1. Objetivos. 2. Idea Principal. Teoría de Autómatas y Lenguajes Formales. Boletín de Autoevaluación 3: Cómo se minimiza un AFD?.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Objetivos. 2. Idea Principal. Teoría de Autómatas y Lenguajes Formales. Boletín de Autoevaluación 3: Cómo se minimiza un AFD?."

Transcripción

1 Teoría de Autómatas y Lenguajes Formales Boletín de Autoevaluación 3: Cómo se minimiza un AFD?.. Objetivos. El objetivo de este boletín es ilustrar uno de los métodos ue permiten obtener el Autómata Finito Determinista Mínimo euivalente a un AF dado mediante ejemplos y, además, proporcionar la solución a alguno de los problemas propuestos en el boletín para ue podáis comprobar si habéis aplicado bien este método. 2. Idea Principal. En teoría se ha presentado el teorema de Myhill-Nerode, cuya importancia radica en ue establece la existencia de un AFD mínimo para aceptar un determinado lenguaje regular. Además, el teorema permite desarrollar un método para realizar este cálculo. Es posible ue a uno se le escape la trascendencia de este resultado y la potencia con la ue dota a uien pretende solucionar un problema mediante el diseño de un Autómata Finito. Para comprenderla, podemos pensar en las otras clases de lenguajes y en el diseño de los autómatas asociados, Autómatas de Pila para la clase de contexto libre y Máuinas de Turing para la clase recursivamente enumerable. En el caso particular de las Máuinas de Turing, se puede establecer una euivalencia entre el diseño de estos autómatas y el diseño de algoritmos. Por lo tanto, si dispusiéramos de resultados ue permitieran calcular la Máuina de Turing mínima euivalente a una dada, de alguna forma se estaría estableciendo la posibilidad de obtener de forma mecánica algoritmos ue consuman el mínimo de recursos. Soñar no cuesta nada, pero parece ue va a ser ue no, ue no se puede establecer un resultado similar en las otras clases de lenguajes. Por lo tanto, nos conformaremos con aprender a aplicar bien este método sobre los AFs. El método se basa en el establecimiento de clases de euivalencia en el conjunto de estados del AF. Y la relación buscada se basa en definir ue p si, y sólo si, para cada cadena de entrada x, f(p, x) es un estado final si, y sólo si, f(, x) es un estado final. Además, se establece la siguiente notación: si p se dice ue p es euivalente a y en caso contrario se dice ue p es distinguible de. De alguna forma esto nos lleva a la idea intuitiva de ue seguro ue un estado final es distinguible de cualuier estado no final. Ese será nuestro punto de partida y nuestra principal referencia al aplicar el método.

2 3. Método para obtener el AFD Mínimo euivalente a un AFD dado. El cálculo de la relación se realiza por medio del siguiente método:. Sea Q el conjunto de estados del autómata. Hay ue estudiar todos los pares de estados y estudiar su euivalencia. Para ello se crea una tabla, en la ue filas y columnas están etiuetadas con estados y en la ue cada entrada representa a una pareja de estados del autómata. La tabla se construirá optimizada, ya ue contamos con la ventaja de saber ue buscamos relaciones de euivalencia. Así, si es un estado de Q entonces no necesitamos estudiar la pareja (,) (porue en una relación binaria de euivalencia se cumple la propiedad reflexiva); así, esa entrada no existe en la tabla. Asimismo, si y p son estados de Q, al estudiar la pareja (p,) también se está estudiando a la pareja (,p) (porue en una relación binaria de euivalencia se cumple la propiedad simétrica); por lo tanto, si en la tabla existe la entrada correspondiente a la pareja (,p) ya no es necesario ue haya otra para (p,). Es decir, no se construye una tabla de tamaño Q Q ; la tabla tendrá ( Q ) filas y ( Q ) columnas (no hace falta la diagonal), tendrá forma triangular inferior (para no duplicar estudio del mismo par), y cada fila y cada columna se etiueta con uno de los estados de Q. 2. Se marca cada entrada de la tabla ue se corresponde con una pareja (estado final, estado no final), porue todas esas parejas se corresponden con pares de estados distinguibles. 3. Para cada par de estados (p,) ue no se haya analizado hasta el momento, se consideran los pares de estados (r,s) tales ue r = f(, a) y s = f(p, a), para cada símbolo de entrada a. La teoría nos dice ue si los estados r y s son distinguibles para alguna cadena x, entonces los estados p y son distinguibles por la cadena ax. De acuerdo a esto, si la entrada (r,s) está marcada en la tabla, entonces también se marca la entrada (p,), y Si la entrada (r,s) no está marcada, entonces el par (p,) se coloca en una lista asociada con la entrada (r,s). Si posteriormente se marca la entrada (r,s), también se marcarán todas las parejas de la lista asociada. Al finalizar este proceso todas auellas entradas de la tabla ue ueden vacías identifican parejas de estados euivalentes. 3.. Ejemplo. Sea L = {x ( + ) S(x, ) = 2n S(x, ) = 2m}, es decir, el lenguaje formado por cadenas ue tienen un número par de símbolos y un número par de símbolos. Este lenguaje es aceptado por el AFD A, ue se muestra en la figura. Y ojo, ue con ue encontréis un símbolo para el cual podáis distinguir ya basta; es decir, no hagáis más trabajo del ue toca ;-) 2

3 Figura : Autómata Finito Determinista ue reconoce L. Comenzamos construyendo la tabla. En este ejemplo, la tabla correspondiente sería de la siguiente forma, 4 5 Aunue hay 6 estados, sólo dibujamos 5 filas y 5 columnas: no dibujamos la diagonal y sólo presentamos el triángulo inferior para no duplicar parejas. Una vez dibujada la tabla, comenzamos a rellenarla. Lo primero ue rellenamos (es nuestro punto de partida y una forma de sacarnos trabajo de encima ;-) son las entradas ue corresponden a pares de estados finales y no finales. En el ejemplo, se tienen las siguientes parejas de estados final/no final: X X 4 X X X 5 X X Y, ahora, se comienzan a rellenar las otras entradas. Trabajaremos por columnas:. Columna de : Sólo hay un par ue analizar, el par (, 4 ), f(, ) =, f( 4, ) = 5 f(, ) =, f( 4, ) = Para distinguir entre ( y 4 ) deberíamos poder distinguir entre ( y 5 ); por lo tanto, en la lista asociada a la entrada (, 5 ) almacenamos el par (, 4 ). 3

4 X X 4 X X X 5 X (,4) X 2. Columna de : Par (, ), f(, ) =, f(, ) = El análisis del par (, ) remite al par (, ) ue ya está marcado como distinguible porue es un par final/no final; por lo tanto, se marca. Ojo: fíjaos ue como con el análisis con el símbolo ya soy capaz de distinguir, no hago análisis con el. Par (, ), X X 4 X X X 5 X (,4) X f(, ) =, f(, ) = El análisis del par (, ) remite al par (, ), distinguible al ser un par final/no final; por lo tanto, marcamos también el par (, ). Par (, 5 ), X X 4 X X X 5 X (,4) X f(, ) =, f( 5, ) = 4 f(, ) =, f( 5, ) = El análisis del par (, 5 ) remite al par (, 4 ) hay ue almacenar el par (, 5 ) en la lista asociada al par (, 4 ): X X (,5) 4 X X X 5 X (,4) X 4

5 Esta situación a veces nos deja desconcertados: el par (, 4 ) está en la lista del par (, 5 ) porue el análisis del (, 4 ) remitía al (, 5 ). Pero ahora, el análisis del par (, 5 ) remite al par (, 4 ); por lo tanto, no se puede marcar ninguna de las dos entradas Columna de : Par (, ), f(, ) =, f(, ) = f(, ) = 4, f(, ) = 5 El par (, ) es distinguible si lo es el par ( 4, 5 ), y sí lo es, puesto ue su entrada está marcada. Por lo tanto, marcamos también la (, ): Par (, 5 ), X X (,5) 4 X X X 5 X (,4) X f(, ) =, f( 5, ) = 4 No hay ue continuar el análisis, puesto ue con el símbolo ya se puede distinguir: el par (, 4 ) es final/no final y está ya marcado. Marcamos también el par (, 5 ): 4. Columna de : Par (, 5 ), X X (,5) 4 X X X 5 X (,4) X f(, ) =, f( 5, ) = 4 También paramos ya el análisis porue con el símbolo nos remite al par (, 4 ), ue es final/no final y está ya marcado, lo ue permite distinguir entre ( y 5 ): 5. Columna de 4 : No hay pares sin analizar. X X (,5) 4 X X X 5 X (,4) X 2 Y esto, a veces, nos deja mosca ; pero es ue se nos olvida ue nuestro objetivo es dejar entradas sin marcar: una entrada no marcada uerrá decir un par de estados euivalentes y el consiguiente ahorro en el autómata. 5

6 Por lo tanto, la tabla al final presenta el siguiente aspecto: X X (,5) 4 X X X 5 X (,4) X Según esto, los estados y 5 son euivalentes, y lo mismo sucede con los estados y 4. El autómata obtenido es el presentado en la figura 2. [ 4 ] [5 ] [ ] [ ] Figura 2: Mínimo AFD ue reconoce L Ejemplo 2. Calcular el AFD mínimo ue reconoce el mismo lenguaje ue el representado en la figura Figura 3: AFD a minimizar. Como en el ejemplo anterior, se construye una tabla de 5 filas y 5 columnas (sólo triángulo inferior de la tabla y sin diagonal): 6

7 4 5 Comenzamos a rellenarla, marcando todos los pares de estados final/no final, y seguimos con el resto de la tabla, por columnas:. Columna de : Par (, ), f(, ) =, f(, ) = f(, ) =, f(, ) = Para distinguir entre ( y ) hay ue distinguir entre ( y ); así ue almacenamos el par (, ) en la lista de la entrada (, ). Par (, ), (,) f(, ) =, f(, ) = 5 No hace falta seguir: el análisis del par (, ) remite a (, 5 ) ue es distinguible. Par (, ), (,) f(, ) =, f(, ) = 5 Exactamente igual ue antes: el análisis del par (, ) remite al par (, 5 ), ue es distinguible. 7

8 (,) 2. Columna de : Par (, ), f(, ) =, f(, ) = 5 El par (, ) remite al par (, 5 ) ue ya sabemos ue es distinguible. Par (, ), (,) 3 f(, ) =, f(, ) = 5 De nuevo aparece una referencia al par (, 5 ), por lo ue y también son distinguibles. (,) 3 3. Columna de : Sólo hay un par de estados para analizar, el par (, ), f(, ) = 5, f(, ) = 5 f(, ) = 4, f(, ) = 4 Es imposible distinguirles. Esta entrada uedará en blanco (al igual ue la correspondiente al (, ): 4. Columna de : No hay pares sin analizar. 5. Columna de 4 : (,) 3 8

9 Par ( 4, 5 ), f( 4, ) =, f( 5, ) = f( 4, ) = 4, f( 5, ) = El símbolo lleva a 4 a un estado final ( 4 ) y a 5 a un estado no final ( ); por lo tanto, se puede distinguir entre ( 4 y 5 ): (,) Es decir, y Autoevaluación.. Obtener el AFD mínimo asociado: Solución:, 5 y Calcular el AFD mínimo euivalente: Solución: 7, 5 y 6. 9

10 3. Obtener el AFD mínimo asociado: Solución: 6, 5 y Calcular el AFD mínimo euivalente: Solución: 4 5, 8 y Comprobad ue el AFD mínimo asociado al AFλ de la figura (resuelto en el Boletín 2): sólo tiene 2 estados.

Problemas indecidibles

Problemas indecidibles Capítulo 7 Problemas indecidibles 71 Codificación de máquinas de Turing Toda MT se puede codificar como una secuencia finita de ceros y unos En esta sección presentaremos una codificación válida para todas

Más detalles

Curso Completo de Electrónica Digital

Curso Completo de Electrónica Digital CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez Capítulo 3 ALGEBRA DE BOOLE 3.1. Introducción

Más detalles

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACIÓN

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACIÓN BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACIÓN PROGRAMA DE LA MATERIA CORRESPONDIENTE A LA LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN. Coordinación: NOMBRE DE LA MATERIA:

Más detalles

Las fórmulas de Cardano-Ferrari

Las fórmulas de Cardano-Ferrari Las fórmulas de Cardano-Ferrari Carlos Ivorra (http://www.uv.es/ivorra) Los métodos de resolución por radicales de las ecuaciones polinómicas de tercer y cuarto grado son unas de esas antiguallas absolutamente

Más detalles

Haydee Jiménez Tafur Grupo de Algebra. Universidad Pedagógica Nacional Estudiante de maestría en Matemáticas. Universidad Nacional de Colombia.

Haydee Jiménez Tafur Grupo de Algebra. Universidad Pedagógica Nacional Estudiante de maestría en Matemáticas. Universidad Nacional de Colombia. "Otras Alternativas Para La Definición De Relación En Teoría De Conjuntos" Carlos Julio Luque Arias Profesor Universidad Pedagógica Nacional Grupo de Algebra. Universidad Pedagógica Nacional Haydee Jiménez

Más detalles

Matrices invertibles. La inversa de una matriz

Matrices invertibles. La inversa de una matriz Matrices invertibles. La inversa de una matriz Objetivos. Estudiar la definición y las propiedades básicas de la matriz inversa. Más adelante en este curso vamos a estudiar criterios de invertibilidad

Más detalles

CIRCUITOS SECUENCIALES. Tema 6: ANÁLISIS Y DISEÑO DE CIRCUITOS SECUENCIALES SÍNCRONOS

CIRCUITOS SECUENCIALES. Tema 6: ANÁLISIS Y DISEÑO DE CIRCUITOS SECUENCIALES SÍNCRONOS 3 Tema 6: ANÁLII Y IEÑO E CIRCUITO ECUENCIALE ÍNCRONO Contenido: Elementos de memoria: biestables asíncronos y síncronos. Biestables JK, T,. Entradas asíncronas. Modelo general de máuina secuencial: máuinas

Más detalles

Este es un ejemplo muy sencillo, un esquema de empleados que trabajan en proyectos, en una relación muchos a muchos.

Este es un ejemplo muy sencillo, un esquema de empleados que trabajan en proyectos, en una relación muchos a muchos. 28/04/2012 La teoría de la normalización va perdiendo peso con el paso de los años como herramienta de diseño de bases de datos relacionales en favor de modelos de datos más ricos en su representación,

Más detalles

Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones:

Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones: 2. Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma informal,

Más detalles

Teoría Matemática de la Computación Primer Problemario Prof. Miguel A. Pizaña 11 de Octubre de 2006

Teoría Matemática de la Computación Primer Problemario Prof. Miguel A. Pizaña 11 de Octubre de 2006 Teoría Matemática de la Computación Primer Problemario Prof. Miguel A. Pizaña 11 de Octubre de 2006 I Tareas 1. Dudar de todo, al menos una vez en la vida. 2. Revisar sus apuntes todos los días en la tarde

Más detalles

Teoría de Autómatas, Lenguajes Formales y Gramáticas. David Castro Esteban

Teoría de Autómatas, Lenguajes Formales y Gramáticas. David Castro Esteban Teoría de Autómatas, Lenguajes Formales y Gramáticas David Castro Esteban Copyright c 2003 2004 David Castro Esteban. Permission is granted to copy, distribute and/or modify this document under the terms

Más detalles

Cualquier lenguaje de contexto libre, L, puede ser generado por medio de una GCL, G, que cumpla las siguientes condiciones:

Cualquier lenguaje de contexto libre, L, puede ser generado por medio de una GCL, G, que cumpla las siguientes condiciones: Teoría de Autómatas y Lenguajes Formales Boletín de Autoevaluación 5: Cómo se simplifica una Gramática de Contexto Libre?. 1. Objetivos. El objetivo de este boletín es ilustrar cómo proceder para simplificar

Más detalles

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R.

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R. ALGEBRA LINEAL Héctor Jairo Martínez R. Ana María Sanabria R. SEGUNDO SEMESTRE 8 Índice general. SISTEMAS DE ECUACIONES LINEALES.. Introducción................................................ Conceptos

Más detalles

Formato de programa de estudios para la formación y desarrollo de competencias profesionales. Ingeniería en Sistemas Computacionales

Formato de programa de estudios para la formación y desarrollo de competencias profesionales. Ingeniería en Sistemas Computacionales Formato de programa de estudios para la formación y desarrollo de competencias profesionales 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: SCD-1015 Lenguajes y Autómatas

Más detalles

Complejidad - Problemas NP-Completos. Algoritmos y Estructuras de Datos III

Complejidad - Problemas NP-Completos. Algoritmos y Estructuras de Datos III Complejidad - Problemas NP-Completos Algoritmos y Estructuras de Datos III Teoría de Complejidad Un algoritmo eficiente es un algoritmo de complejidad polinomial. Un problema está bien resuelto si se conocen

Más detalles

La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx

La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx Resumen Se dan algunas definiciones básicas relacionadas con la divisibilidad

Más detalles

Una (muy) breve introducción a la teoría de la computación

Una (muy) breve introducción a la teoría de la computación Una (muy) breve introducción a la teoría de la computación Marcelo Arenas M. Arenas Una (muy) breve introducción a la teoría de la computación 1 / 48 Ciencia de la computación Cuál es el objeto de estudio

Más detalles

Carrera: IFM - 0423 3-2-8. Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.

Carrera: IFM - 0423 3-2-8. Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Matemáticas para computación Licenciatura en Informática IFM - 0423 3-2-8 2.- HISTORIA

Más detalles

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Matrices Definiciones básicas de matrices wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2008 Contenido 1 Matrices 2 11 Matrices cuadradas 3 12 Matriz transpuesta 4 13 Matriz identidad

Más detalles

Una cadena sobre Σ es cualquier secuencia de elementos de longitud finita sobre Σ.

Una cadena sobre Σ es cualquier secuencia de elementos de longitud finita sobre Σ. Alfabetos, Cadenas y Lenguajes Definición 1 Un Alfabeto es cualquier conjunto finito, no vacío. Ejemplo 1 Sea Σ = {0, 1, 2, 3,..., 9} donde 0 Σ Definición 2 Una cadena sobre Σ es cualquier secuencia de

Más detalles

PAUTAS PARA LA ELABORACIÓN DE MAPAS DE ORIENTACIÓN DE CENTROS ESCOLARES Y DE JARDINES

PAUTAS PARA LA ELABORACIÓN DE MAPAS DE ORIENTACIÓN DE CENTROS ESCOLARES Y DE JARDINES PAUTAS PARA LA ELABORACIÓN DE MAPAS DE ORIENTACIÓN DE CENTROS ESCOLARES Y DE JARDINES Autores CARLOS BOCANEGRA FUENTES DIPLOMADO EN EDUCACIÓN FÍSICA Y MONITOR DE ORIENTACIÓN MAESTRO ESPECIALISTA EN E.F.

Más detalles

Ciencias de la Computación I

Ciencias de la Computación I Ciencias de la Computación I Propiedades de Clausura de los Lenguajes Regulares y Lenguajes Libres del Contexto Propiedades de Clausura de Lenguajes Regulares Los lenguajes regulares (LR son cerrados bajo

Más detalles

1. INVERSA DE UNA MATRIZ REGULAR

1. INVERSA DE UNA MATRIZ REGULAR . INVERSA DE UNA MATRIZ REGULAR Calcular la inversa de una matriz regular es un trabajo bastante tedioso. A través de ejemplos se expondrán diferentes técnicas para calcular la matriz inversa de una matriz

Más detalles

ESTRUCTURA ARCHIVOS PARA EL INGRESO DE CUENTAS PDI (Tipo P)

ESTRUCTURA ARCHIVOS PARA EL INGRESO DE CUENTAS PDI (Tipo P) TABLA DE CONTENIDO 1. 1. DE CUENTAS PARA EL PAGO DE DERECHOS 1.1 NOMENCLATURA PARA EL NOMBRE DEL ARCHIVO... 2 1.2 FORMA DE PROCESAR EL ARCHIVO... 3 Reglas Generales... 4 2. 2. DISEÑO DE LA ESTRUCTURA DEL

Más detalles

Introducción a la Teoría de Grafos

Introducción a la Teoría de Grafos Introducción a la Teoría de Grafos Flavia Bonomo fbonomo@dc.uba.ar do. Cuatrimestre 009 Árboles Un árbol es un grafo conexo y acíclico (sin ciclos). Un bosque es un grafo acíclico, o sea, una unión disjunta

Más detalles

Algorítmica y Lenguajes de Programación. MATLAB (i)

Algorítmica y Lenguajes de Programación. MATLAB (i) Algorítmica y Lenguajes de Programación MATLAB (i) MATLAB. Introducción MATLAB es un entorno interactivo que utiliza como tipos de datos básicos vectores y matrices de flotantes que no requieren ser dimensionados.

Más detalles

Universidad de Costa Rica Escuela de Matemática ALGEBRA LINEAL. x x1 n. θ y. 1 n x1 n ȳ1 n. Carlos Arce S. William Castillo E. Jorge González V.

Universidad de Costa Rica Escuela de Matemática ALGEBRA LINEAL. x x1 n. θ y. 1 n x1 n ȳ1 n. Carlos Arce S. William Castillo E. Jorge González V. Universidad de Costa Rica Escuela de Matemática ALGEBRA LINEAL x x x1 n θ y y ȳ1 n 1 n x1 n ȳ1 n Carlos Arce S. William Castillo E. Jorge González V. 2003 Algebra Lineal Carlos Arce S., William Castillo

Más detalles

MANEJO DE EXPRESIONES REGULARES

MANEJO DE EXPRESIONES REGULARES Procesadores de lenguajes Ejercicios del Tema 2 MANEJO DE EXPRESIONES REGULARES Ejercicio 2. Escriba expresiones regulares para los siguientes lenguajes: a) Comentarios que comiencen por

Más detalles

Apuntes de Matemática Discreta 6. Relaciones

Apuntes de Matemática Discreta 6. Relaciones Apuntes de Matemática Discreta 6. Relaciones Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 6 Relaciones Contenido 6.1 Generalidades.....................................

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota

Más detalles

Traductores Push Down para Gramáticas LL

Traductores Push Down para Gramáticas LL Push Down para Gramáticas LL Extensión de Autómatas Universidad de Cantabria Outline El Problema 1 El Problema 2 3 4 El Problema Podemos resolver el problema de la palabra para lenguajes generados por

Más detalles

U2-T4: Un método personalizado: Gauss

U2-T4: Un método personalizado: Gauss AVISO: Esta página ha sido generada para facilitar la impresión de los contenidos. Los enlaces externos a otras páginas no serán funcionales. U2-T4: Un método personalizado: Gauss 1. Karl F. Gauss. Im

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones de agosto de 200. Estandarización Cuando se plantea un modelo de LP pueden existir igualdades y desigualdades. De la misma forma

Más detalles

Matemáticas Discretas

Matemáticas Discretas Matemáticas Discretas Conjuntos (11) Curso Propedéutico 2009 Maestría en Ciencias Computacionales, INAOE Conjuntos (2) Dr Luis Enrique Sucar Succar esucar@inaoep.mx Dra Angélica Muñoz Meléndez munoz@inaoep.mx

Más detalles

Producto Interno y Ortogonalidad

Producto Interno y Ortogonalidad Producto Interno y Ortogonalidad Departamento de Matemáticas, CSI/ITESM 15 de octubre de 2009 Índice 8.1. Contexto................................................ 1 8.2. Introducción...............................................

Más detalles

Sección 4.5: Transformaciones del plano y del espacio. Sección 4.6: Problema de mínimos cuadrados y aplicaciones.

Sección 4.5: Transformaciones del plano y del espacio. Sección 4.6: Problema de mínimos cuadrados y aplicaciones. Tema 4 Producto escalar En bachiller habéis visto los conceptos de producto escalar, longitud, distancia y perpendicularidad en R y R 3 En este tema del curso se generalizan estos conceptos a R n, junto

Más detalles

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA Página 75 REFLEXIONA Y RESUELVE Lanzamiento de varios dados Comprueba en la tabla anterior ue: DESV. TÍPICA PARA n DADOS n = 8 1,71 1,1 n = 3 8 1,71 3 0,98

Más detalles

Imágenes binarias. Horn, Robot Vision Haralick & Shapiro, Computer and Robot Vision Gonzalez & Woods, Digital Image Processing. imagenes binarias 1

Imágenes binarias. Horn, Robot Vision Haralick & Shapiro, Computer and Robot Vision Gonzalez & Woods, Digital Image Processing. imagenes binarias 1 Imágenes binarias Horn, Robot Vision Haralick & Shapiro, Computer and Robot Vision Gonzalez & Woods, Digital Image Processing imagenes binarias 1 Propiedades geométricas simples: Area: la integral de la

Más detalles

Métodos de la Minería de Datos

Métodos de la Minería de Datos This is page i Printer: Opaue this Métodos de la Minería de Datos Dr. Oldemar Rodríguez Rojas de noviembre de 2005 ii Contents This is page iii Printer: Opaue this iv This is page v Printer: Opaue this

Más detalles

Representación de la información

Representación de la información Representación de la información A. Josep Velasco González Con la colaboración de: Ramon Costa Castelló Montse Peiron Guàrdia PID_00163598 CC-BY-SA PID_00163598 2 Representación de la información CC-BY-SA

Más detalles

L A P R O G R A M A C I O N

L A P R O G R A M A C I O N L A P R O G R A M A C I O N L I N E A L 1. INTRODUCCIÓN: la programación lineal como método de optimación La complejidad de nuestra sociedad en cuanto a organización general y económica exige disponer

Más detalles

MATEMÁTICAS II APUNTES DE TEORÍA CURSO ACADÉMICO 2012-13. Carlos Ivorra

MATEMÁTICAS II APUNTES DE TEORÍA CURSO ACADÉMICO 2012-13. Carlos Ivorra MATEMÁTICAS II APUNTES DE TEORÍA CURSO ACADÉMICO 2012-13 Carlos Ivorra Índice 1 Introducción a la optimización 1 2 Programación entera 18 3 Introducción a la programación lineal 24 4 El método símplex

Más detalles

El proyecto realizado consiste en un resolutor de sudokus mediante CSP.

El proyecto realizado consiste en un resolutor de sudokus mediante CSP. Introducción El proyecto realizado consiste en un resolutor de sudokus mediante CSP. El problema del sudoku fue inventado por Howard Garns en 1979 y se volvió muy popular en Japón en 1986. En España ha

Más detalles

TEMA 4: CALCULO NUMERICO DE AUTOVALORES

TEMA 4: CALCULO NUMERICO DE AUTOVALORES Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 4: CALCULO NUMERICO DE AUTOVALORES 1 INTRODUCCION La determinación de autovalores y autovectores de una matriz cuadrada A de orden n es un problema

Más detalles

AUTOMATAS Y LENGUAJES

AUTOMATAS Y LENGUAJES AUTOMATAS Y LENGUAJES Un enfoque de diseño a b a b b... q q 6 7 q 5 q 0 q 1 q 2 q q 3 4 Ramón Brena Tec de Monterrey Verano 2003 ii Prefacio En años recientes se ha visto la aparición de un buen número

Más detalles

La definición de digital es toda información representada por una serie de pulsos eléctricos discretos basados en un sistema binario (ceros y unos).

La definición de digital es toda información representada por una serie de pulsos eléctricos discretos basados en un sistema binario (ceros y unos). Tratamiento de la Imagen Digital Qué es la imagen digital? La definición de digital es toda información representada por una serie de pulsos eléctricos discretos basados en un sistema binario (ceros y

Más detalles

Conjuntos, Relaciones y Funciones

Conjuntos, Relaciones y Funciones Conjuntos, Relaciones y Funciones 0.1 Conjuntos El término conjunto y elemento de un conjunto son términos primitivos y no definidos. De un punto de vista intuitivo parece ser que cualquier colección de

Más detalles

Texto de Cálculo I Intervalos de la recta real R Versión preliminar. L. F. Reséndis O.

Texto de Cálculo I Intervalos de la recta real R Versión preliminar. L. F. Reséndis O. Texto de Cálculo I Intervalos de la recta real R Versión preliminar L. F. Reséndis O. 2 Contents 1 Números reales L.F. Reséndis O. 5 1.1 Números racionales e irracionales.l.f. Reséndis O............ 5

Más detalles

Tratamiento de la Imagen Digital

Tratamiento de la Imagen Digital Tratamiento de la Imagen Digital Qué es la imagen digital? La definición de digital es toda información representada por una serie de pulsos electricos discretos basados en un sistema binario (ceros y

Más detalles

Matemáticas para la Computación

Matemáticas para la Computación Matemáticas para la Computación José Alfredo Jiménez Murillo 2da Edición Inicio Índice Capítulo 1. Sistemas numéricos. Capítulo 2. Métodos de conteo. Capítulo 3. Conjuntos. Capítulo 4. Lógica Matemática.

Más detalles

1. MANEJO DE SUMATORIOS. PROPIEDADES Y EJERCICIOS.

1. MANEJO DE SUMATORIOS. PROPIEDADES Y EJERCICIOS. 1. MANEJO DE SUMATORIOS. PROPIEDADES Y EJERCICIOS. El sumatorio o sumatoria) es un operador matemático, representado por la letra griega sigma mayúscula Σ) que permite representar de manera abreviada sumas

Más detalles

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1 . ESPACIOS VECTORIALES Consideremos el siguiente subconjunto de R 4 : S = {(x, x 2, x 3, x 4 )/x x 4 = 0 x 2 x 4 = x 3 a. Comprobar que S es subespacio vectorial de R 4. Para demostrar que S es un subespacio

Más detalles

XLIV Olimpiada Matemática Española Fase nacional 2008 (Valencia) PRIMERA SESIÓN (28 de marzo)

XLIV Olimpiada Matemática Española Fase nacional 2008 (Valencia) PRIMERA SESIÓN (28 de marzo) Fase nacional 008 (Valencia) PRIMERA SESIÓN (8 de marzo).- Halla dos enteros positivos a y b conociendo su suma y su mínimo común múltiplo. Aplícalo en el caso de ue la suma sea 97 y el mínimo común múltiplo

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B 1. Una empresa tiene 3000 bolsas de ajo morado de Las

Más detalles

MATEMÁTICA PARA COMPUTACIÓN I Código 3102.30.04

MATEMÁTICA PARA COMPUTACIÓN I Código 3102.30.04 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA USAC- ESCUELA DE FORMACION DE PROFESORES DE ENSEÑANZA MEDIA EFPEM- PROFESORADO DE INFORMÁTICA Y COMPUTACIÓN ESCUELA DE VACACIONES DICIEMBRE 2013 SALON:C6 HORA: 17:00

Más detalles

Lección 7 - Coordenadas rectangulares y gráficas

Lección 7 - Coordenadas rectangulares y gráficas Lección 7 - Coordenadas rectangulares gráficas Coordenadas rectangulares gráficas Objetivos: Al terminar esta lección podrás usar un sistema de coordenadas rectangulares para identificar puntos en un plano

Más detalles

Análisis aplicado. Ax = b. Gradiente conjugado.

Análisis aplicado. Ax = b. Gradiente conjugado. José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2009. Cuadráticas estrictamente convexas. φ(x) = 1 2 xt Ax b T x, A R n n minimizar φ(x) Ax = b. Cuadráticas estrictamente

Más detalles

Relaciones binarias. ( a, b) = ( c, d) si y solamente si a = c y b = d

Relaciones binarias. ( a, b) = ( c, d) si y solamente si a = c y b = d Relaciones binarias En esta sección estudiaremos formalmente las parejas de objetos que comparten algunas características o propiedades en común. La estructura matemática para agrupar estas parejas en

Más detalles

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios }

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios } La Teoría de Conjuntos es una teoría matemática, que estudia básicamente a un cierto tipo de objetos llamados conjuntos y algunas veces, a otros objetos denominados no conjuntos, así como a los problemas

Más detalles

ETSIINGENIO 2009 DIBUJO DE GRAFOS MEDIANTE ALGORITMOS GENÉTICOS

ETSIINGENIO 2009 DIBUJO DE GRAFOS MEDIANTE ALGORITMOS GENÉTICOS ETSIINGENIO 2009 DIBUJO DE GRAFOS MEDIANTE ALGORITMOS GENÉTICOS EtsiIngenio Inteligencia Artificial 1 Raposo López Alejandro Sánchez Palacios Manuel Resumen dibujo de grafos mediante algoritmos genéticos

Más detalles

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal)

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Unidad I Sistemas numéricos 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS.

Más detalles

Presentación Concepto de Variable Transformaciones Algoritmo Diagrama de Flujo Ejemplos

Presentación Concepto de Variable Transformaciones Algoritmo Diagrama de Flujo Ejemplos Presentación Página del Curso Página del Curso: http://asignaturas.inf.udec.cl/ lpcp Ayudantes Francisco Roco: Página web: http://www.udec.cl/ franciscoroco e-mail: franciscoroco@udec.cl Pedro Zambrano:

Más detalles

EJERCICIOS DEL CAPÍTULO I

EJERCICIOS DEL CAPÍTULO I EJERCICIOS DEL CAPÍTULO I 1. Un grupo es una tipo particular de Ω estructura cuando Ω es el tipo Ω = { } siendo una operación de aridad dos. Pero un grupo también es una Ω -estructura siendo Ω = {e, i,

Más detalles

Grupos. 2.1 Introducción. Capítulo

Grupos. 2.1 Introducción. Capítulo Capítulo 2 Grupos 2.1 Introducción La estructura de grupo es una de las más comunes en toda la matemática pues aparece en forma natural en muchas situaciones, donde se puede definir una operación sobre

Más detalles

Tu calculadora científica

Tu calculadora científica Tu calculadora científica Cajón de Ciencias Hasta primero de ESO, más o menos, podemos apañarnos con una calculadora normalita, con las teclas de los números, las operaciones básicas de suma, resta, multiplicación

Más detalles

Estructuras de Control - Diagrama de Flujo

Estructuras de Control - Diagrama de Flujo RESOLUCIÓN DE PROBLEMAS Y ALGORITMOS Ingeniería en Computación Ingeniería en Informática UNIVERSIDAD NACIONAL DE SAN LUIS DEPARTAMENTO DE INFORMÁTICA AÑO 2015 Índice 1. Programación estructurada 2 1.1.

Más detalles

Teoría de la Computación para Ingeniería de Sistemas: un enfoque práctico. Prof. Hilda Contreras

Teoría de la Computación para Ingeniería de Sistemas: un enfoque práctico. Prof. Hilda Contreras Teoría de la Computación para Ingeniería de Sistemas: un enfoque práctico Prof. Hilda Contreras 15 de abril de 2012 2 Índice general 1. Introducción 5 1.1. Marco histórico de la teoría de la computación..................

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Mínimos Cuadrados Departamento de Matemáticas ITESM Mínimos Cuadrados Álgebra Lineal - p. 1/34 En esta sección veremos cómo se trabaja un sistema inconsistente. Esta situación es

Más detalles

28 = 16 + 8 + 4 + 0 + 0 = 11100 1

28 = 16 + 8 + 4 + 0 + 0 = 11100 1 ELECTRÓNICA DIGITAL 4º ESO Tecnología Introducción Imaginemos que deseamos instalar un sistema electrónico para la apertura de una caja fuerte. Para ello debemos pensar en el número de sensores que nos

Más detalles

Fundamentos Matemáticos II Electrónicos Curso 2006-07 2

Fundamentos Matemáticos II Electrónicos Curso 2006-07 2 Tema 2.- MATRICES!ESPACIO VECTORIAL!PRODUCTO DE MATRICES!POTENCIAS NATURALES DE MATRICES CUADRADAS Fundamentos Matemáticos II Electrónicos Curso 2006-07 1 Un poco de historia Lord Cayley es uno de los

Más detalles

Teoremas de la función implícita y de la función inversa

Teoremas de la función implícita y de la función inversa Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Teoremas de la función implícita y de la función inversa 1. El teorema de la función implícita 1.1. Ejemplos

Más detalles

Apuntes de Álgebra Lineal

Apuntes de Álgebra Lineal Apuntes de Álgebra Lineal Mariano Echeverría Introducción al Curso El álgebra lineal se caracteriza por estudiar estructuras matemáticas en las que es posible tomar sumas entre distintos elementos de cierto

Más detalles

UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL

UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL IES PABLO RUIZ PICASSO EL EJIDO (ALMERÍA) CURSO 2013-2014 UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL ÍNDICE 1.- INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL 2.- SISTEMA BINARIO 2.1.- TRANSFORMACIÓN DE BINARIO A DECIMAL

Más detalles

3. CÁLCULOS Y FORMATOS CONDICIONALES

3. CÁLCULOS Y FORMATOS CONDICIONALES colores, tendremos las opciones Mínima y Máxima, con tres campos cada una: Tipo, Valor y Color. Con este formato podemos crear una regla que le asigne un color al menor valor y otro al mayor, y dé a los

Más detalles

Desarrolle diagramas de flujo y programas que resuelvan los siguientes ejercicios:

Desarrolle diagramas de flujo y programas que resuelvan los siguientes ejercicios: NOMBRE DE LA Aplicaciones con arreglos y matrices OBJETIVO: El estudiante desarrollará diversos ejercicios mediante la implementación de estructuras de datos basadas en arreglos y/o matrices MATERIAL Y

Más detalles

Manual imprescindible SQL Server 2012 (c) Francisco Charte Ojeda

Manual imprescindible SQL Server 2012 (c) Francisco Charte Ojeda Manual imprescindible SQL Server 2012 (c) Francisco Charte Ojeda Agradecimientos Introducción Gestores de bases de datos Servidores de bases de datos Microsoft SQL Server 2012 Qué puede hacer con SQL Server

Más detalles

Teoría de Lenguajes. Teoría de la Programación I

Teoría de Lenguajes. Teoría de la Programación I Teoría de Lenguajes Soluciones Consideraciones generales i) Escriba nombre y C.I. en todas las hojas. ii) Numere todas las hojas. iii) En la primera hoja indique el total de hojas. iv) Comience cada ejercicio

Más detalles

TEMA 6. EIGENVALORES Y EIGENVECTORES

TEMA 6. EIGENVALORES Y EIGENVECTORES TEMA 6. EIGENVALORES Y EIGENVECTORES M. C. Roberto Rosales Flores INSTITUTO TECNOLÓGICO SUPERIOR DE TLAXCO Ingeniería en Logística M. C. Roberto Rosales Flores (ITST TEMA 6. EIGENVALORES Y EIGENVECTORES

Más detalles

Powerpoint es un programa incluido en la suite de Microsoft Office, que nos ofrece la posibilidad de crear presentaciones profesionales.

Powerpoint es un programa incluido en la suite de Microsoft Office, que nos ofrece la posibilidad de crear presentaciones profesionales. Qué es Powerpoint 2010? Powerpoint es un programa incluido en la suite de Microsoft Office, que nos ofrece la posibilidad de crear presentaciones profesionales. El entorno de trabajo En la siguiente imagen

Más detalles

Fundamentos de Investigación de Operaciones Asignación y Vendedor Viajero

Fundamentos de Investigación de Operaciones Asignación y Vendedor Viajero Fundamentos de Investigación de Operaciones y Vendedor Viajero 23 de mayo de 2004 Si bien la resolución del problema de transporte mediante tableau parece ser muy expedita, existen ciertos tipos de problemas

Más detalles

Capítulo 7: Distribuciones muestrales

Capítulo 7: Distribuciones muestrales Capítulo 7: Distribuciones muestrales Recordemos: Parámetro es una medida de resumen numérica que se calcularía usando todas las unidades de la población. Es un número fijo. Generalmente no lo conocemos.

Más detalles

CABRI-GÉOMÈTRE: ANALIZAR PARA DIBUJAR

CABRI-GÉOMÈTRE: ANALIZAR PARA DIBUJAR Cabri-Géomètre: analizar para dibujar CABRI-GÉOMÈTRE: ANALIZAR PARA DIBUJAR Javier Bergasa Liberal y Sergio Sara Goyén PARA QUÉ DIBUJAR EN CLASE DE GEOMETRÍA? Esta pregunta parece tener una respuesta evidente:

Más detalles

MATRICES PRODUCTO DE MATRICES POTENCIAS NATURALES DE MATRICES CUADRADAS

MATRICES PRODUCTO DE MATRICES POTENCIAS NATURALES DE MATRICES CUADRADAS Tema 1.- MATRICES MATRICES PRODUCTO DE MATRICES POTENCIAS NATURALES DE MATRICES CUADRADAS Fundamentos Matemáticos de la Ingeniería 1 Un poco de historia Lord Cayley es uno de los fundadores de la teoría

Más detalles

LECCION 3. El entorno de Illustrator

LECCION 3. El entorno de Illustrator LECCION 3. El entorno de Illustrator 3.1. El área de trabajo El entorno de Illustrator se compone por una serie de paneles, barras y ventanas, que podemos mover y desplazar. Y cualquier disposición de

Más detalles

Fascículo 2. Álgebra Lineal. Cursos de grado. Gabriela Jeronimo Juan Sabia Susana Tesauri. Universidad de Buenos Aires

Fascículo 2. Álgebra Lineal. Cursos de grado. Gabriela Jeronimo Juan Sabia Susana Tesauri. Universidad de Buenos Aires Fascículo 2 Cursos de grado ISSN 1851-1317 Gabriela Jeronimo Juan Sabia Susana Tesauri Álgebra Lineal Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 2008

Más detalles

SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA

SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA DEPARTAMENTO DE PREPARATORIA ABIERTA MATEMÁTICAS II GUIA DE ESTUDIO

Más detalles

RELACIONES BINARIAS. (1, b)} es una relación de A en B. Sea A = {1, 2, 3, 4}. En A se tiene la relación R = {(a, b)/a, b A y a divide a b}:

RELACIONES BINARIAS. (1, b)} es una relación de A en B. Sea A = {1, 2, 3, 4}. En A se tiene la relación R = {(a, b)/a, b A y a divide a b}: RELACIONES BINARIAS 1. Relaciones Las relaciones entre elementos de conjuntos se dan en muchos contextos y, en informática, aparecen con frecuencia en programación, bases de datos informáticas, etc. 1.1.

Más detalles

Factorizaciones de Cholesky, matrices definidas. semidefinidas positivas.

Factorizaciones de Cholesky, matrices definidas. semidefinidas positivas. Factorizaciones de Cholesky, matrices definidas y semidefinidas positivas Héctor Manuel Mora Escobar Universidad Central, Bogotá hectormora@yahoo.com Junio de 2011 1 Introducción Este documento presenta,

Más detalles

Plantilla de texto plano

Plantilla de texto plano Plantilla de texto plano Esta es la plantilla seleccionada por defecto al crear una nueva página. Título: Es el título que aparecerá identificando a la página, así como en la cabecera del documento en

Más detalles

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n.

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n. Ortogonalidad Producto interior Longitud y ortogonalidad Definición Sean u y v vectores de R n Se define el producto escalar o producto interior) de u y v como u v = u T v = u, u,, u n ) Ejemplo Calcular

Más detalles

Tema 6: Morfología. Primera parte

Tema 6: Morfología. Primera parte Tema 6: Morfología Primera parte Morfología La morfología matemática se basa en operaciones de teoría de conjuntos. En el caso de imágenes binarias, los conjuntos tratados son subconjuntos de Z 2 y en

Más detalles

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO:

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO: RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO: 2º ESO OBJETIVOS: Resolver problemas con enunciados relacionados con la

Más detalles

Repaso de matrices, determinantes y sistemas de ecuaciones lineales

Repaso de matrices, determinantes y sistemas de ecuaciones lineales Tema 1 Repaso de matrices, determinantes y sistemas de ecuaciones lineales Comenzamos este primer tema con un problema de motivación. Problema: El aire puro está compuesto esencialmente por un 78 por ciento

Más detalles

NÚMEROS NATURALES Y NÚMEROS ENTEROS

NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

Sistema binario. Representación

Sistema binario. Representación Sistema binario El sistema binario, en matemáticas e informática, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno ( y ). Es el que se utiliza

Más detalles

Programación Lineal Entera

Programación Lineal Entera Programación Lineal Entera P.M. Mateo y David Lahoz 2 de julio de 2009 En este tema se presenta un tipo de problemas formalmente similares a los problemas de programación lineal, ya que en su descripción

Más detalles

Creando una webquests

Creando una webquests Creando una webquests 1. LO PRIMERO EL PROGRAMA Para crear paginas web necesitamos el software apropiado. Hay muchas formas y programas para hacerlo, pero por su facilidad de uso y por ser software libre

Más detalles