA DE FOURIER

MEJORA DE LA IMAGEN EN EL DOMINIO DE LA FRECUENCIA: TRANSFORMADA DE FOURIER MEJORA DE LA IMAGEN EN EL DOMINIO DE LA FRECUENCIA: TRANSFORMADA DE FOURIER M.C. CAROLINA ROCÍO SÁNCHEZ PÉREZ 01 DE ABRIL DE 2011 Operaciones en el dominio de la frecuencia Una imagen digital es una representación

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

EXAMEN DE MATEMÁTICAS I Licenciatura en Ciencias Económicas 24 de Enero de 2009

EXAMEN DE MATEMÁTICAS I Licenciatura en Ciencias Económicas 24 de Enero de 2009 EXAMEN DE MATEMÁTICAS I Licenciatura en Ciencias Económicas 4 de Enero de 9 NOMBRE: APELLIDOS: D.N.I.: GRUPO: INSTRUCCIONES: Para la realización de este eamen se entregarán dos cuadernillos. Cuadernillo

Más detalles

Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA

Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA NOTA: en toda esta práctica no se pueden utilizar bucles, para que los tiempos de ejecución se reduzcan. Esto se puede hacer

Más detalles

Profr. Efraín Soto Apolinar. Números reales

Profr. Efraín Soto Apolinar. Números reales úmeros reales En esta sección vamos a estudiar primero los distintos conjuntos de números que se definen en matemáticas. Después, al conocerlos mejor, podremos resolver distintos problemas aritméticos.

Más detalles

CAPÍTULO 2 PROCESAMIENTO DIGITAL DE IMÁGENES

CAPÍTULO 2 PROCESAMIENTO DIGITAL DE IMÁGENES CAPÍTULO PROCESAMIENTO DIGITAL DE IMÁGENES En este capítulo se presentan de manera breve, una explicación de la visión, las imágenes digitales y como son capturadas por medios electrónicos, el campo encargado

Más detalles

DESIGUALDADES E INECUACIONES

DESIGUALDADES E INECUACIONES DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 1 de agosto de 2003 1. Introducción Cualquier modelo de una situación es una simplificación de la situación real. Por lo tanto,

Más detalles

Lectura 3 Ampliación de Matemáticas. Grado en Ingeniería Civil

Lectura 3 Ampliación de Matemáticas. Grado en Ingeniería Civil 1 / 32 Lectura 3 Ampliación de Matemáticas. Grado en Ingeniería Civil Curso Académico 2011-2012 2 / 32 Motivación: muchas ecuaciones y propiedades fundamentales de la Física (y, en consecuencia, de aplicación

Más detalles

MATEMÁTICAS I 1º Bachillerato Capítulo 7: Límites y continuidad

MATEMÁTICAS I 1º Bachillerato Capítulo 7: Límites y continuidad MATEMÁTICAS I º Bachillerato Capítulo 7: Límites y continuidad file:///c:/users/cuenta~/appdata/local/temp/b006%0limitesycontinuida D%0Adela. 00 Índice. CONCEPTO DE LÍMITE.. DEFINICIÓN.. LÍMITES LATERALES..

Más detalles

TECNOLOGÍAS DE PRODUCCIÓN. (Función de Producción Cobb-Douglas) (http://www.geocities.com/ajlasa)

TECNOLOGÍAS DE PRODUCCIÓN. (Función de Producción Cobb-Douglas) (http://www.geocities.com/ajlasa) TECNOOGÍAS DE PRODUCCIÓN (Función de Producción Cobb-Douglas) (http://www.geocities.com/ajlasa) En general, toda actividad de producción de bienes y servicios requiere de dos insumos básicos: el capital

Más detalles

Competencias específicas de ingeniería

Competencias específicas de ingeniería A. IDENTIFICACIÓN ASIGNATURA: PROCESAMIENTO DIGITAL DE SEÑALES SIGLA: ELT 3952 SEMESTRE: NOVENO Ing. Electrónica, mención Telecomunicaciones NOVENO, Ingeniería Electrónica, mención automática PRE-REQUISITO:

Más detalles

Enunciado unidades fraccionarias fracción fracciones equivalentes comparar operaciones aritméticas fracciones propias Qué hacer deslizador vertical

Enunciado unidades fraccionarias fracción fracciones equivalentes comparar operaciones aritméticas fracciones propias Qué hacer deslizador vertical Enunciado Si la unidad la dividimos en varias partes iguales, podemos tomar como nueva unidad de medida una de estas partes más pequeñas. Las unidades fraccionarias son necesarias cuando lo que queremos

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. REPASO DE MATEMÁTICAS DISCRETA. CONGRUENCIAS. En el conjunto de los números enteros

AMPLIACIÓN DE MATEMÁTICAS. REPASO DE MATEMÁTICAS DISCRETA. CONGRUENCIAS. En el conjunto de los números enteros AMPLIACIÓN DE MATEMÁTICAS REPASO DE MATEMÁTICAS DISCRETA. CONGRUENCIAS. En el conjunto de los números enteros Z = {..., n,..., 2, 1, 0, 1, 2, 3,..., n, n + 1,...} tenemos definidos una suma y un producto

Más detalles

82 2. Análisis de Fourier. Fig. 2.9. Área de los lóbulos de la función sinc( ). 2/a dx+ +

82 2. Análisis de Fourier. Fig. 2.9. Área de los lóbulos de la función sinc( ). 2/a dx+ + 82 2. Análisis de Fourier Fig. 2.9. Área de los lóbulos de la función sinc( ). sen(πax)/(πn) para (n )/a x n/a. Entonces sen(πax) /a 0 πax dx sen(πax) 2/a π dx+ sen(πax) 2π dx+ + 0 /a = n/a π sen(πax)

Más detalles

transformada discreta de fourier resumen, ejemplos y ejercicios

transformada discreta de fourier resumen, ejemplos y ejercicios transformada discreta de fourier resumen, ejemplos y ejercicios Transformada Discreta de Fourier Resumen Resumen para ejercicios de cálculo. Definición. Para una función matemática x[n] de variable independiente

Más detalles

7.- MODIFICACIÓN DE LA FRECUENCIA DE MUESTREO

7.- MODIFICACIÓN DE LA FRECUENCIA DE MUESTREO 7.- MODIFICACIÓN DE LA FRECUENCIA DE MUESTREO 7..- Introducción. Hasta ahora todos los sistemas de procesado digital que hemos analizado utilizan una frecuencia de muestreo fija. En ocasiones es necesario

Más detalles

SISTEMAS DE COMUNICACIONES DIGITALES. POP en Tecnologías Electrónicas y de las Comunicaciones

SISTEMAS DE COMUNICACIONES DIGITALES. POP en Tecnologías Electrónicas y de las Comunicaciones SISTEMAS DE COMUNICACIONES DIGITALES POP en Tecnologías Electrónicas y de las Comunicaciones Señalización pasabanda de modulación binaria Las técnicas más comunes de señalización pasabanda de modulación

Más detalles

Integrales de línea. Teorema de Green

Integrales de línea. Teorema de Green Integrales de línea. Teorema de Green José Antonio Vallejo Departamento de Matemáticas Facultad de iencias Universidad Autónoma de San Luis Potosí email: jvallejo@fciencias.uaslp.mx 16 Noviembre 2007 1.

Más detalles

CIERRE EJERCICIO CON BECONTA

CIERRE EJERCICIO CON BECONTA CIERRE EJERCICIO CON BECONTA Beroni Informática Pág. 1 Proceso de comprobación... 4 Reindexación de ficheros... 4 Recomponer la contabilidad... 5 Recomponer asientos... 5 Recomponer acumulados del Plan

Más detalles

Práctica 1: Señales y análisis de Fourier

Práctica 1: Señales y análisis de Fourier Física de las Comunicaciones 2006/2007 Práctica 1 1 Práctica 1: Señales y análisis de Fourier 1. Objetivo y contenido En esta práctica pretendemos revisar parte de la materia del tema 2 de la asignatura

Más detalles

TEMA II: ÁLGEBRA DE CONMUTACIÓN

TEMA II: ÁLGEBRA DE CONMUTACIÓN TEMA II: ÁLGEBRA DE CONMUTACIÓN En este capítulo veremos los métodos matemáticos que se disponen para las operaciones relacionadas con los circuitos digitales, así como las funciones más básicas de la

Más detalles

UNIVERSIDAD DON BOSCO

UNIVERSIDAD DON BOSCO CICLO I 2013 NOMBRE DE LA PRACTICA : LUGAR DE EJECUCIÓN: TIEMPO ESTIMADO: ASIGNATURA: DOCENTE(S): UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA GUÍA DE LABORATORIO

Más detalles

REDES DE COMPUTADORES

REDES DE COMPUTADORES REDES DE COMPUTADORES TEMA 2 TRANSMISIÓN DE DATOS Y TEORÍA DE LA INFORMACIÓN 1 TRANSMISIÓN DE DATOS Y TEORÍA DE LA INFORMACIÓN 1.- Conceptos y definiciones básicas. 1.1.- Elementos de un sistema de comunicación.

Más detalles

Trabajo, Energía y Potencial

Trabajo, Energía y Potencial Cátedra de Física Experimental II Física III Trabajo, Energía y Potencial Prof. Dr. Victor H. Rios 2015 METAS DE APRENDIZAJE Al estudiar este capítulo, usted aprenderá: A calcular la energía potencial

Más detalles

Teoría de Telecomunicaciones I. I.E. Evelio Astaiza Hoyos

Teoría de Telecomunicaciones I. I.E. Evelio Astaiza Hoyos Teoría de Telecomunicaciones I I.E. Evelio Astaiza Hoyos Objetivo El estudiante, al finalizar el curso estará en capacidad de describir los efectos de la contaminación de una señal transmitida, las limitaciones

Más detalles

Tema : ELECTRÓNICA DIGITAL

Tema : ELECTRÓNICA DIGITAL (La Herradura Granada) Departamento de TECNOLOGÍA Tema : ELECTRÓNICA DIGITAL.- Introducción. 2.- Representación de operadores lógicos. 3.- Álgebra de Boole. 3..- Operadores básicos. 3.2.- Función lógica

Más detalles

Conceptos y Terminologías en la Transmisión de Datos. Representaciones de Señales.

Conceptos y Terminologías en la Transmisión de Datos. Representaciones de Señales. Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Conceptos y Terminologías en la Transmisión de Datos y Sistemas de Comunicaciones Electrónicos. Representaciones de Señales.

Más detalles

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f) MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en

Más detalles

Los números racionales

Los números racionales Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones

Más detalles