Laboratorio N 4: Sensibilidad de la Resistencia Dependiente de Luz (LDR) ante cambios de intensidad y longitud de onda.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Laboratorio N 4: Sensibilidad de la Resistencia Dependiente de Luz (LDR) ante cambios de intensidad y longitud de onda."

Transcripción

1 1 Facultad Escuela Lugar de Ejecución : Ingeniería. : Biomédica : Laboratorio de Biomédica Laboratorio N 4: Sensibilidad de la Resistencia Dependiente de Luz (LDR) ante cambios de intensidad y longitud de onda. Competencia Los estudiantes aprenderán los conceptos básicos para relacionar y analizar la intensidad y la longitud de onda de la luz emitida por un LED (del acrónimo inglés: light-emitting diode) y la sensibilidad de un dispositivo fotosensible LDR (por sus siglas en inglés: light-dependent resistor) el cual es un componente electrónico cuya resistencia varía en función de la luz. Utilizar los entrenadores e instrumentos virtuales para completar la práctica. Materiales y equipos NI LabVIEW. NI ELVIS II+. Computadora. Cables. Sensor Opto electrónico LDR Noción Teórica QUE ES LA LUZ VISIBLE? La luz es una radiación electromagnética que se propaga en forma de ondas. Las ondas que se pueden propagar en el vacío se llaman ONDAS ELECTROMAGNÉTICAS y como tales poseen algunas características que son:

2 2 Se propagan en el vacío a la velocidad de 300,000 km/s, que se conoce como "velocidad de la luz en el vacío" y se simboliza con la letra c (c = 300,000 km/s). La velocidad de la luz en el vacío no puede ser superada por la de ningún otro movimiento existente en la naturaleza. En cualquier otro medio, la velocidad de la luz es inferior. La energía transportada por las ondas es proporcional a su frecuencia, de modo que cuanto mayor es la frecuencia de la onda, mayor es su energía. Las ondas electromagnéticas se clasifican según su frecuencia como puede verse en el siguiente diagrama: Figura 1. Espectro de Radiaciones Electromagnéticas. Relación energía-longitud de onda La LUZ es la radiación visible del espectro electromagnético que podemos captar con nuestros ojos. Se propaga en línea recta. Se refleja cuando llega a una superficie reflectante. Cambia de dirección cuando pasa de un medio a otro (se refracta).

3 3 Un hecho que demuestra la propagación rectilínea de la luz es la formación de sombras. Una sombra es una silueta oscura con la forma del objeto. Qué es un LDR? Un LDR (Light Dependent Resistor) es una resistencia que varía su valor en función de la luz recibida, cuanta más luz recibe, menor es su resistencia. Está fabricado con un semiconductor de alta resistencia como puede ser el sulfuro de cadmio. Las células de sulfuro del cadmio se basan en la capacidad del cadmio de variar su resistencia según la cantidad de luz que incide la célula. Cuanta más luz incide, más baja es la resistencia. Las células son también capaces de reaccionar a una amplia gama de frecuencias, incluyendo infrarrojo (IR), luz visible, y ultravioleta (UV). El rango de resistencia que nos puede dar un LDR desde la total oscuridad hasta la plena luz, variará de un modelo a otro, pero en general oscilan entre unos 50Ω a 1000Ω cuando están completamente iluminadas y entre 50KΩ y varios MΩ cuando está completamente a oscuras. Los LDR también poseen distintos comportamientos a distintas longitudes de onda del espectro visible (colores). Figura 2. Aspecto físico de una LDR y su representación electrónica. Procedimiento PARTE I. Sensibilidad de un LDR ante la intensidad de luz incidente 1. Se examinara la respuesta de una LDR a la intensidad de luz del ambiente. 2. Conectar el entrenador NI ELVIS II+, abrir el Téster Digital de LabView.

4 4 3. Mida la resistencia del LDR ante la luz ambiente (luces del laboratorio encendidas) Valor: 4. Mida la resistencia del LDR ante la disminución de intensidad de luz ambiente (luces del laboratorio apagadas). Valor: 5. Mida la resistencia del LDR ante la disminución drástica de intensidad de luz ambiente (luces del laboratorio apagadas y LDR encerrado). Valor: PARTE II. Sensibilidad de un LDR en relación a la longitud de onda incidente. 1. Se examinara la respuesta de una LDR a la intensidad de radiación de una longitud de onda incidente. 2. Conecte la fuente de luz (Roja, Verde) en el circuito de divisor de voltaje de la Fuente de alimentación fija + 5 V del NI ELVIS II+, como se muestra en la siguiente figura: Figura 3. Conexión en el NI ELVIS del potenciómetro VR1 para variar voltaje de la Fuente de Luz. 3. Acople la fuente de luz a la LDR, sin aplicar energía al circuito. En esta posición, la fuente de luz extinguida bloquea a la luz externa, y la resistencia medida del LDR es la resistencia oscura. Registre la resistencia medida en la tabla 1.

5 5 4. A fin de obtener una lectura correcta, espere hasta que esta se estabilice (alrededor de 30 segundos) 5. Ajuste el potenciómetro VR1 y calibre la tensión VLDAR según los porcentajes de la tabla 1 (La posición física de la fuente de luz con relación a la celda permanece igual). Registre la resistencia LDR en cada caso. Además mida y registre la corriente aplicada a la fuente de luz. VLDAR(V) 0 5% 15% 30% 50% 60% 75% 85% 92% 100% ROJA VLDAR(V) ILS(mA) RLDR() VERDE VLDAR(V) ILS(mA) RLDR TABLA 1. Medición de la resistencia de la celda del LDR para cada una de las intensidades en longitudes de onda diferentes 6. Ahora intercambie Conectando la fuente de luz verde(o roja según sea el caso) en el circuito implementado en él NI ELVIS II+. 7. Repita el paso 5 con la nueva fuente de luz. Registre los datos en la tabla Represente gráficamente los resultados obtenidos en la tabla 1. Análisis de los resultados Presente los resultados obtenidos en la práctica. Incluya las gráficas y su análisis respectivo de la Tabla 1. Actividad de Investigación Complementaria 1. Construya en breadboard un detector de al menos 3 colores (colorímetro) utilizando LDR, el cual será probado en fecha programada en la planificación de laboratorios. 2. Investigue las propiedades de los Fotodiodos, los Fototransistores y las Optocuplas. 3. Simular al menos 2 circuitos que contengan estos elementos, tomando como base los circuitos del entrenador Venetta MCM-B6 que está en el laboratorio de biomédica.

6 6 Referencias 1. Introduction to Biomedical equipment, Joseph carr 2. Análisis Instrumental,Skoog, Douglas A. / Leary, James J. 3. Instrumentación y Medidas Biomédicas, Cromwell, Leslie / C National Instruments.

7 7 Hoja de cotejo: 4 Guía : Desarrollo y Act. Complementaria Alumno: Mesa No: Docente: GL: Fecha: EVALUACION % Nota CONOCIMIENTO (Aberturas, Velocidades, etc.) 20% Conocimiento deficiente de los fundamentos teóricos Conocimiento y explicación incompleta de los fundamentos teóricos Conocimiento completo y explicación clara de los fundamentos teóricos APLICACIÓN DEL CONOCIMIENTO 15% 15% 20% ACTITUD Trabajo en equipo Responsable: Guías de lab. 15% Es un Observador Pasivo. Participa Ocasionalmente o lo hace constantemente pero sin coordinación con sus compañeros de Puesto de trabajo. Participa propositiva e integralmente en toda la Practica. Manejo de Recursos: Actividad requerida para la práctica Análisis TOTAL 100% 15% Es Ordenado pero no hace un uso adecuado de los Recursos Hace un Uso de Recursos respetando las pautas de seguridad, pero es desordenado Hace un manejo responsable y adecuado de los Recursos de conformidad a pautas de seguridad e Higiene

Tema: Fuente de Alimentación de Rayos X

Tema: Fuente de Alimentación de Rayos X Facultad Escuela Lugar de Ejecución : Ingeniería. : Biomédica : Laboratorio de Biomédica Tema: Fuente de Alimentación de Rayos X Objetivos Analizar la fuente de alimentación de un sistema de rayos X Conocer

Más detalles

Bioinstrumentación, Guía 2

Bioinstrumentación, Guía 2 1 Tema: TERMOMETRÍA Facultad Escuela Lugar de Ejecución : Ingeniería. : Biomédica : Laboratorio de Biomédica Objetivos Conocer el principio de funcionamiento del termómetro analógico. Emplear de manera

Más detalles

Tema: Componentes Opto electrónicos

Tema: Componentes Opto electrónicos 1 Facultad Escuela Lugar de Ejecución : Ingeniería. : Biomédica : Laboratorio de Biomédica Tema: Componentes Opto electrónicos Objetivos - Definir el funcionamiento de los diodos emisores de luz (LED)

Más detalles

Tema: Componentes Opto electrónicos

Tema: Componentes Opto electrónicos 3 Bioinstrumentación Facultad Escuela Lugar de Ejecución : Ingeniería. : Biomédica : Laboratorio de Biomédica Tema: Componentes Opto electrónicos Objetivos Definir el funcionamiento de los diodos emisores

Más detalles

Tema: Manejo del Puerto Paralelo con LabView

Tema: Manejo del Puerto Paralelo con LabView Facultad: Ingeniería Escuela: Electrónica Asignatura: Interfaces y Periféricos Tema: Manejo del Puerto Paralelo con LabView Objetivos Específicos. Configurar la entrada y salida del puerto paralelo por

Más detalles

1. Conecte la tarjeta EB-111 introduciéndola por las guías del PU-2000 hasta el conector.

1. Conecte la tarjeta EB-111 introduciéndola por las guías del PU-2000 hasta el conector. 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). DIODO ZENER Objetivos específicos Trazar la curva característica

Más detalles

Amplificador inversor y no inversor

Amplificador inversor y no inversor Facultad Escuela Lugar de Ejecución : Ingeniería. : Electrónica : Fundamentos Generales (Edificio 3, 2da planta) Amplificador inversor y no inversor Objetivo General Implementar los circuitos amplificadores

Más detalles

Siempre que tenga duda del procedimiento a realizar, consúltelo con el docente

Siempre que tenga duda del procedimiento a realizar, consúltelo con el docente 1 Facultad Escuela Lugar de Ejecución : Ingeniería. : Biomédica : Laboratorio de Biomédica Biopotenciales Objetivos Describir el funcionamiento de un circuito básico para adquisición de biopotenciales.

Más detalles

Filtros Activos de Primer Orden

Filtros Activos de Primer Orden Facultad Escuela Lugar de Ejecución : Ingeniería. : Electrónica : Fundamentos Generales (Edificio 3, 2da planta) Filtros Activos de Primer Orden Objetivos Específicos Medir las tensiones de entrada y salida

Más detalles

Tema: APLICACIÓN DEL TEMPORIZADOR 555

Tema: APLICACIÓN DEL TEMPORIZADOR 555 Sistemas Digitales. Guía 8 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas digitales Lugar de Ejecución: Fundamentos Generales. Tema: APLICACIÓN DEL TEMPORIZADOR 555 Objetivo general Aplicar

Más detalles

Electrónica II. Guía 2

Electrónica II. Guía 2 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). SUMADOR Y RESTADOR Objetivo general Verificar el correcto funcionamiento

Más detalles

Tema: Amplificador de Instrumentación

Tema: Amplificador de Instrumentación Instrumentación Industrial. Guía 1 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Instrumentación Industrial Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta) Tema: Amplificador

Más detalles

Filtros Activos de Segundo Orden

Filtros Activos de Segundo Orden Facultad Escuela Lugar de Ejecución : Ingeniería. : Electrónica : Fundamentos Generales (Edificio 3, 2da planta) Filtros Activos de Segundo Orden Objetivos Específicos Medir las tensiones de entrada y

Más detalles

Tema: SÍNTESIS DE CIRCUITOS LÓGICOS.

Tema: SÍNTESIS DE CIRCUITOS LÓGICOS. Sistemas Digitales. Guía 5 1 Tema: SÍNTESIS DE CIRCUITOS LÓGICOS. Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas digitales Lugar de Ejecución: Fundamentos Generales. Objetivo general Sintetizar

Más detalles

Tema: Aplicación de un sistema de control de velocidad en un motor hidráulico.

Tema: Aplicación de un sistema de control de velocidad en un motor hidráulico. 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas de Control Automático. Lugar de ejecución: Hidráulica (Edificio 6, 2da planta). Tema: Aplicación de un sistema de control de velocidad

Más detalles

Tema: USO DE CODIFICADORES Y DECODIFICADORES.

Tema: USO DE CODIFICADORES Y DECODIFICADORES. Sistemas Digitales. Guía 6 1 Tema: USO DE CODIFICADORES Y DECODIFICADORES. Objetivo general Aplicar codificadores y decodificadores Objetivos específicos Utilizar codificadores para la introducción de

Más detalles

LA LUZ. 1.- Qué es la luz?

LA LUZ. 1.- Qué es la luz? 1.- Qué es la luz? LA LUZ La luz es una radiación que se propaga en forma de ondas. Las ondas que se pueden propagar en el vacío se llaman ONDAS ELECTROMAGNÉTICAS. La luz es una radiación electromagnética.

Más detalles

Transformada de Fourier

Transformada de Fourier 1 Facultad: Ingeniería Escuela: Ingeniería Biomédica Asignatura: Procesamiento de Señales Biomédicas Transformada de Fourier Objetivo 1. Aplicar la DFT para identificar frecuencias dominantes en una señal

Más detalles

Laboratorio Clínico. Tema: GASÓMETRO. Objetivos

Laboratorio Clínico. Tema: GASÓMETRO. Objetivos 1 Facultad Escuela Lugar de Ejecución : Ingeniería. : Biomédica : Laboratorio de Biomédica Tema: GASÓMETRO Objetivos Que el estudiante tenga la habilidad de analizar los diferentes componentes comprenden

Más detalles

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ELECTRÓNICA Y BIOMÉDICA

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ELECTRÓNICA Y BIOMÉDICA UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ELECTRÓNICA Y BIOMÉDICA CICLO: I/215 GUIA DE LABORATORIO #8 Nombre de la Practica: Circuitos Rectificadores de Onda Lugar de Ejecución: Fundamentos

Más detalles

Tema: Amplificador de Instrumentación

Tema: Amplificador de Instrumentación 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Instrumentación Industrial Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta) Tema: Amplificador de Instrumentación Objetivo

Más detalles

Electrónica II. Guía 4

Electrónica II. Guía 4 Electrónica II. Guía 4 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). COMPARADORES Objetivo General Verificar

Más detalles

Aplicación de un sistema de control de velocidad en un motor hidráulico.

Aplicación de un sistema de control de velocidad en un motor hidráulico. Sistemas de Control Automático. Guía 8 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas de Control Automático. Lugar de ejecución: Hidráulica y Neumática (Edificio 6, 2da planta). Aplicación

Más detalles

OSCILADORES SENOIDALES

OSCILADORES SENOIDALES 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). OSCILADORES SENOIDALES Objetivo general Verificar el correcto

Más detalles

AMPLIFICADOR INVERSOR Y NO INVERSOR

AMPLIFICADOR INVERSOR Y NO INVERSOR 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). AMPLIFICADOR INVERSOR Y NO INVERSOR Objetivo general Determinar

Más detalles

RECTIFICACIÓN. Objetivos específicos. Materiales y equipo. Procedimiento

RECTIFICACIÓN. Objetivos específicos. Materiales y equipo. Procedimiento Electrónica I. Guía 3 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). RECTIFICACIÓN Objetivos específicos Observar

Más detalles

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION Electrónica I. Guía 1 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). DIODO DE UNION Objetivos generales Identificar

Más detalles

TEMA: DIPOLO SIMPLE Y DIPOLO PLEGADO. Objetivos. Facultad: Ingeniería Escuela: Electrónica Asignatura: Propagación y antenas. Equipos y materiales

TEMA: DIPOLO SIMPLE Y DIPOLO PLEGADO. Objetivos. Facultad: Ingeniería Escuela: Electrónica Asignatura: Propagación y antenas. Equipos y materiales Propagación y antenas. Guía 1 1 TEMA: DIPOLO SIMPLE Y DIPOLO PLEGADO Facultad: Ingeniería Escuela: Electrónica Asignatura: Propagación y antenas Objetivos Medir parámetros de interés en un Dipolo Simple

Más detalles

Comprobar el funcionamiento de convertidores A/D y D/A. Verificar el funcionamiento de un convertidor digital a análogo.

Comprobar el funcionamiento de convertidores A/D y D/A. Verificar el funcionamiento de un convertidor digital a análogo. Sistemas Digitales. Guía 10 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas digitales Lugar de Ejecución: Fundamentos Generales. Edificio 3. Tema: CONVERTIDORES. Objetivo general Comprobar

Más detalles

AMPLIFICADOR INVERSOR Y NO INVERSOR. Objetivo general. Objetivos específicos. Prelaboratorio. Materiales y equipo

AMPLIFICADOR INVERSOR Y NO INVERSOR. Objetivo general. Objetivos específicos. Prelaboratorio. Materiales y equipo Electrónica II. Guía 3 1 AMPLIFICADOR INVERSOR Y NO INVERSOR Objetivo general Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.21

Más detalles

FILTROS ACTIVOS DE SEGUNDO ORDEN

FILTROS ACTIVOS DE SEGUNDO ORDEN Electrónica II. Guía 5 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). FILTROS ACTIVOS DE SEGUNDO ORDEN Objetivo

Más detalles

Tema: S7-1200, Valores Analógicos.

Tema: S7-1200, Valores Analógicos. Autómatas Programables. Guía 7 1 Tema: S7-1200, Valores Analógicos. Objetivo General Conocer como se opera con valores analógicos en el PLC S7-1200 de Siemens Objetivos Específicos Conectar correctamente

Más detalles

Sistemas de lazo Abierto y lazo cerrado

Sistemas de lazo Abierto y lazo cerrado Sistemas de Control Automático. Guía 3 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas de Control Automático. Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta).

Más detalles

Tema: S7-1200, Valores Analógicos.

Tema: S7-1200, Valores Analógicos. Autómatas Programables. Guía 7 1 Tema: S7-1200, Valores Analógicos. Objetivo General Conocer como se opera con valores analógicos en el PLC S7-1200 de Siemens Objetivos Específicos Conectar correctamente

Más detalles

Tema: Controladores tipo P, PI y PID

Tema: Controladores tipo P, PI y PID Sistemas de Control Automático. Guía 5 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas de Control Automático. Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta).

Más detalles

PARTE I. CURVA CARACTERISTICA

PARTE I. CURVA CARACTERISTICA 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). DIODO ZENER Objetivos generales Analizar el comportamiento del

Más detalles

Tema: S7-200, Escalado de Valores analógicos

Tema: S7-200, Escalado de Valores analógicos Autómatas Programables. Guía 8 1 Tema: S7-200, Escalado de Valores analógicos Objetivo General Configurar las entradas analógicas del módulo EM235 en el S7-200 Objetivos Específicos Conectar correctamente

Más detalles

FILTROS ACTIVOS DE PRIMER ORDEN. Objetivo general. Objetivos específicos. Materiales y equipo

FILTROS ACTIVOS DE PRIMER ORDEN. Objetivo general. Objetivos específicos. Materiales y equipo Electrónica II. Guía 4 FILTROS ACTIVOS DE PRIMER ORDEN Objetivo general Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.2 (Edificio

Más detalles

FACULTAD DE CIENCIA Y TECNOLOGÍA

FACULTAD DE CIENCIA Y TECNOLOGÍA FACULTAD DE CIENCIA Y TECNOLOGÍA Informe de Práctica #4 C i r c u i t o d e L i n e a l i z a c i ó n p a r a u n a f o t o r r e s i s t e n c i a ( LDR) ESCUELA: Ingeniería Electrónica ASIGNATURA: DOCENTE:

Más detalles

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica Ingeniería Civil en Mecánica

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica Ingeniería Civil en Mecánica INGENIERÍA CIVIL EN MECÁNICA PLAN 2012 GUÍA DE LABORATORIO ASIGNATURA Automatización y Robótica CÓDIGO 15179 NIVEL 10 EXPERIENCIA C04 Automatización de un sistema de Iluminación Automatización de un sistema

Más detalles

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION. Electrónica I. Guía 2 1

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION. Electrónica I. Guía 2 1 Electrónica I. Guía 2 1 DIODO DE UNION Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). Objetivos generales

Más detalles

Tema: Sistemas de lazo abierto y lazo cerrado

Tema: Sistemas de lazo abierto y lazo cerrado 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas de Control Automático. Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta). Se hará en dos sesiones Tema: Sistemas

Más detalles

INTERRUPTOR CREPUSCULAR CON LDR Y ARDUINO OBJETIVOS MATERIAL NECESARIO

INTERRUPTOR CREPUSCULAR CON LDR Y ARDUINO OBJETIVOS MATERIAL NECESARIO INTERRUPTOR CREPUSCULAR CON LDR Y ARDUINO OBJETIVOS Aprender mediante una aplicación práctica el funcionamiento de una LDR. Aprender cómo se utilizan las entradas analógicas de ARDUINO. MATERIAL NECESARIO

Más detalles

Tema: Modulación de Ángulo Primera Parte. Objetivos. Equipos y materiales. Procedimiento

Tema: Modulación de Ángulo Primera Parte. Objetivos. Equipos y materiales. Procedimiento 1 Tema: Modulación de Ángulo Primera Parte Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación I Objetivos Conocer las características en el dominio del tiempo de una señal de

Más detalles

Tema: MEDICIÓN DE FRECUENCIA, VSWR, LONGITUD DE ONDA Y POTENCIA EN TECNOLOGÍA DE GUÍA ONDAS

Tema: MEDICIÓN DE FRECUENCIA, VSWR, LONGITUD DE ONDA Y POTENCIA EN TECNOLOGÍA DE GUÍA ONDAS Líneas de transmisión. Guía 8 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Líneas de transmisión Tema: MEDICIÓN DE FRECUENCIA, VSWR, LONGITUD DE ONDA Y POTENCIA EN TECNOLOGÍA DE GUÍA ONDAS Objetivos

Más detalles

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN ELECTRÓNICA Y BIOMÉDICA

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN ELECTRÓNICA Y BIOMÉDICA UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN ELECTRÓNICA Y BIOMÉDICA CICLO: 01-2013 GUIA DE LABORATORIO # 3 Nombre de la Práctica: Optoelectrónica Lugar de Ejecución: Laboratorio

Más detalles

Laboratorio N 3: TERMOMETRÍA

Laboratorio N 3: TERMOMETRÍA 1 Facultad Escuela Lugar de Ejecución : Ingeniería. : Biomédica : Laboratorio de Biomédica Laboratorio N 3: TERMOMETRÍA Objetivos Conocer el principio de funcionamiento del termómetro analógico. Emplear

Más detalles

Sistemas de lazo Abierto y lazo cerrado

Sistemas de lazo Abierto y lazo cerrado Sistemas de Control Automático. Guía 2 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas de Control Automático. Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta).

Más detalles

CARACTERÍSTICAS DEL FET EN DC.

CARACTERÍSTICAS DEL FET EN DC. Electrónica I. Guía 10 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). CARACTERÍSTICAS DEL FET EN DC. Objetivos

Más detalles

Tema: USO DE MULTIPLEXORES Y DEMULTIPLEXORES.

Tema: USO DE MULTIPLEXORES Y DEMULTIPLEXORES. Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas digitales Lugar de Ejecución: Fundamentos Generales. Tema: USO DE MULTIPLEXORES Y DEMULTIPLEXORES. Objetivo general Aplicar dispositivos MSI

Más detalles

Tema: Uso del analizador espectral.

Tema: Uso del analizador espectral. Sistemas de Comunicación I. Guía 1 1 I Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación Tema: Uso del analizador espectral. Objetivos Conocer el funcionamiento de un Analizador

Más detalles

XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física

XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física PRUEBA EXPERIMENTAL A NOMBRE: RUT: CURSO: NUMERO TOTAL DE PAGINAS ESCRITAS: PUNTAJE TOTAL La constante de Planck de la física cuántica y

Más detalles

CARACTERISTICAS DEL JFET.

CARACTERISTICAS DEL JFET. Electrónica I. Guía 4 1 / 1 CARACTERISTICAS DEL JFET. Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta, Aula 3.21).

Más detalles

ONDAS PARA COMPLETAR VUESTROS APUNTES DEL LIBRO

ONDAS PARA COMPLETAR VUESTROS APUNTES DEL LIBRO ONDAS PARA COMPLETAR VUESTROS APUNTES DEL LIBRO ONDAS Una onda es una perturbación que se propaga. Con la palabra perturbación se quiere indicar cualquier tipo de alteración del medio: una ondulación en

Más detalles

SENSOR INFRARROJO EMISOR Y RECEPTOR

SENSOR INFRARROJO EMISOR Y RECEPTOR SENSOR INFRARROJO EMISOR Y RECEPTOR Marco Teorico Diodo LED Un diodo es un dispositivo electrónico provisto de dos electrodos, cátodo y ánodo, que tiene la propiedad de ser conductor en el sentido cátodo-ánodo,

Más detalles

Instrumentación para diagnostico y tratamiento medico. Tema: ELECTROCIRUGÍA. Objetivos

Instrumentación para diagnostico y tratamiento medico. Tema: ELECTROCIRUGÍA. Objetivos 1 Facultad Escuela Lugar de Ejecución : Ingeniería. : Biomédica : Laboratorio de Biomédica Tema: ELECTROCIRUGÍA Objetivos Que el estudiante pueda analizar los elementos que comprenden una unidad de electrocirugía.

Más detalles

FILTROS ACTIVOS DE PRIMER ORDEN

FILTROS ACTIVOS DE PRIMER ORDEN Electrónica II. Guía 4 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). FILTROS ACTIVOS DE PRIMER ORDEN Objetivo

Más detalles

INTRODUCCIÓN A LOS AMPLIFICADORES OPERACIONALES. Objetivo general. Objetivos específicos. Materiales y equipo. Introducción Teórica

INTRODUCCIÓN A LOS AMPLIFICADORES OPERACIONALES. Objetivo general. Objetivos específicos. Materiales y equipo. Introducción Teórica Electrónica II. Guía 2 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). INTRODUCCIÓN A LOS AMPLIFICADORES

Más detalles

Verificar experimentalmente la operación teórica de dos tipos de reguladores de voltaje.

Verificar experimentalmente la operación teórica de dos tipos de reguladores de voltaje. Electrónica II. Guía 9 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). REGULADORES DE VOLTAJE Objetivo

Más detalles

LA FOTO-RESISTENCIA. Brevemente podríamos definir una fotorresistencia como un transistor bipolar capaz de detectar variaciones de luz.

LA FOTO-RESISTENCIA. Brevemente podríamos definir una fotorresistencia como un transistor bipolar capaz de detectar variaciones de luz. LA FOTO-RESISTENCIA Brevemente podríamos definir una fotorresistencia como un transistor bipolar capaz de detectar variaciones de luz. Sin embargo este dispositivo encierra una mayor complejidad y merece

Más detalles

La ley de desplazamiento de Wien (Premio Nobel 1911):

La ley de desplazamiento de Wien (Premio Nobel 1911): Trabajo de laboratorio Nro 1: Verificación de la ley de Stefan Boltzmann y determinación de la constante de Planck mediante el análisis de la radiación del cuerpo negro Introducción Toda superficie cuya

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE Ing. Aeroespacial 2009-3 11352 Mediciones eléctricas y electrónicas PRÁCTICA No. 4 LABORATORIO DE NOMBRE DE LA

Más detalles

Modelado de un motor de corriente continua.

Modelado de un motor de corriente continua. Sistemas de Control Automático. Guía 8 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas Control Automático. Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta). Modelado

Más detalles

Segunda. Indispensable la utilización del libro de texto, atlas de anatomía o algún otro recurso que apoye el aprendizaje

Segunda. Indispensable la utilización del libro de texto, atlas de anatomía o algún otro recurso que apoye el aprendizaje 1 Lugar de Ejecución: Laboratorio de Biomédica Tema: ARTICULACIONES Objetivos de aprendizaje: 1. Describir una articulación 2. Hacer una revisión rápida de los principales huesos del cuerpo humano 3. Reconocer

Más detalles

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Automatización Industrial Mecánica. TEMA: Adquisición de datos

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Automatización Industrial Mecánica. TEMA: Adquisición de datos TEMA: Adquisición de datos Ejercicio: Recibir señales mediante el modulo NI USB 6009 Objetivo: Recibir señales analógicas y digitales mediante modulo NI USB 6009. Teoría: El modulo NI USB 6009, es un dispositivo

Más detalles

TEMA: Directores y Reflectores. Objetivos. Facultad: Ingeniería Escuela: Electrónica Asignatura: Propagación y antenas. Equipos y materiales

TEMA: Directores y Reflectores. Objetivos. Facultad: Ingeniería Escuela: Electrónica Asignatura: Propagación y antenas. Equipos y materiales 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Propagación y antenas TEMA: Directores y Reflectores. Objetivos Constatar la influencia de los elementos parásitos actuando como directores y reflectores

Más detalles

ÍNDICE CAPÍTULO 1 INTRODUCCIÓN 1 CAPÍTULO 2 SISTEMAS DE ILUMINACIÓN BALASTROS PARA LÁMPARAS FLUORESCENTES, 23

ÍNDICE CAPÍTULO 1 INTRODUCCIÓN 1 CAPÍTULO 2 SISTEMAS DE ILUMINACIÓN BALASTROS PARA LÁMPARAS FLUORESCENTES, 23 ÍNDICE CAPÍTULO 1 INTRODUCCIÓN 1 1.1 PLANTEAMIENTO DEL PROBLEMA, 2 1.2 OBJETIVO, 3 1.3 METODOLOGÍA, 4 CAPÍTULO 2 SISTEMAS DE ILUMINACIÓN 6 2.1 TIPOS DE LÁMPARAS, 7 2.1.1 TÉRMINOS PARA LÁMPARAS, 8 2.2.1.1

Más detalles

Practica 02: Acondicionamiento de sensores resistivos

Practica 02: Acondicionamiento de sensores resistivos Practica 02: Acondicionamiento de sensores resistivos M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com edfrancom@ipn.mx @edfrancom edgardoadrianfrancom 1 Contenido Introducción Objetivos

Más detalles

Analógicos. Digitales. Tratan señales digitales, que son aquellas que solo pueden tener dos valores, uno máximo y otro mínimo.

Analógicos. Digitales. Tratan señales digitales, que son aquellas que solo pueden tener dos valores, uno máximo y otro mínimo. Electrónica Los circuitos electrónicos se clasifican en: Analógicos: La electrónica estudia el diseño de circuitos que permiten generar, modificar o tratar una señal eléctrica. Analógicos Digitales Tratan

Más detalles

CURSO: ELECTRÓNICA INDUSTRIAL UNIDAD 4: OPTOELECTRÓNICA PROFESOR: JORGE POLANÍA 1. EL FOTOTRANSISTOR

CURSO: ELECTRÓNICA INDUSTRIAL UNIDAD 4: OPTOELECTRÓNICA PROFESOR: JORGE POLANÍA 1. EL FOTOTRANSISTOR CURSO: ELECTRÓNICA INDUSTRIAL UNIDAD 4: OPTOELECTRÓNICA PROFESOR: JORGE POLANÍA 1. EL FOTOTRANSISTOR Es un transistor que tiene la juntura colector base fotosensible. La corriente inducida por efectos

Más detalles

Tema: Procesadora de Película Radiográfica

Tema: Procesadora de Película Radiográfica Facultad Escuela Lugar de Ejecución : Ingeniería. : Biomédica : Laboratorio de Biomédica Tema: Procesadora de Película Radiográfica Objetivos Que el estudiante pueda analizar los elementos que comprenden

Más detalles

CIRCUITOS RECTIFICADORES

CIRCUITOS RECTIFICADORES Electrónica I. Guía 2 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). CIRCUITOS RECTIFICADORES Objetivos generales

Más detalles

Tema: Manejo del Puerto Serie con LabView

Tema: Manejo del Puerto Serie con LabView Facultad: Ingeniería Escuela: Electrónica Asignatura: Interfaces y Periféricos Tema: Manejo del Puerto Serie con LabView Objetivos Específicos. Configurar la entrada y salida del puerto serie por medio

Más detalles

Programa de Tecnologías Educativas Avanzadas. Bach. Pablo Sanabria Campos

Programa de Tecnologías Educativas Avanzadas. Bach. Pablo Sanabria Campos Programa de Tecnologías Educativas Avanzadas Bach. Pablo Sanabria Campos Agenda Conceptos básicos. Relación entre corriente, tensión y resistencia. Conductores, aislantes y semiconductores. Elementos importantes

Más detalles

LECCIÓN N 4 SENSORES Y ACTUADORES

LECCIÓN N 4 SENSORES Y ACTUADORES TEMA II II INSTRUMENTACIÓN N ELECTRÓNICA Electrónica General 1 LECCIÓN N 4 SENSORES Y ACTUADORES Introducción. Procesos de medida Características de los sensores. Tipos Sensores de temperatura Sensores

Más detalles

GUÍA DE APOYO N 1. Estimadas alumnas

GUÍA DE APOYO N 1. Estimadas alumnas GUÍA DE APOYO N 1 LICEO BICENTENARIO TERESA PRATS FÍSICA PRIMERO MEDIO PROF. ELIANA TOLEDO RAÚL HORTA Estimadas alumnas Les presentamos la primera Guía de apoyo para la preparación del examen final. Deben

Más detalles

Tema: Medición Óptica de Ángulo

Tema: Medición Óptica de Ángulo Instrumentación Industrial. Guía 3 1 Tema: Medición Óptica de Ángulo Objetivo General Analizar los procedimientos fundamentales para la medición de ángulo. Objetivos Específicos Experimentar con el codificador

Más detalles

Tema: Encontrando fallas en un sistema de control automático con un controlador PID.

Tema: Encontrando fallas en un sistema de control automático con un controlador PID. 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas de Control Automático. Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta). Tema: Encontrando fallas en un sistema

Más detalles

Tema: Medición de nivel con un sensor ultrasónico

Tema: Medición de nivel con un sensor ultrasónico Instrumentación Industrial. Guía 10 1 Tema: Medición de nivel con un sensor ultrasónico Objetivo General Utilizar el transmisor de nivel por ultrasonido de uso industrial model LIT25 de Greyline Instruments

Más detalles

CIRCUITOS CON RESISTENCIAS

CIRCUITOS CON RESISTENCIAS CIRCUITOS CON RESISTENCIAS Divisores de voltaje Videotutorial de la práctica A. DESCRIPCIÓN En esta práctica vamos a montar una serie de circuitos, con diferentes tipos de resistencias, para estudiar lo

Más detalles

I.E.S. MARTÍNEZ MONTAÑÉS DEPARTAMENTO DE FÍSICA Y QUÍMICA ÓPTICA

I.E.S. MARTÍNEZ MONTAÑÉS DEPARTAMENTO DE FÍSICA Y QUÍMICA ÓPTICA Cuestiones ÓPTICA 1. a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? 2. a) Qué es una onda electromagnética?

Más detalles

Segunda. Indispensable la utilización del libro de texto, atlas de anatomía o algún otro recurso que apoye el aprendizaje

Segunda. Indispensable la utilización del libro de texto, atlas de anatomía o algún otro recurso que apoye el aprendizaje 1 Asignatura: Lugar de Ejecución: Laboratorio de Biomédica Tema: ARTICULACIONES Objetivos de aprendizaje: 1. Describir una articulación 2. Hacer una revisión rápida de los principales huesos del cuerpo

Más detalles

I. RESULTADOS DE APRENDIZAJE

I. RESULTADOS DE APRENDIZAJE UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELÉCTRICA Y MECÁNICA CICLO: 01-2013 GUIA DE LABORATORIO # 1 Nombre de la Práctica: Uso del óhmetro Parte I. Lugar de Ejecución: Laboratorio

Más detalles

AUIN 1516 sensor G1. Sensor de luminosidad es un mecanismo o componente electrónico que responde al cambio en la intensidad de la luz.

AUIN 1516 sensor G1. Sensor de luminosidad es un mecanismo o componente electrónico que responde al cambio en la intensidad de la luz. Contingut 1 Sensor de luminosidad 2 Introducción AUIN 1516 sensor G1 3 Tipos de dispositivos de fotoeléctricos 3.1 Fotoemisora 3.2 Fotoconductor 3.3 Fotovoltaica 3.4 Fotojunction 4 Cómo funciona el sensor

Más detalles

Tema: Transformación de impedancias con líneas de transmisión

Tema: Transformación de impedancias con líneas de transmisión 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Líneas de transmisión Tema: Transformación de impedancias con líneas de transmisión Objetivos Medir impedancia Demostrar la relación entre la impedancia

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE Ing. Aeroespacial 2009-3 11352 Mediciones eléctricas y electrónicas PRÁCTICA No. 6 LABORATORIO DE NOMBRE DE LA

Más detalles

Encontrando fallas en un sistema de control automático con un controlador PID.

Encontrando fallas en un sistema de control automático con un controlador PID. 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas de Control Automático. Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta). Encontrando fallas en un sistema de control

Más detalles

La luz y las ondas electromagnéticas

La luz y las ondas electromagnéticas La luz y las ondas electromagnéticas Cuestiones (96-E) a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? (96-E)

Más detalles

PUENTE DE WHEATSTONE

PUENTE DE WHEATSTONE PRÁCTICA DE LABORATORIO II-07 PUENTE DE WHEATSTONE OBJETIVOS Familiarizarse con la técnica de puente de Wheatstone para la medición de resistencias. Determinar la resistencia eléctrica de algunos elementos.

Más detalles

Objetivo general. Objetivos específicos. Materiales y equipo CIRCUITOS RECTIFICADORES. Electrónica I. Guía 3 1 / 9

Objetivo general. Objetivos específicos. Materiales y equipo CIRCUITOS RECTIFICADORES. Electrónica I. Guía 3 1 / 9 Electrónica I. Guía 3 1 / 9 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). CIRCUITOS RECTIFICADORES

Más detalles

GL: No. de Mesa: Fecha: CARNET INTEGRANTES (Apellidos, nombres) FIRMA SECCION NOTA

GL: No. de Mesa: Fecha: CARNET INTEGRANTES (Apellidos, nombres) FIRMA SECCION NOTA UNIVERSIDAD TECNOLÓGICA DE EL SALVADOR FACULTAD DE INFORMATICA Y CIENCIAS APLICADAS ESCUELA DE CIENCIAS APLICADAS DEPARTAMENTO DE MATEMATICA Y CIENCIAS CATEDRA DE FISICA FISICA III, CICLO 02-2015 LABORATORIO

Más detalles

Universidad Nacional de San Juan Facultad de Filosofía Humanidades y Artes Depto. de Física y Química Profesorado en Física ELECTRÓNICA

Universidad Nacional de San Juan Facultad de Filosofía Humanidades y Artes Depto. de Física y Química Profesorado en Física ELECTRÓNICA Universidad Nacional de San Juan Facultad de Filosofía Humanidades y Artes Depto. de Física y Química Profesorado en Física ELECTRÓNICA Control de iluminación Eloísa María Santander Año 2011 1 Introducción

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE Ing. Aeroespacial 2009-3 11352 Mediciones eléctricas y electrónicas PRÁCTICA No. 7 LABORATORIO DE NOMBRE DE LA

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÌSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÌSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÌSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO LABORATORIO 2: USO DE INSTRUMENTOS DE MEDICIÓN ELÉCTRICA (PARTE II) I. OBJETIVOS OBJETIVO

Más detalles

El controlador On-Off (si-no o todo y nada).

El controlador On-Off (si-no o todo y nada). 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas de Control Automático. Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta). El controlador On-Off (si-no o todo y nada).

Más detalles