Tarea 9. H ds = E ds (2)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tarea 9. H ds = E ds (2)"

Transcripción

1 Tarea 9. ea una supercie con frontera y suponga que E es un campo eléctrico que es perpendicular a - Muestre que el ujo magnético inducido a través de es constante en el tiempo. (Use la Ley de Faraday) e quiere demostrar que la derivada del ujo magnético con respecto al tiempo es cero. e comienza con; H H d = d () t t Este paso se justica debido a que no es una función del tiempo. Ademas de la ley de Faraday se sabe que E = H t, sustituyendo esto se tiene; H d = E d (2) t Entonces por el teorema de tokes y por el hecho de que E = ya que el campo eléctrico E es perpendicular a la frontera, se obtiene; E d = (3)

2 2. ea la cubierta cilindrica mostrada en la Figura. es la unión de dos supercies, y 2, donde es el conjunto de (x, y, z) con x 2 + y 2 =, z y 2 es el conjunto de (x, y, z) con x 2 + y 2 + (z ) 2 =, z - ea F(x, y, z) = (zx + z 2 y + x)i + (z 3 yx + y)j + z 4 x 2 k. Calcule ( F) d. (Use el teorema de tokes). Figura. La frontera de la supercie es una curva cerrada, de modo que se puede aprovechar el teorema de tokes; ( F) d = F d (4) La frontera es el x 2 + y 2 =, z =. Por lo tanto el lado derecho de la Ec. (7) es; ( F) d = (xi + yj) (dxi + dyj) (5) Usando la parametrización en coordanadas polares; Al sustituir en la integral se obtiene; x = cos(θ) y = sin(θ) θπ dx = sin(θ)dθ dy = cos(θ)dθ θπ 2π ( cos(θ)sin(θ) + sin(θ)cos(θ))dθ= (6) 2

3 3. Calcule la integral de supercie ( F) d donde es el hemisferio x2 + y 2 + z 2 =, x y F = x 3 i y 3 j. Utilizando el teorema de tokes. La frontera es el círculo x 2 + y 2 =, x =. En la frontera F es y 3 j. e usarán coordenadas polares; x = cos(θ) y = sin(θ) θπ Por el teorema de tokes se tiene; ( F) d = F d (7) ustituyendo F y el diferencial, se obtiene; F d = 2π Integrando la Ec. () usando la regla de la cadena; sin 3 (θ)cos(θ)dθ (8) [ ] 2π F d = 4 sin4 (θ) = (9) 3

4 4. Un globo de aire caliente tiene una forma esférica truncada mostrada en la Figura 2. Los gases calientes escapan a través de la supercie porosa a una velocidad; V(x, y, z) = Φ(x, y, z) where Φ(x, y, z) = yi + xj Figura 2. i R = 5, calcule el ujo volumétrico de los gases a través de la supercie. La razón del ujo es Φ d y por el teorema de tokes, éste es Φ d. La frontera está en el plano xy donde z =. Parametrizando la frontera mediante; x = R 4 cos(θ) y = R 4 sin(θ) Entonces el ujo es; Φ d = Integrando la Ec. () nalmente se obtiene; 2π R 2 6 (sin2 (θ) + cos 2 (θ))dθ () Φ d = πr2 8 () 4

5 5. ea la supercie y sea F perpendicular a la tangente de la frontera de. Muestre que; ( F) d = Que siginica sicamente esto si F es un campo eléctrico?. Por el teorema de tokes; F d = F ds (2) Por lo tanto como F es perpendicular a la tangente de la frontera de, el producto punto de la frontera con el vector F será cero. Por lo tanto; F d = (3) i F es un campo eléctrico, esto signica que la razón de cambio de ujo magnético es cero por la ley de Faraday. 5

6 6. i es una supercie orientada denida por una parametrización uno a uno Φ : D R 2, donde D es una región donde el teorema de Green aplica. Y sea una frontera orientada de y sea F un campo vectorial C sobre. Entonces; ( F d = F ds i no tiene frontera, entonces la integral de la derecha es zero. Verique este teorema para el helicoide Φ(r, θ) = (rcos(θ), rsinθ, θ), (r, θ) [, ] [, π/2], y el campo vectorial F(x, y, z) = (z, x, y). Primero se calcula F =. Para esto se obtiene que; F = i + j + k (4) Tambien se tiene Φ r = cos(θ)i + sin(θ)j y Φ θ = rsin(θ)i + rcos(θ)j, entonces Φ θ Φ θ = sin(θ)i cos(θ)j + rk. Por lo tanto se obtiene; (i + j + k) (sin(θ)i cos(θ)j + rk)drdθ = π/2 (cos(θ) cos(θ) + r)dθdr = π 4 Por otro lado, la frontera, está formada por 4 partes. Primero, cuando r = se tiene; (5) Φ(, θ) = cos(θ)i + sin(θ)j + θk (6) de este modo F = θi + cos(θ)j + sin(θ)k y d = dφ(, θ). Por consiguiente; π/2 i se aplica integración por partes sobre θsin(θ) se tiene; (θi + cos(θ)j + sin(θ)k ( sin(θ)i) + cos(θ)j + k)dθ (7) π 4 Cuando θ=π/2. se conserva la orientación de r si varía de a. Entonces se tiene; 2 Cuando r =, θ va de π/2 a, de manera que se obtiene; 3 De manera similar, cuando θ=, el resultado es; 4 (8) ( π i + rk) (k)dr = (9) 2 π/2 (θi) (k)dθ = (2) (rj) (i)dr = (2) i se suma todas la partes, la integral sobre la curva completa será π/4, en consecuencia, en consecuencia se ha vericado el teorema. 6

7 7. Integre F, F = (3y, xz, yz 2 ) sobre la porción de la supercie 2z = x 2 + y 2 debajo del plano z = 2, directamente y usando el teorema de tokes. Para el cálculo directo, se parametriza la supercie de la siguiente manera: ea x = rcos(θ) y y = rsin(θ). entonces z = (/2)(x 2 + y 2 ) = r 2 /2. También se quiere que z 2, de modo que leqr 2 /2 2 o r 2. Además se tiene que θ 2π. Calculando; y T θ = rsin(θ)i + rcos(θ)j T r = cos(θ)i + sin(θ)j + rk De manera que la normal exterior es T θ T r = r 2 cos(θ) r 2 sen(θ)j rk. Tambien calculando; i j k F = x y z 3y xz yz 2 Haciendo el producto y sustituyendo la parametrización seleccionada; ( ) ) F = 4 r4 rcos(θ) i ( r2 2 3 k (22) Por último; ( F) d = Haciendo el producto punto se tiene; ( F) d = 2 2π 2 2π Haciendo los productos correspondientes e integrando se tiene; ( F) d = 2 2π ( F) (T θ T r )dθddr (23) [ ( ) ( )] r r 2 4 r 2 cos(θ) 4 rcos(θ + r dθddr (24) [ r6 4 cos(θ) + r3 cos 2 (θ) + ] 2 r3 + 3r dθddr (25) Finalmente se obtiene; ( F) d = 2π (26) Por otro lado, por el teorema de tokes, F d = F d. La frontera, que es un círulo de radio 2 en z = 2. e puede parametrizar mediante (2cos(t), 2sin(t), 2) para t 2π. Usando esta orientación porque la supercie está debajo de la frontera, en consecuencia, se debe recorrer con la misma orientación que el giro de las manecillas del reloj. Calculando ds, por lo tanto; Integrando nalmente; F d = 2π (2sin2 t + 8cos 2 (t)dt F d = 2π (27) 7

Tarea 8. (xdy ydx) (1) A = 1 2. Por lo tanto el área es; [(Rcos(θ))(Rcos(θ)) (Rsin(θ))(Rsin(θ))] dθ (2) Reduciendo la expresiónnalmentese obtiene;

Tarea 8. (xdy ydx) (1) A = 1 2. Por lo tanto el área es; [(Rcos(θ))(Rcos(θ)) (Rsin(θ))(Rsin(θ))] dθ (2) Reduciendo la expresiónnalmentese obtiene; Tarea 8 1. Encuentre el área de el disco de radio R usando el teoréma de Green. e acuerdo con el teorema de Green, el área de la región es; A = 1 (xdy ydx) (1) Como es un discmo con centro en (, ) de radio

Más detalles

Sea S = F r(w ) una supercie cerrada que limita una región en el espacio W R 3

Sea S = F r(w ) una supercie cerrada que limita una región en el espacio W R 3 4.3 Teorema de la ivergencia Gauss) ea = F r ) una supercie cerrada que limita una región en el espacio R 3 El teorema de la divergencia tambien conocido como teorema de Gauss) es una generalización del

Más detalles

Cálculo diferencial e integral 4

Cálculo diferencial e integral 4 álculo diferencial e integral 4 Guía 4 1. alcular la divergencia y el rotacional de los siguientes campos vectoriales: a) V (x, y, z) = yzi + xzj + xyk. b) V (x, y, z) = x 2 i + (x + y) 2 j + (x + y +

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 9 de Junio de 4 Primera parte Ejercicio. Un depósito subterráneo de gasolina tiene forma de cilindro elíptico con semieje orizontal a

Más detalles

Definición. Tema 12: Teoremas de Integración del Cálculo Vectorial. Gradiente de un campo escalar. Rotacional de un campo vectorial.

Definición. Tema 12: Teoremas de Integración del Cálculo Vectorial. Gradiente de un campo escalar. Rotacional de un campo vectorial. Tema 12: Teoremas de Integración del Cálculo Vectorial El operador nabla e conoce como operador nabla al pseudo-vector = ( x, y, ) Juan Ignacio Del Valle Gamboa ede de Guanacaste Universidad de Costa Rica

Más detalles

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen Universidad Técnica Federico anta aría Coordinación de atemática IV Guía-Apunte de Preparación del CAR 2 do emestre 2011 Información Contenidos del Certamen Teorema de Green, Teorema de Green para Regiones

Más detalles

Examen Final de Cálculo Vectorial MATE PREGUNTAS ABIERTAS TEMA A Diciembre 6 de Nombre: Código:

Examen Final de Cálculo Vectorial MATE PREGUNTAS ABIERTAS TEMA A Diciembre 6 de Nombre: Código: UNIVERSIDAD DE LOS ANDES DEPARTAMENTO DE MATEMÁTICAS Examen Final de Cálculo Vectorial MATE 1207 PREGUNTAS ABIERTAS TEMA A Diciembre 6 de 2017 Este es un examen individual, no se permite el uso de libros,

Más detalles

Certamen 2 - Mate 024 (Pauta)

Certamen 2 - Mate 024 (Pauta) Certamen - Mate 4 (Pauta) noviembre 6, 14 1. Calcular γ x 4 + y 4 1 dx + y 3 x 4 + y 4 1 dy en cada uno de los siguientes casos: a) γ es la curva x + y = 1 4 y se recorre en sentido positivo. b) γ es la

Más detalles

Examen final de Cálculo Integral

Examen final de Cálculo Integral Examen final de Cálculo Integral 8 de junio de (Soluciones) Cuestiones C Sí se puede asegurar que es integrable, como consecuencia del teorema 4. de los apuntes: Llamamos W y f : W R a la esfera y a la

Más detalles

Examen final de Cálculo Integral

Examen final de Cálculo Integral Examen final de Cálculo Integral de junio de 11 (Soluciones) Cuestiones C 1 La respuesta es que la función es integrable, como consecuencia del Teorema 1.1 de los apuntes, o el Teorema del Capítulo 5 del

Más detalles

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8 ANALISIS MATEMATIO II (iencias- 2011) Integrales sobre curvas (o de línea) Trabajo Práctico 8 1. Evaluar las siguientes integrales curvilíneas γ f ds. (a) f(x, y, z) = x + y + z ; r(t) = (sen t, cos t,

Más detalles

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013 Análisis II - Análisis matemático II - Matemática 3 do. cuatrimestre de 3 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones.. Verificar el teorema de Stokes para el hemisferio

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. er. cuatrimestre de 8 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones. Ejercicio. Verificar el teorema de Stokes para el

Más detalles

Capítulo 5. Integrales sobre curvas y superficies

Capítulo 5. Integrales sobre curvas y superficies Capítulo 5. Integrales sobre curvas y superficies 5.1. Integrales de funciones escalares sobre curvas 5.2. Integrales de campos vectoriales sobre curvas 5.3. Teorema de Green 5.4. Integrales sobre superficies

Más detalles

Soluciones de los ejercicios del segundo examen parcial

Soluciones de los ejercicios del segundo examen parcial Matemáticas III GIC, curso 5 6 Soluciones de los ejercicios del segundo examen parcial EJERCICIO. Considera la integral doble π π ibuja la región del plano XY en la que se está integrando. Usa el teorema

Más detalles

Diferenciación SEGUNDA PARTE

Diferenciación SEGUNDA PARTE ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 4 - Primer Cuatrimestre 009 Diferenciación SEGUNDA PARTE Regla de la Cadena 1 Sean f(u, v, w) = u + v 3 + wu y g(x, y) = x sen(y) Además, tenemos

Más detalles

Teorema de Stokes Introducción

Teorema de Stokes Introducción EIÓN 1 1.1 Introducción En la presente sesión se revisa el último teorema clave del cálculo vectorial, el teorema de tokes. Este teorema establece una relación entre una integral de línea sobre una curva

Más detalles

SERIE # 4 CÁLCULO VECTORIAL

SERIE # 4 CÁLCULO VECTORIAL SERIE # 4 CÁLCULO VECTORIAL Página 1 1) Calcular 1 x y dy dx. 0 0 1 ) Evaluar la integral doble circunferencia x y 9. x 9 x da R, donde R es la región circular limitada por la 648 15 x y ) Calcular el

Más detalles

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0)

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0) facultad de ciencias exactas y naturales uba primer cuatrimestre 2007 ANÁLISIS II Computación Práctica 4 Derivadas parciales 1. Calcular a) f y (2, 1) para f(x, y) = xy + x y b) f z (1, 1, 1) para f(x,

Más detalles

Integrales de Superficie.

Integrales de Superficie. CAPÍTULO 9. Integrales de Superficie. Este capítulo cierra los tipos de integrales que estudiamos en el curso. Se practica el concepto de integral de superficie y se dan aplicaciones geométricas y físicas.

Más detalles

ANALISIS II Computación. Práctica 4. x 3. x 2 + y 2. x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0)

ANALISIS II Computación. Práctica 4. x 3. x 2 + y 2. x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0) facultad de ciencias exactas y naturales uba curso de verano 2006 ANALISIS II Computación Práctica 4 Derivadas parciales 1. Calcular (a) f xy y (2, 1) para f(x, y) = + x y (b) f z (1, 1, 1) para f(x, y,

Más detalles

Ayudantía 1. Recordando Cálculo Vectorial 06 de Marzo de 2018 Ayudante: Matías Henríquez -

Ayudantía 1. Recordando Cálculo Vectorial 06 de Marzo de 2018 Ayudante: Matías Henríquez - Pontificia Universidad Católica de Chile Facultad de Física FIS1533 - Electricidad y Magnetismo // 1-218 Profesor: Giuseppe De Nittis - gidenittis@uc.cl Ayudantía 1 Recordando Cálculo Vectorial 6 de Marzo

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Universidad Técnica Federico Santamaría

Universidad Técnica Federico Santamaría Integral de uperficie - Mate 4 UPEFICIE PAAMÉTICA e forma similar a como se describe una curva mediante una función vectorial r(t), en función de un parámetro t,se puede describir una superficie mediante

Más detalles

Vectores. Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Unidad Culhuacán.

Vectores. Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Unidad Culhuacán. Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Unidad Culhuacán. Vectores Autor: Ing. Jonathan Alejandro Cortés Montes de Oca. Vectores En el campo de estudio del Cálculo

Más detalles

CAPÍTULO 10. Teoremas Integrales.

CAPÍTULO 10. Teoremas Integrales. CAPÍTULO 10 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

a n en las que n=1 s n = n + 1 Solución: a) Utilizando el criterios de D Alembert se obtiene que a n+1 n a n 3 > 1 n=1

a n en las que n=1 s n = n + 1 Solución: a) Utilizando el criterios de D Alembert se obtiene que a n+1 n a n 3 > 1 n=1 EJERCICIO DE FUNDAMENTO MATEMÁTICO eries. Estudia el carácter de las series (a El término general es a n en las que (b la suma parcial n-sima es a n n n+ 3 n, n,, 3,... s n n, n,, 3,... n + olución: a

Más detalles

Clase 4. Campos Vectorialesy OperadoresDiferenciales

Clase 4. Campos Vectorialesy OperadoresDiferenciales lase 4. ampos Vectorialesy Operadoresiferenciales Un campo vectorial en R n es una función F : R n R n. i F es un campo vectorial, una línea de flujo (línea de corriente o curva integral) para F es una

Más detalles

Integración sobre superficies

Integración sobre superficies Problemas propuestos con solución Integración sobre superficies IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Parametrizaciones 1 2. Área de una superficie

Más detalles

Integrales de Superficie.

Integrales de Superficie. CAPÍTULO 10 Integrales de Superficie. Este capítulo cierra los tipos de integrales que estudiamos en el curso. Se practica el concepto de integral de superficie y se dan aplicaciones geométricas y físicas.

Más detalles

Ayudantía 2 - Solución

Ayudantía 2 - Solución Ayudantía - Solución Profesor: Ricardo Ramírez Ayudante: Juan Pablo Garrido L (jbgarrid@puc.cl) Problema Un recipiente semihemisferico no conductor de radio a tiene una carga total Q uniformemente distribuida

Más detalles

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES 1.- En cada uno de los siguientes casos calcular la integral de línea dada a) + +, donde C es el segmento de recta que une el punto O(0,0)

Más detalles

EXPRESIÓN PARA LA DIVERGENCIA EN COORDENADAS CARTESIANAS.

EXPRESIÓN PARA LA DIVERGENCIA EN COORDENADAS CARTESIANAS. c Rafael R. Boix y Francisco Medina 1 EXPRESIÓN PARA LA DIVERGENCIA EN COORDENADAS CARTESIANAS. Consideremos un punto P 0 del espacio tridimensional de coordenadas cartesianas (x 0, y 0, z 0 ). Consideremos

Más detalles

Temas 1 y 2: Cálculo Diferencial y Optimización ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Temas 1 y 2: Cálculo Diferencial y Optimización ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO CÁLCULO II. Ejercicio de Examen Final Temas 1 y : Cálculo Diferencial y Optimización FECHA: 1/07/1 TIEMPO RECOMENDADO: 40 m Puntuación/TOTAL:,5/10 ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO w w 1. Dada

Más detalles

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS.

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. Cálculo III, Examen Final. Semestre Primavera 1 Tiempo: 11 min. Problema 1 [1,5 puntos] La curvatura de una trayectoria

Más detalles

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE PLANO TANGENTE Y VECTOR NORMAL. AREA DE UNA SUPERFICIE 1) En cada uno de los siguientes ejercicios se presenta una S dada en forma paramétrica,

Más detalles

6. El teorema de la divergencia.

6. El teorema de la divergencia. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. Lección. Cálculo vectorial. 6. El teorema de la divergencia. Ya vimos una versión del teorema de Green en el plano que expresa la igualdad entre la integral doble

Más detalles

ANALISIS II 12/2/08 COLOQUIO TEMA 1

ANALISIS II 12/2/08 COLOQUIO TEMA 1 ANALISIS II //08 COLOQUIO TEMA Sea f : R R un campo vectorial C y C la curva parametrizada por: γ(t) = (cost, 0, sent) con t ɛ [0, π] Sabiendo que C f ds = 6 y que rot( f( ) = (z, ), calcular la integral

Más detalles

Listado 1 Cálculo III (2025) PLEV Hallar adherencia, interior, conjunto de puntos de acumulación y frontera para:

Listado 1 Cálculo III (2025) PLEV Hallar adherencia, interior, conjunto de puntos de acumulación y frontera para: Universidad de Concepción Facultad de Ciencias Físicas y Matemáticas Departamento de Matemática Listado 1 Cálculo III (2025) PLEV 2018 1. Hallar adherencia, interior, conjunto de puntos de acumulación

Más detalles

Integrales de lı nea y de superficie

Integrales de lı nea y de superficie EJERIIO DE A LULO II PARA GRADO DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera 4 4.1 Integrales de lı nea y de superficie Integrales sobre curvas

Más detalles

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión 1 Guía de Estudio para la Sección de Matemáticas del Examen de Admisión 215-1 El material relativo al temario puede ser consultado en la amplia bibliografía que allí se menciona o en alguno de los muchísimos

Más detalles

Hoja de Prácticas tema 4: Integrales múltiples. (xy +x 2 +y 2 )dydx =

Hoja de Prácticas tema 4: Integrales múltiples. (xy +x 2 +y 2 )dydx = Cálculo II EPS (Grado TICS) Curso - Hoja de Prácticas tema 4: Integrales múltiples. Calcular ( + + )da en la región = {(,) R :, }. ( + + )da = ( + + )dd = ( + + = = d 5 = + + 9 d = 49. . Calcular cos()dd

Más detalles

Integral Doble e Integral Triple

Integral Doble e Integral Triple www.cidse.itcr.ac.cr/revistamate Práctica 6 Integral Doble e Integral Triple Cambio de variable con coordenadas polares y coordenadas ciĺındricas. Cálculo Superior Instituto Tecnológico de Costa ica Escuela

Más detalles

Lista de Ejercicios Complementarios

Lista de Ejercicios Complementarios Lista de Ejercicios omplementarios Matemáticas VI (MA-3) Verano. ean α >, β > y a, b R constantes. ea la superficie que es la porción del cono de ecuación z = α x + y que resulta de su intersección con

Más detalles

Integrales de Línea. Sabemos que una curva cerrada C paramétrica para a t b (en donde t es el parámetro), se representa por:

Integrales de Línea. Sabemos que una curva cerrada C paramétrica para a t b (en donde t es el parámetro), se representa por: r (t) =x (t) î + y (t) ĵ + z (t) ˆk dr (t) =dx (t) î + dy (t) ĵ + dz (t) ˆk Las integrales que incluyen vectores de desplazamiento diferencial d r se llaman integrales de línea. onsideremos las siguientes

Más detalles

Solución y Pautas de Corrección

Solución y Pautas de Corrección Universidad de los Andes Departamento de Matemáticas MATE127 Cálculo Vectorial Examen Final (1/12/29) 1 Prob. 1 2 3 4 5 Valor 1 1 1 1 1 5 Puntos Nombre: Código: Sección: Escriba todo su análisis si desea

Más detalles

3. Expresar las siguientes figuras en (i) coordenadas cilíndricas (ii) coordenadas esféricas (a) x 2 + y 2 + z 2 = 25 (b) z 2 = 2(x 2 + y 2 ) B + 3

3. Expresar las siguientes figuras en (i) coordenadas cilíndricas (ii) coordenadas esféricas (a) x 2 + y 2 + z 2 = 25 (b) z 2 = 2(x 2 + y 2 ) B + 3 ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA DEPARTAMENTO ACADÉMICO DE INGENIERÍA ELÉCTRICA ACADEMIA DE MATEMÁTICAS GUÍA DE LA MATERIA DE CÁLCULO VECTORIAL TURNO VESPERTINO Junio 2011 I. SISTEMAS

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático Ejercicios de Fundamentos Matemáticos I Ingeniería de Telecomunicaciones Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada FUNDAMENTO MATEMÁTICO I Relación de Ejercicios N o

Más detalles

Matemáticas III Tema 6 Integrales de superficie

Matemáticas III Tema 6 Integrales de superficie Matemáticas III Tema 6 Integrales de superficie Rodríguez ánchez, F.J. Muñoz Ruiz, M.L. Merino Córdoba,. 214. OCW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia Creative Commons Attribution- NonComercial-hareAlike

Más detalles

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green ANÁLISIS MATEMÁTIO II - Grupo iencias 018 Práctica 9 ampos conservativos - Teorema de Green A. ampos conservativos 1. Mostrar que F x, y) = y cos x) i + x sen y) j no es un campo vectorial gradiente..

Más detalles

Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07.

Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07. Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander Monday, November 5, 2007 at 8:44 am (FA07.01,02) Para uso exclusivo en el salón de clase. 2007 c Julio C. Carrillo

Más detalles

Ejercicios Tercer Parcial del curso MA-1003.

Ejercicios Tercer Parcial del curso MA-1003. Ejercicios para MA 1003: álculo III 1 UNIVERIDAD DE OTA RIA FAULTAD DE IENIA EUELA DE MATEMÁTIA DEPARTAMENTO DE MATEMÁTIA APLIADA MA-1003 álculo III I ILO 2018 Ejercicios Tercer Parcial del curso MA-1003.

Más detalles

Segundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de x = r cos θ, y = r sen θ, z = θ,

Segundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de x = r cos θ, y = r sen θ, z = θ, egundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de 216 Este es un examen individual, no se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. ecuerde apagar

Más detalles

PEP 3. Responda 4 de los siguientes 9 problemas, escogiendo al menos uno de cada sección.

PEP 3. Responda 4 de los siguientes 9 problemas, escogiendo al menos uno de cada sección. Universidad de Santiago de Chile Cálculo odrigo Vargas do semestre 1 PEP Nombre: Nota: esponda de los siguientes 9 problemas, escogiendo al menos uno de cada sección. Sección 1. 1. Use coordenadas esféricas

Más detalles

Integral de Superfície sobre funciones escalares

Integral de Superfície sobre funciones escalares Integral de uperfície sobre funciones escalares Consideremos el problema del cálculo de la masa total de una lámina, cuya forma es la de una superfície simple. upongamos que la lámina es muy delgada y

Más detalles

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x 1. Hallar κ de manera que el flujo saliente del campo f ( x, = (x + y + z, 6y a través de la frontera del cuerpo x + y + z 16 x + y κ, 0 < k < 4 f : R R un campo vectorial definido por:. Sea γ ( t ) =

Más detalles

Definir la Integral del campo vectorial F sobre una superficie S como una suma de Riemann.

Definir la Integral del campo vectorial F sobre una superficie S como una suma de Riemann. .7. Integral de superfície de campos vectoriales. Otra de las aplicaciones importantes de la integral de superficies, es cuando se integra un campo vectorial sobre ella. El significado que adquiere este

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de 2003

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de 2003 CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de Ejercicio 1. Calcular el volumen del elipsoide x a + y b + z c 1. Probar que el elipsoide de volumen máximo,

Más detalles

TEORIA MATEMATICAS 5 PRIMER PARCIAL

TEORIA MATEMATICAS 5 PRIMER PARCIAL Def: Grafica de una función TEORIA MATEMATICAS 5 PRIMER PARCIAL Sea:. Definimos la grafica de f como el subconjunto de formado por los puntos, de en los que es un punto de U. Simbólicamente grafica es:

Más detalles

1. INTEGRALES MÚLTIPLES

1. INTEGRALES MÚLTIPLES 1. INTEGALES MÚLTIPLES 1. Calcular las siguientes integrales iteradas: 1. x x 7 y dy dx dx 1. x x y y dx dy 1 1 7. (1 + xy) dx dy 1 1 π/. x sen y dy dx 5. (x + y) dx dy 6/ 1 6. (x + y) 8 dx dy 616 5 1

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-112-4-V-1--217 CURSO: SEMESTRE: Primero CÓDIGO DEL CURSO: 112 TIPO DE EXAMEN: Examen Final Parcial FECHA DE

Más detalles

3.1 Integrales de línea. Integral en R Propiedades Longitud de arco Teorema de Green

3.1 Integrales de línea. Integral en R Propiedades Longitud de arco Teorema de Green 3.1 Integrales de línea Integral en R Propiedades Longitud de arco Teorema de Green Integración de una variable Operación inversa de la derivación. Integral definida de f de a a b, si el límite existe

Más detalles

CAPÍTULO 11. Teoremas Integrales.

CAPÍTULO 11. Teoremas Integrales. CAPÍTULO 11 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

Funciones reales de varias variables

Funciones reales de varias variables PROBLEMAS DE CÁLCULO II Curso 2-22 2 Funciones reales de varias variables. Dibuja las curvas de niveles,,..., 5 y la representación gráfica de las siguientes funciones a) f(x, y) = 5 x y b) f(x, y) = x

Más detalles

Parametrización de superficies Integrales de superficie. h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/

Parametrización de superficies Integrales de superficie. hp://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Parametrización de superficies Integrales de superficie h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Parametrización de una superficie en R 3 ea un dominio del espacio R 2, donde los puntos están definidos

Más detalles

gradiente de una función? Para esos valores, calcule la función potencial.

gradiente de una función? Para esos valores, calcule la función potencial. CAMPOS CONSERVATIVOS. FUNCIÓN POTENCIAL 1. Sea F = 4xy 3x ( z (, 2x (, 2x, z. Demuestre que Fdl trayectoria C. es independiente de la 2. Dado el campo vectorial F = 3x ( + 2y y ( e 3, 2x 2ye 3. Es posible

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 1 de Junio de x + x 2 y + y 3 =0, 2y + x 3 + xy 2 =0.

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 1 de Junio de x + x 2 y + y 3 =0, 2y + x 3 + xy 2 =0. ÁLULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 1 de Junio de 4 Ejercicio 1. Hallar los extremos absolutos de f (x, y) x + y e xy en el conjunto D (x, y) R : x + y 1 ª. Solución:

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. 2do. cuatrimestre de 2015 Práctica 2 - Integrales de superficie. Definición.1. Una superficie paramétrica (superficie a secas para nosotros) es un conjunto

Más detalles

CÁLCULO VECTORIAL SEMESTRE

CÁLCULO VECTORIAL SEMESTRE SERIE # 3 ÁLULO VETORIAL SEMESTRE 009- ÁLULO VETORIAL SEMESTRE: 009-1 Página 1) Sea el campo vectorial F (x, y,z)= ( 3x+ yz)i+( x+ y ) j + ( xz) k F d r. alcular x = + y lo largo de la curva :, del punto

Más detalles

x 2 + ln(x + z) y = 0 yz + e xz 1 = 0 define una curva C regular en un entorno de (1, 1, 0) y halle el plano normal a C en dicho punto.

x 2 + ln(x + z) y = 0 yz + e xz 1 = 0 define una curva C regular en un entorno de (1, 1, 0) y halle el plano normal a C en dicho punto. 1 Sea f : R R una función C 3 que satisface f(1, ) = (0, 0), y cuya matriz ( Hessiana ) en (1, ) es: 1 0 H = 0 Hallar todos los b ɛ R de manera que la función: g( = f( + 1 b b (y ) ) tenga extremo en (1,

Más detalles

Enunciado y solución del cuarto certamen de Cálculo 3. Viernes 5 de Julio de 2013 Prof: Roberto Cabrales

Enunciado y solución del cuarto certamen de Cálculo 3. Viernes 5 de Julio de 2013 Prof: Roberto Cabrales nunciado y solución del cuarto certamen de álculo. Viernes 5 de Julio de 1 Prof: oberto abrales 1 puntos). ean f y g son campos escalares en y F un campo vectorial en. 1. puntos) Muestre que divrotf))..

Más detalles

TEORIA ELECTROMAGNETICA FIZ 0321 (2)

TEORIA ELECTROMAGNETICA FIZ 0321 (2) TEORIA ELECTROMAGNETICA FIZ 0321 (2) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 2do. Semestre 2006 Solución de problemas de electrostática Ecuación de Laplace Coordenadas

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

Parametrización de curvas Integrales de linea. h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/

Parametrización de curvas Integrales de linea. hp://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Parametrización de curvas Integrales de linea h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Curvas en el espacio En el espacio, una curva se define por el corte de dos superficies. La forma más general

Más detalles

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Comentarios y ejemplos - Práctica 10

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Comentarios y ejemplos - Práctica 10 ANÁLII MATEMÁTICO II - Grupo Ciencias 218 Comentarios y ejemplos - Práctica 1 A. Parametrizaciones de superficies El concepto de parametrización de una superficie es análogo al de parametrización de una

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 010 Práctica 3: Diferenciación Derivadas parciales y direccionales 1. Sea f una función continua en x = a. Probar que f es derivable en x =

Más detalles

Solution: Sea R = r = x 2 +y 2 +z 2. (b) Cálculo directo. 1 x2 +y 2 +z 2 = 1 R. (c) f =

Solution: Sea R = r = x 2 +y 2 +z 2. (b) Cálculo directo. 1 x2 +y 2 +z 2 = 1 R. (c) f = Universidad de los Andes Departamento de Matemáticas MAT7 Cálculo Vectorial Tarea 3 Individual ntregue en clase a su profesor de la MAGISTRAL la semana 5 (Ma. 3 Vi. 6 Dic.). (4 points) [Rotacional, Divergencia,

Más detalles

1. Use el Teorema de Green para calcular el área de la región del. plano xy que satisface las desigualdades y x, x y, 8xy 1.

1. Use el Teorema de Green para calcular el área de la región del. plano xy que satisface las desigualdades y x, x y, 8xy 1. CÁLCULO VECTORIAL (54) SEGUNO PARCIAL (%) 9//9 EPARTAMENTO E APLICAA Use el Teorema de Green para calcular el área de la región del plano xy que satisface las desigualdades y x, x y, 8xy Halle el área

Más detalles

Cálculo de Geodésicas en Superficies de Revolución

Cálculo de Geodésicas en Superficies de Revolución Cálculo de Geodésicas en Superficies de Revolución Superficies de Revolución Sea S R 3 la superficie de revolución obtenida al girar una curva regular del plano XZ que no corte al eje Z alrededor del mismo.

Más detalles

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química UAM I Grupo 911 Febrero 213 Ejercicios Resueltos del Tema 2.2.6 Asignatura de Matemáticas Grado en Química Lista de ejercicios en estas páginas: 1 7 y 9 12. Nota: Los ejercicios pueden contener errores,

Más detalles

9. DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES.

9. DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES. 9 DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES 91 Derivadas parciales y direccionales de un campo escalar La noción de derivada intenta describir cómo resulta afectada una función y = f(x) por un cambio

Más detalles

Rotacional del campo magnético creado por corrientes estacionarias. Ley de Ampère

Rotacional del campo magnético creado por corrientes estacionarias. Ley de Ampère c Rafael R. Boix y Francisco Medina 1 Rotacional del campo magnético creado por corrientes estacionarias. Ley de Ampère Consideremos un conductor que ocupa un volumen τ. Sea r el vector de posición de

Más detalles

Soluciones de los ejercicios del examen final de la primera convocatoria

Soluciones de los ejercicios del examen final de la primera convocatoria Matemáticas III GI, curso 2015 2016 oluciones de los ejercicios del examen final de la primera convocatoria EJERIIO 1. De un campo escalar fx, y, z se sabe que es de clase R 3 y que su gradiente en el

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen del 14 de Septiembre de 2000 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen del 14 de Septiembre de 2000 Primera parte ÁLULO Primer curso de Ingeniero de Telecomunicación Examen del de Septiembre de Primera parte Ejercicio. Un flan tiene forma de tronco de paraboloide de revolución, siendo r y r losradiosdesusbasesyh su

Más detalles

1.5. Integral de línea de un campo Vectorial.

1.5. Integral de línea de un campo Vectorial. .5. Integral de línea de un campo Vectorial. Sea F ( xyz,, un campo vectorial continuo sobre R donde F representa un campo de fuerzas aplicado sobre una partícula cuya trayectoria puede ser descrita por

Más detalles

Problemas de Análisis Vectorial y Estadístico

Problemas de Análisis Vectorial y Estadístico Relación 1. Funciones Γ y β 1. Función Gamma Definimos la función gamma Γ(p) como: Demostrar que: Γ(p) = t (p 1) e t dt para p> a) Γ(1) = 1 b) Integrando por partes, ver que Γ(p) = (p 1)Γ(p 1) para p>1

Más detalles

Ejercicios típicos del segundo parcial

Ejercicios típicos del segundo parcial Ejercicios típicos del segundo parcial El segundo examen parcial consiste en tres ejercicios prácticos y dos teóricos, aunque esta frontera es muy difusa. Por ejemplo, el primer ejercicio de esta serie,

Más detalles

ACTIVIDADES GA ACTIVIDAD

ACTIVIDADES GA ACTIVIDAD ACTIVIDADES GA ACTIVIDAD 1: (Mié-12-Feb-14) a) Conteste Qué es y para qué sirve un Sistema de referencia? b) Conteste Qué es y para qué sirve un Sistema de coordenadas? c) Conteste Es lo mismo 'sistema

Más detalles

SEMINARIO 1: ELEMENTOS DIFERENCIALES DE LÍNEA, SUPERFICIE Y VOLUMEN

SEMINARIO 1: ELEMENTOS DIFERENCIALES DE LÍNEA, SUPERFICIE Y VOLUMEN SEMINARIO 1: ELEMENTOS DIFERENCIALES DE LÍNEA, SUPERFICIE Y VOLUMEN Sistemas de coordenadas 3D Transformaciones entre sistemas Integrales de línea y superficie SISTEMA COORDENADO CARTESIANO O RECTANGULAR

Más detalles

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES 9.1. Diferenciación 9.1.1. DERIVADAS PARCIALES Derivadas parciales de una función de dos variables Se llaman primeras derivadas parciales de una función f(x, y) respecto de x e y a las funciones: f x (x,

Más detalles

Coordenadas Generalizadas en el Espacio

Coordenadas Generalizadas en el Espacio Capítulo 3 Coordenadas Generalizadas en el Espacio Las coordenadas cartesianas usuales en R 3 pueden verse también como un sistema de tres familias de superficies en el espacio, de modo que cada punto

Más detalles

Aplicación del Teorema de Stockes

Aplicación del Teorema de Stockes Aplicación del Teorema de tockes kike0001 Universidad Nacional de olombia Bogotá D.. Junio de 2011 Indice La Ley de faraday 1 La Ley de faraday 2 ircuito en movimiento ircuito en movimiento ampo magnético

Más detalles

) + t( a 1 CILINDRO. = { P = Q( u) + ta / t! u! } Γ = Q F 1 ( u), F 2 ( u), F 3. Σ cil. ,a 3 ) / t! u! } ,a 2

) + t( a 1 CILINDRO. = { P = Q( u) + ta / t! u! } Γ = Q F 1 ( u), F 2 ( u), F 3. Σ cil. ,a 3 ) / t! u! } ,a 2 CILINDRO Conjunto de puntos en el espacio en donde se genera una superficie por una recta que se mantiene siempre paralela con respecto a otra, la cual pasa por una superficie plana contenida en alguno

Más detalles

MATEMÁTICAS 2. Curso 2016/17. Integración en varias variables.

MATEMÁTICAS 2. Curso 2016/17. Integración en varias variables. MATEMÁTICA 2. Curso 2016/17. Integración en varias variables. 1. Calcular para = [0, 1] [0, 3] las integrales (a) xydxdy. (b) xe y dxdy. (c) y 2 sin xdxdy. 2. Calcular las integrales dobles siguientes

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. Curso 2015/16. Integración en varias variables.

AMPLIACIÓN DE MATEMÁTICAS. Curso 2015/16. Integración en varias variables. AMPLIACIÓN DE MATEMÁTICA. Curso 2015/16. Integración en varias variables. 1. Calcular para = [0, 1] [0, 3] las integrales (a) xydxdy. (b) xe y dxdy. (c) y 2 sin xdxdy. 2. Calcular las integrales dobles

Más detalles