1. Objetivos. 2. Idea Principal. Teoría de Autómatas y Lenguajes Formales. Boletín de Autoevaluación 3: Cómo se minimiza un AFD?.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Objetivos. 2. Idea Principal. Teoría de Autómatas y Lenguajes Formales. Boletín de Autoevaluación 3: Cómo se minimiza un AFD?."

Transcripción

1 Teoría de Autómatas y Lenguajes Formales Boletín de Autoevaluación 3: Cómo se minimiza un AFD?.. Objetivos. El objetivo de este boletín es ilustrar uno de los métodos ue permiten obtener el Autómata Finito Determinista Mínimo euivalente a un AF dado mediante ejemplos y, además, proporcionar la solución a alguno de los problemas propuestos en el boletín para ue podáis comprobar si habéis aplicado bien este método. 2. Idea Principal. En teoría se ha presentado el teorema de Myhill-Nerode, cuya importancia radica en ue establece la existencia de un AFD mínimo para aceptar un determinado lenguaje regular. Además, el teorema permite desarrollar un método para realizar este cálculo. Es posible ue a uno se le escape la trascendencia de este resultado y la potencia con la ue dota a uien pretende solucionar un problema mediante el diseño de un Autómata Finito. Para comprenderla, podemos pensar en las otras clases de lenguajes y en el diseño de los autómatas asociados, Autómatas de Pila para la clase de contexto libre y Máuinas de Turing para la clase recursivamente enumerable. En el caso particular de las Máuinas de Turing, se puede establecer una euivalencia entre el diseño de estos autómatas y el diseño de algoritmos. Por lo tanto, si dispusiéramos de resultados ue permitieran calcular la Máuina de Turing mínima euivalente a una dada, de alguna forma se estaría estableciendo la posibilidad de obtener de forma mecánica algoritmos ue consuman el mínimo de recursos. Soñar no cuesta nada, pero parece ue va a ser ue no, ue no se puede establecer un resultado similar en las otras clases de lenguajes. Por lo tanto, nos conformaremos con aprender a aplicar bien este método sobre los AFs. El método se basa en el establecimiento de clases de euivalencia en el conjunto de estados del AF. Y la relación buscada se basa en definir ue p si, y sólo si, para cada cadena de entrada x, f(p, x) es un estado final si, y sólo si, f(, x) es un estado final. Además, se establece la siguiente notación: si p se dice ue p es euivalente a y en caso contrario se dice ue p es distinguible de. De alguna forma esto nos lleva a la idea intuitiva de ue seguro ue un estado final es distinguible de cualuier estado no final. Ese será nuestro punto de partida y nuestra principal referencia al aplicar el método.

2 3. Método para obtener el AFD Mínimo euivalente a un AFD dado. El cálculo de la relación se realiza por medio del siguiente método:. Sea Q el conjunto de estados del autómata. Hay ue estudiar todos los pares de estados y estudiar su euivalencia. Para ello se crea una tabla, en la ue filas y columnas están etiuetadas con estados y en la ue cada entrada representa a una pareja de estados del autómata. La tabla se construirá optimizada, ya ue contamos con la ventaja de saber ue buscamos relaciones de euivalencia. Así, si es un estado de Q entonces no necesitamos estudiar la pareja (,) (porue en una relación binaria de euivalencia se cumple la propiedad reflexiva); así, esa entrada no existe en la tabla. Asimismo, si y p son estados de Q, al estudiar la pareja (p,) también se está estudiando a la pareja (,p) (porue en una relación binaria de euivalencia se cumple la propiedad simétrica); por lo tanto, si en la tabla existe la entrada correspondiente a la pareja (,p) ya no es necesario ue haya otra para (p,). Es decir, no se construye una tabla de tamaño Q Q ; la tabla tendrá ( Q ) filas y ( Q ) columnas (no hace falta la diagonal), tendrá forma triangular inferior (para no duplicar estudio del mismo par), y cada fila y cada columna se etiueta con uno de los estados de Q. 2. Se marca cada entrada de la tabla ue se corresponde con una pareja (estado final, estado no final), porue todas esas parejas se corresponden con pares de estados distinguibles. 3. Para cada par de estados (p,) ue no se haya analizado hasta el momento, se consideran los pares de estados (r,s) tales ue r = f(, a) y s = f(p, a), para cada símbolo de entrada a. La teoría nos dice ue si los estados r y s son distinguibles para alguna cadena x, entonces los estados p y son distinguibles por la cadena ax. De acuerdo a esto, si la entrada (r,s) está marcada en la tabla, entonces también se marca la entrada (p,), y Si la entrada (r,s) no está marcada, entonces el par (p,) se coloca en una lista asociada con la entrada (r,s). Si posteriormente se marca la entrada (r,s), también se marcarán todas las parejas de la lista asociada. Al finalizar este proceso todas auellas entradas de la tabla ue ueden vacías identifican parejas de estados euivalentes. 3.. Ejemplo. Sea L = {x ( + ) S(x, ) = 2n S(x, ) = 2m}, es decir, el lenguaje formado por cadenas ue tienen un número par de símbolos y un número par de símbolos. Este lenguaje es aceptado por el AFD A, ue se muestra en la figura. Y ojo, ue con ue encontréis un símbolo para el cual podáis distinguir ya basta; es decir, no hagáis más trabajo del ue toca ;-) 2

3 Figura : Autómata Finito Determinista ue reconoce L. Comenzamos construyendo la tabla. En este ejemplo, la tabla correspondiente sería de la siguiente forma, 4 5 Aunue hay 6 estados, sólo dibujamos 5 filas y 5 columnas: no dibujamos la diagonal y sólo presentamos el triángulo inferior para no duplicar parejas. Una vez dibujada la tabla, comenzamos a rellenarla. Lo primero ue rellenamos (es nuestro punto de partida y una forma de sacarnos trabajo de encima ;-) son las entradas ue corresponden a pares de estados finales y no finales. En el ejemplo, se tienen las siguientes parejas de estados final/no final: X X 4 X X X 5 X X Y, ahora, se comienzan a rellenar las otras entradas. Trabajaremos por columnas:. Columna de : Sólo hay un par ue analizar, el par (, 4 ), f(, ) =, f( 4, ) = 5 f(, ) =, f( 4, ) = Para distinguir entre ( y 4 ) deberíamos poder distinguir entre ( y 5 ); por lo tanto, en la lista asociada a la entrada (, 5 ) almacenamos el par (, 4 ). 3

4 X X 4 X X X 5 X (,4) X 2. Columna de : Par (, ), f(, ) =, f(, ) = El análisis del par (, ) remite al par (, ) ue ya está marcado como distinguible porue es un par final/no final; por lo tanto, se marca. Ojo: fíjaos ue como con el análisis con el símbolo ya soy capaz de distinguir, no hago análisis con el. Par (, ), X X 4 X X X 5 X (,4) X f(, ) =, f(, ) = El análisis del par (, ) remite al par (, ), distinguible al ser un par final/no final; por lo tanto, marcamos también el par (, ). Par (, 5 ), X X 4 X X X 5 X (,4) X f(, ) =, f( 5, ) = 4 f(, ) =, f( 5, ) = El análisis del par (, 5 ) remite al par (, 4 ) hay ue almacenar el par (, 5 ) en la lista asociada al par (, 4 ): X X (,5) 4 X X X 5 X (,4) X 4

5 Esta situación a veces nos deja desconcertados: el par (, 4 ) está en la lista del par (, 5 ) porue el análisis del (, 4 ) remitía al (, 5 ). Pero ahora, el análisis del par (, 5 ) remite al par (, 4 ); por lo tanto, no se puede marcar ninguna de las dos entradas Columna de : Par (, ), f(, ) =, f(, ) = f(, ) = 4, f(, ) = 5 El par (, ) es distinguible si lo es el par ( 4, 5 ), y sí lo es, puesto ue su entrada está marcada. Por lo tanto, marcamos también la (, ): Par (, 5 ), X X (,5) 4 X X X 5 X (,4) X f(, ) =, f( 5, ) = 4 No hay ue continuar el análisis, puesto ue con el símbolo ya se puede distinguir: el par (, 4 ) es final/no final y está ya marcado. Marcamos también el par (, 5 ): 4. Columna de : Par (, 5 ), X X (,5) 4 X X X 5 X (,4) X f(, ) =, f( 5, ) = 4 También paramos ya el análisis porue con el símbolo nos remite al par (, 4 ), ue es final/no final y está ya marcado, lo ue permite distinguir entre ( y 5 ): 5. Columna de 4 : No hay pares sin analizar. X X (,5) 4 X X X 5 X (,4) X 2 Y esto, a veces, nos deja mosca ; pero es ue se nos olvida ue nuestro objetivo es dejar entradas sin marcar: una entrada no marcada uerrá decir un par de estados euivalentes y el consiguiente ahorro en el autómata. 5

6 Por lo tanto, la tabla al final presenta el siguiente aspecto: X X (,5) 4 X X X 5 X (,4) X Según esto, los estados y 5 son euivalentes, y lo mismo sucede con los estados y 4. El autómata obtenido es el presentado en la figura 2. [ 4 ] [5 ] [ ] [ ] Figura 2: Mínimo AFD ue reconoce L Ejemplo 2. Calcular el AFD mínimo ue reconoce el mismo lenguaje ue el representado en la figura Figura 3: AFD a minimizar. Como en el ejemplo anterior, se construye una tabla de 5 filas y 5 columnas (sólo triángulo inferior de la tabla y sin diagonal): 6

7 4 5 Comenzamos a rellenarla, marcando todos los pares de estados final/no final, y seguimos con el resto de la tabla, por columnas:. Columna de : Par (, ), f(, ) =, f(, ) = f(, ) =, f(, ) = Para distinguir entre ( y ) hay ue distinguir entre ( y ); así ue almacenamos el par (, ) en la lista de la entrada (, ). Par (, ), (,) f(, ) =, f(, ) = 5 No hace falta seguir: el análisis del par (, ) remite a (, 5 ) ue es distinguible. Par (, ), (,) f(, ) =, f(, ) = 5 Exactamente igual ue antes: el análisis del par (, ) remite al par (, 5 ), ue es distinguible. 7

8 (,) 2. Columna de : Par (, ), f(, ) =, f(, ) = 5 El par (, ) remite al par (, 5 ) ue ya sabemos ue es distinguible. Par (, ), (,) 3 f(, ) =, f(, ) = 5 De nuevo aparece una referencia al par (, 5 ), por lo ue y también son distinguibles. (,) 3 3. Columna de : Sólo hay un par de estados para analizar, el par (, ), f(, ) = 5, f(, ) = 5 f(, ) = 4, f(, ) = 4 Es imposible distinguirles. Esta entrada uedará en blanco (al igual ue la correspondiente al (, ): 4. Columna de : No hay pares sin analizar. 5. Columna de 4 : (,) 3 8

9 Par ( 4, 5 ), f( 4, ) =, f( 5, ) = f( 4, ) = 4, f( 5, ) = El símbolo lleva a 4 a un estado final ( 4 ) y a 5 a un estado no final ( ); por lo tanto, se puede distinguir entre ( 4 y 5 ): (,) Es decir, y Autoevaluación.. Obtener el AFD mínimo asociado: Solución:, 5 y Calcular el AFD mínimo euivalente: Solución: 7, 5 y 6. 9

10 3. Obtener el AFD mínimo asociado: Solución: 6, 5 y Calcular el AFD mínimo euivalente: Solución: 4 5, 8 y Comprobad ue el AFD mínimo asociado al AFλ de la figura (resuelto en el Boletín 2): sólo tiene 2 estados.

Problemas indecidibles

Problemas indecidibles Capítulo 7 Problemas indecidibles 71 Codificación de máquinas de Turing Toda MT se puede codificar como una secuencia finita de ceros y unos En esta sección presentaremos una codificación válida para todas

Más detalles

Cualquier lenguaje de contexto libre, L, puede ser generado por medio de una GCL, G, que cumpla las siguientes condiciones:

Cualquier lenguaje de contexto libre, L, puede ser generado por medio de una GCL, G, que cumpla las siguientes condiciones: Teoría de Autómatas y Lenguajes Formales Boletín de Autoevaluación 5: Cómo se simplifica una Gramática de Contexto Libre?. 1. Objetivos. El objetivo de este boletín es ilustrar cómo proceder para simplificar

Más detalles

1. INVERSA DE UNA MATRIZ REGULAR

1. INVERSA DE UNA MATRIZ REGULAR . INVERSA DE UNA MATRIZ REGULAR Calcular la inversa de una matriz regular es un trabajo bastante tedioso. A través de ejemplos se expondrán diferentes técnicas para calcular la matriz inversa de una matriz

Más detalles

Este es un ejemplo muy sencillo, un esquema de empleados que trabajan en proyectos, en una relación muchos a muchos.

Este es un ejemplo muy sencillo, un esquema de empleados que trabajan en proyectos, en una relación muchos a muchos. 28/04/2012 La teoría de la normalización va perdiendo peso con el paso de los años como herramienta de diseño de bases de datos relacionales en favor de modelos de datos más ricos en su representación,

Más detalles

Curso Completo de Electrónica Digital

Curso Completo de Electrónica Digital CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez Capítulo 3 ALGEBRA DE BOOLE 3.1. Introducción

Más detalles

Haydee Jiménez Tafur Grupo de Algebra. Universidad Pedagógica Nacional Estudiante de maestría en Matemáticas. Universidad Nacional de Colombia.

Haydee Jiménez Tafur Grupo de Algebra. Universidad Pedagógica Nacional Estudiante de maestría en Matemáticas. Universidad Nacional de Colombia. "Otras Alternativas Para La Definición De Relación En Teoría De Conjuntos" Carlos Julio Luque Arias Profesor Universidad Pedagógica Nacional Grupo de Algebra. Universidad Pedagógica Nacional Haydee Jiménez

Más detalles

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Matrices Definiciones básicas de matrices wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2008 Contenido 1 Matrices 2 11 Matrices cuadradas 3 12 Matriz transpuesta 4 13 Matriz identidad

Más detalles

La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx

La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx Resumen Se dan algunas definiciones básicas relacionadas con la divisibilidad

Más detalles

Apuntes de Matemática Discreta 6. Relaciones

Apuntes de Matemática Discreta 6. Relaciones Apuntes de Matemática Discreta 6. Relaciones Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 6 Relaciones Contenido 6.1 Generalidades.....................................

Más detalles

Matrices invertibles. La inversa de una matriz

Matrices invertibles. La inversa de una matriz Matrices invertibles. La inversa de una matriz Objetivos. Estudiar la definición y las propiedades básicas de la matriz inversa. Más adelante en este curso vamos a estudiar criterios de invertibilidad

Más detalles

U2-T4: Un método personalizado: Gauss

U2-T4: Un método personalizado: Gauss AVISO: Esta página ha sido generada para facilitar la impresión de los contenidos. Los enlaces externos a otras páginas no serán funcionales. U2-T4: Un método personalizado: Gauss 1. Karl F. Gauss. Im

Más detalles

Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones:

Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones: 2. Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma informal,

Más detalles

Base de datos en Excel

Base de datos en Excel Base de datos en Excel Una base datos es un conjunto de información que ha sido organizado bajo un mismo contexto y se encuentra almacenada y lista para ser utilizada en cualquier momento. Las bases de

Más detalles

Teoría Matemática de la Computación Primer Problemario Prof. Miguel A. Pizaña 11 de Octubre de 2006

Teoría Matemática de la Computación Primer Problemario Prof. Miguel A. Pizaña 11 de Octubre de 2006 Teoría Matemática de la Computación Primer Problemario Prof. Miguel A. Pizaña 11 de Octubre de 2006 I Tareas 1. Dudar de todo, al menos una vez en la vida. 2. Revisar sus apuntes todos los días en la tarde

Más detalles

Lección 7 - Coordenadas rectangulares y gráficas

Lección 7 - Coordenadas rectangulares y gráficas Lección 7 - Coordenadas rectangulares gráficas Coordenadas rectangulares gráficas Objetivos: Al terminar esta lección podrás usar un sistema de coordenadas rectangulares para identificar puntos en un plano

Más detalles

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios }

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios } La Teoría de Conjuntos es una teoría matemática, que estudia básicamente a un cierto tipo de objetos llamados conjuntos y algunas veces, a otros objetos denominados no conjuntos, así como a los problemas

Más detalles

La suma y la resta. Introducción. Capítulo

La suma y la resta. Introducción. Capítulo Capítulo II La suma y la resta Introducción En el capítulo anterior, vimos que los números permiten expresar la cantidad de objetos que tiene una colección. Juntar dos o más colecciones, agregar objetos

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Relaciones binarias. ( a, b) = ( c, d) si y solamente si a = c y b = d

Relaciones binarias. ( a, b) = ( c, d) si y solamente si a = c y b = d Relaciones binarias En esta sección estudiaremos formalmente las parejas de objetos que comparten algunas características o propiedades en común. La estructura matemática para agrupar estas parejas en

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

Apuntes de Matemática Discreta 7. Relaciones de Orden

Apuntes de Matemática Discreta 7. Relaciones de Orden Apuntes de Matemática Discreta 7. Relaciones de Orden Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 7 Relaciones de Orden Contenido

Más detalles

Un grafo G es un par (V,E) donde V es un conjunto (llamado conjunto de vértices) y E un subconjunto de VxV (conjunto de aristas).

Un grafo G es un par (V,E) donde V es un conjunto (llamado conjunto de vértices) y E un subconjunto de VxV (conjunto de aristas). TEMA 5.- GRAFOS 5.1.- DEFINICIONES BÁSICAS Un grafo G es un par (V,E) donde V es un conjunto (llamado conjunto de vértices) y E un subconjunto de VxV (conjunto de aristas). Gráficamente representaremos

Más detalles

Una cadena sobre Σ es cualquier secuencia de elementos de longitud finita sobre Σ.

Una cadena sobre Σ es cualquier secuencia de elementos de longitud finita sobre Σ. Alfabetos, Cadenas y Lenguajes Definición 1 Un Alfabeto es cualquier conjunto finito, no vacío. Ejemplo 1 Sea Σ = {0, 1, 2, 3,..., 9} donde 0 Σ Definición 2 Una cadena sobre Σ es cualquier secuencia de

Más detalles

Límites. Definición de derivada.

Límites. Definición de derivada. Capítulo 4 Límites. Definición de derivada. 4.1. Límites e indeterminaciones Hemos visto en el capítulo anterior que para resolver el problema de la recta tangente tenemos que enfrentarnos a expresiones

Más detalles

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACIÓN

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACIÓN BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACIÓN PROGRAMA DE LA MATERIA CORRESPONDIENTE A LA LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN. Coordinación: NOMBRE DE LA MATERIA:

Más detalles

Múltiplos y divisores

Múltiplos y divisores 2 Múltiplos y divisores Objetivos En esta quincena aprenderás a: Saber si un número es múltiplo de otro. Reconocer las divisiones exactas. Hallar todos los divisores de un número. Reconocer los números

Más detalles

Distinguir las diferentes estructuras de repetición utilizadas en problemas con ciclos: mientras, haga-mientras, repita-hasta, para.

Distinguir las diferentes estructuras de repetición utilizadas en problemas con ciclos: mientras, haga-mientras, repita-hasta, para. ESTRUCTURAS DE REPETICIÓN OBJETIVOS Aprender a construir grandes y complejos problemas a través de la ejecución repetida de una secuencia de proposiciones llamados ciclos o estructuras repetitivas. Distinguir

Más detalles

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1 . ESPACIOS VECTORIALES Consideremos el siguiente subconjunto de R 4 : S = {(x, x 2, x 3, x 4 )/x x 4 = 0 x 2 x 4 = x 3 a. Comprobar que S es subespacio vectorial de R 4. Para demostrar que S es un subespacio

Más detalles

Creando una webquests

Creando una webquests Creando una webquests 1. LO PRIMERO EL PROGRAMA Para crear paginas web necesitamos el software apropiado. Hay muchas formas y programas para hacerlo, pero por su facilidad de uso y por ser software libre

Más detalles

LA MENTE DE BENJA Cuadrados Mágicos de Orden Impar. Lic. William Aquino Ochoa

LA MENTE DE BENJA Cuadrados Mágicos de Orden Impar. Lic. William Aquino Ochoa LA MENTE DE Cuadrados Mágicos de Orden Impar Lic. William Aquino Ochoa LA MENTE DE CUADRADOS MÁGICOS DE ORDEN IMPAR Recuerdo que en las clases de Razonamiento Matemático, mi profesor dejó de tarea un problema;

Más detalles

1000 + 900 + 90 + 7 = 1997

1000 + 900 + 90 + 7 = 1997 ases Matemáticas I - Pagina 1 de 20 Tema 2: ases Matemáticas I. 2.1.- Números utilizados en los sistemas digitales. 2.1.1 Introducción. El sistema de numeración decimal es familiar a todo el mundo. Este

Más detalles

Repaso de matrices, determinantes y sistemas de ecuaciones lineales

Repaso de matrices, determinantes y sistemas de ecuaciones lineales Tema 1 Repaso de matrices, determinantes y sistemas de ecuaciones lineales Comenzamos este primer tema con un problema de motivación. Problema: El aire puro está compuesto esencialmente por un 78 por ciento

Más detalles

Matemáticas para la Computación

Matemáticas para la Computación Matemáticas para la Computación José Alfredo Jiménez Murillo 2da Edición Inicio Índice Capítulo 1. Sistemas numéricos. Capítulo 2. Métodos de conteo. Capítulo 3. Conjuntos. Capítulo 4. Lógica Matemática.

Más detalles

Informática Bioingeniería

Informática Bioingeniería Informática Bioingeniería Representación Números Negativos En matemáticas, los números negativos en cualquier base se representan del modo habitual, precediéndolos con un signo. Sin embargo, en una computadora,

Más detalles

UNIDAD 3: ARITMÉTICA DEL COMPUTADOR

UNIDAD 3: ARITMÉTICA DEL COMPUTADOR UNIDAD 3: ARITMÉTICA DEL COMPUTADOR Señor estudiante, es un gusto iniciar nuevamente con usted el desarrollo de esta tercera unidad. En esta ocasión, haremos una explicación más detallada de la representación

Más detalles

Una (muy) breve introducción a la teoría de la computación

Una (muy) breve introducción a la teoría de la computación Una (muy) breve introducción a la teoría de la computación Marcelo Arenas M. Arenas Una (muy) breve introducción a la teoría de la computación 1 / 48 Ciencia de la computación Cuál es el objeto de estudio

Más detalles

Grupos. 2.1 Introducción. Capítulo

Grupos. 2.1 Introducción. Capítulo Capítulo 2 Grupos 2.1 Introducción La estructura de grupo es una de las más comunes en toda la matemática pues aparece en forma natural en muchas situaciones, donde se puede definir una operación sobre

Más detalles

TUTORIAL SOBRE EL MANEJO DE LA OFICINA VIRTUAL PARA LA REMISIÓN DE INFORMES DE DOCENCIA VIRTUAL VÍA ADMINISTRACIÓN ELECTRÓNICA

TUTORIAL SOBRE EL MANEJO DE LA OFICINA VIRTUAL PARA LA REMISIÓN DE INFORMES DE DOCENCIA VIRTUAL VÍA ADMINISTRACIÓN ELECTRÓNICA TUTORIAL SOBRE EL MANEJO DE LA OFICINA VIRTUAL PARA LA REMISIÓN DE INFORMES DE DOCENCIA VIRTUAL VÍA ADMINISTRACIÓN ELECTRÓNICA. COORDINADORES DE MÓDULOS/MATERIAS/ ASIGNATURAS VIRTUALES DE POSGRADOS CON

Más detalles

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1 Tecnología 4º ESO Tema 5: Lógica binaria Página 1 4º ESO TEMA 5: Lógica binaria Tecnología 4º ESO Tema 5: Lógica binaria Página 2 Índice de contenido 1. Señales analógicas y digitales...3 2. Código binario,

Más detalles

Introducción a la Teoría de Grafos

Introducción a la Teoría de Grafos Introducción a la Teoría de Grafos Flavia Bonomo fbonomo@dc.uba.ar do. Cuatrimestre 009 Árboles Un árbol es un grafo conexo y acíclico (sin ciclos). Un bosque es un grafo acíclico, o sea, una unión disjunta

Más detalles

3. CÁLCULOS Y FORMATOS CONDICIONALES

3. CÁLCULOS Y FORMATOS CONDICIONALES colores, tendremos las opciones Mínima y Máxima, con tres campos cada una: Tipo, Valor y Color. Con este formato podemos crear una regla que le asigne un color al menor valor y otro al mayor, y dé a los

Más detalles

Computando lo áspero

Computando lo áspero Computando lo áspero Por qué se cuelgan las computadoras? Santiago Figueira Departamento de Computación FCEyN, UBA Semana de la Computación 2007 Historia de Hilbert y sus amigos David Hilbert, 1900: Formalicemos

Más detalles

Universidad de la Frontera

Universidad de la Frontera Universidad de la Frontera Facultad de Ingeniería, Ciencias y Admistración Departamento de Matemática Actividad Didáctica: El Abaco TALLER # 2 - Sistema Decimal El ábaco es uno de los recursos más antiguos

Más detalles

Traductores Push Down para Gramáticas LL

Traductores Push Down para Gramáticas LL Push Down para Gramáticas LL Extensión de Autómatas Universidad de Cantabria Outline El Problema 1 El Problema 2 3 4 El Problema Podemos resolver el problema de la palabra para lenguajes generados por

Más detalles

Materia: Informática. Nota de Clases Sistemas de Numeración

Materia: Informática. Nota de Clases Sistemas de Numeración Nota de Clases Sistemas de Numeración Conversión Entre Sistemas de Numeración 1. EL SISTEMA DE NUMERACIÓN 1.1. DEFINICIÓN DE UN SISTEMA DE NUMERACIÓN Un sistema de numeración es un conjunto finito de símbolos

Más detalles

MANUAL DE USUARIO ALUMNO

MANUAL DE USUARIO ALUMNO SISSUR MANUAL DE USUARIO ALUMNO SISTEMA DE INNOVACIÓN DEL SERVICIO SOCIAL - UNIVERSIDAD RESPONSABLE 1 INDICE 1. ACCESO AL SISTEMA...3 2. REGISTRO DE INSCRIPCION...4 2.1 HOJA DE REGISTRO...5 3. AUTO-ASIGNACIÓN...6

Más detalles

Sistemas de numeración

Sistemas de numeración Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan

Más detalles

La Administración de Proyectos

La Administración de Proyectos La Administración de Proyectos La administración de proyectos es el proceso de planear, organizar y administrar tareas y recursos para alcanzar un objetivo concreto, generalmente con delimitaciones de

Más detalles

EJERCICIOS DEL CAPÍTULO I

EJERCICIOS DEL CAPÍTULO I EJERCICIOS DEL CAPÍTULO I 1. Un grupo es una tipo particular de Ω estructura cuando Ω es el tipo Ω = { } siendo una operación de aridad dos. Pero un grupo también es una Ω -estructura siendo Ω = {e, i,

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

Ciencias de la Computación I

Ciencias de la Computación I Ciencias de la Computación I Propiedades de Clausura de los Lenguajes Regulares y Lenguajes Libres del Contexto Propiedades de Clausura de Lenguajes Regulares Los lenguajes regulares (LR son cerrados bajo

Más detalles

Módulo II - Excel. Identificando tipos de datos... 2. Introduciendo datos en las celdas... 3. Llenando automáticamente las celdas...

Módulo II - Excel. Identificando tipos de datos... 2. Introduciendo datos en las celdas... 3. Llenando automáticamente las celdas... Módulo II - Excel Índice Identificando tipos de datos... 2 Introduciendo datos en las celdas... 3 Llenando automáticamente las celdas... 4 Seleccionando un rango de celdas... 5 Seleccionando una fila o

Más detalles

1. MANEJO DE SUMATORIOS. PROPIEDADES Y EJERCICIOS.

1. MANEJO DE SUMATORIOS. PROPIEDADES Y EJERCICIOS. 1. MANEJO DE SUMATORIOS. PROPIEDADES Y EJERCICIOS. El sumatorio o sumatoria) es un operador matemático, representado por la letra griega sigma mayúscula Σ) que permite representar de manera abreviada sumas

Más detalles

Factorización de polinomios

Factorización de polinomios Factorización de polinomios Polinomios Un polinomio p en la variable x es una expresión de la forma: px a 0 a 1 x a x a n1 x n1 a n x n donde a 0, a 1, a,, a n1, a n son unos números, llamados coeficientes

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota

Más detalles

Capítulo 1 Lenguajes formales 6

Capítulo 1 Lenguajes formales 6 Capítulo 1 Lenguajes formales 6 1.8. Operaciones entre lenguajes Puesto que los lenguajes sobre Σ son subconjuntos de Σ, las operaciones usuales entre conjuntos son también operaciones válidas entre lenguajes.

Más detalles

1 CÓDIGOS CORRECTORES

1 CÓDIGOS CORRECTORES 1 CÓDIGOS CORRECTORES Piensa en un número entre 0 y 15. Si siempre dices la verdad, yo podría adivinar tu número con 4 preguntas, cuyas posibles respuestas son: sí o no. Por qué? Un truco para justificar

Más detalles

Las cuatro operaciones. En la. Escuela Básica. por. Francisco Rivero Mendoza

Las cuatro operaciones. En la. Escuela Básica. por. Francisco Rivero Mendoza Las cuatro operaciones En la Escuela Básica por Francisco Rivero Mendoza 1 Conociendo los números Antes de pasar a estudiar los correspondientes algoritmos de la suma y la resta, es preciso desarrollar

Más detalles

SISTEMAS DE NUMERACIÓN. Sistema de numeración decimal: 5 10 2 2 10 1 8 10 0 =528 8 10 3 2 10 2 4 10 1 5 10 0 9 10 1 7 10 2 =8245,97

SISTEMAS DE NUMERACIÓN. Sistema de numeración decimal: 5 10 2 2 10 1 8 10 0 =528 8 10 3 2 10 2 4 10 1 5 10 0 9 10 1 7 10 2 =8245,97 SISTEMAS DE NUMERACIÓN Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. La norma principal en un sistema de numeración posicional es que un mismo símbolo

Más detalles

Algorítmica y Lenguajes de Programación. MATLAB (i)

Algorítmica y Lenguajes de Programación. MATLAB (i) Algorítmica y Lenguajes de Programación MATLAB (i) MATLAB. Introducción MATLAB es un entorno interactivo que utiliza como tipos de datos básicos vectores y matrices de flotantes que no requieren ser dimensionados.

Más detalles

Atestaki. Copyright 2005. Reservados todos los derechos. ATESTAKI

Atestaki. Copyright 2005. Reservados todos los derechos. ATESTAKI ATESTAKI INDICE PÁGINA INDICE --------------------------------------------------------------------- 1 1.- ES DIFÍCIL DE UTILIZAR? ------------------------------------------- 2 2.- QUÉ PUEDO HACER CON ATESTAKI?

Más detalles

28 = 16 + 8 + 4 + 0 + 0 = 11100 1

28 = 16 + 8 + 4 + 0 + 0 = 11100 1 ELECTRÓNICA DIGITAL 4º ESO Tecnología Introducción Imaginemos que deseamos instalar un sistema electrónico para la apertura de una caja fuerte. Para ello debemos pensar en el número de sensores que nos

Más detalles

DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO

DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO I. SISTEMAS NUMÉRICOS DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO LIC. LEYDY ROXANA ZEPEDA RUIZ SEPTIEMBRE DICIEMBRE 2011 Ocosingo, Chis. 1.1Sistemas numéricos. Los números son los mismos en todos

Más detalles

Valores propios y vectores propios

Valores propios y vectores propios Capítulo 6 Valores propios y vectores propios En este capítulo investigaremos qué propiedades son intrínsecas a una matriz, o su aplicación lineal asociada. Como veremos, el hecho de que existen muchas

Más detalles

Así, si p.ej. seleccionamos la tabla Hoteles de alguna práctica anterior, y seleccionamos

Así, si p.ej. seleccionamos la tabla Hoteles de alguna práctica anterior, y seleccionamos ESCUELA UNIVERSITARIA DE TURISMO DIPLOMATURA DE TURISMO BASES DE DATOS Y EL SECTOR TURÍSTICO CURSO 02/03 CREACIÓN DE FORMULARIOS CON ACCESS. Access permite la inserción, eliminación y modificación de registros

Más detalles

Representación de Datos. Una Introducción a los Sistemas Numéricos

Representación de Datos. Una Introducción a los Sistemas Numéricos Representación de Datos Una Introducción a los Sistemas Numéricos Tipos de Datos Datos Texto Número Imagen Audio Video Multimedia: Información que contiene números, texto, imágenes, audio y video. Como

Más detalles

9.1 Primeras definiciones

9.1 Primeras definiciones Tema 9- Grupos Subgrupos Teorema de Lagrange Operaciones 91 Primeras definiciones Definición 911 Una operación binaria en un conjunto A es una aplicación α : A A A En un lenguaje más coloquial una operación

Más detalles

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS PARA EMPEZAR Un cuadrado tiene 5 centímetros de lado. Escribe la epresión algebraica que da el área cuando el lado aumenta centímetros. A ( 5) Señala cuáles de las siguientes

Más detalles

Carrera: IFM - 0423 3-2-8. Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.

Carrera: IFM - 0423 3-2-8. Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Matemáticas para computación Licenciatura en Informática IFM - 0423 3-2-8 2.- HISTORIA

Más detalles

Teoremas de la función implícita y de la función inversa

Teoremas de la función implícita y de la función inversa Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Teoremas de la función implícita y de la función inversa 1. El teorema de la función implícita 1.1. Ejemplos

Más detalles

Índice Introducción Números Polinomios Funciones y su Representación. Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones

Índice Introducción Números Polinomios Funciones y su Representación. Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones Leandro Marín Dpto. de Matemática Aplicada Universidad de Murcia 2012 1 Números 2 Polinomios 3 Funciones y su Representación

Más detalles

Representación lógica del tiempo social

Representación lógica del tiempo social Representación lógica del tiempo social Copyright Título Asunto Clave Archivo Creación Impresión Distribución Revisión 1998, Bayes Inference, S.A. Representación lógica del tiempo social Diseño de una

Más detalles

EJERCICIO CONTRATOS. 5 Necesitas que el trabajo se realice, pero no tienes tiempo para Precio fijo (FP)

EJERCICIO CONTRATOS. 5 Necesitas que el trabajo se realice, pero no tienes tiempo para Precio fijo (FP) EJERCICIO CONTRATOS Ejercicio Nombra el tipo de contrato más apropiado para usar en la situación descrita. Tus opciones son contratos de precio fijo más honorarios por cumplimiento de objetivos (FPAF),

Más detalles

Grupos. Subgrupos. Teorema de Lagrange. Operaciones.

Grupos. Subgrupos. Teorema de Lagrange. Operaciones. 1 Tema 1.-. Grupos. Subgrupos. Teorema de Lagrange. Operaciones. 1.1. Primeras definiciones Definición 1.1.1. Una operación binaria en un conjunto A es una aplicación α : A A A. En un lenguaje más coloquial

Más detalles

Formato de programa de estudios para la formación y desarrollo de competencias profesionales. Ingeniería en Sistemas Computacionales

Formato de programa de estudios para la formación y desarrollo de competencias profesionales. Ingeniería en Sistemas Computacionales Formato de programa de estudios para la formación y desarrollo de competencias profesionales 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: SCD-1015 Lenguajes y Autómatas

Más detalles

LA SABIDURÍA (D.10.3.12)

LA SABIDURÍA (D.10.3.12) LA SABIDURÍA REFERENCIA BÍBLICA: Proverbios 14:26-27 VERSÍCULO CLAVE: CONCEPTO CLAVE: OBJETIVOS EDUCATIVOS: "El honrar al Señor da una firme esperanza que da seguridad a los hijos. El honrar al Señor es

Más detalles

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ):

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ): Pág. 1 de 7 FAC T O R I Z AC I Ó N D E P O L I N O M I O S Factorizar (o descomponer en factores) un polinomio consiste en sustituirlo por un producto indicado de otros de menor grado tales que si se multiplicasen

Más detalles

VI Olimpiada de Informática del estado de Guanajuato Solución Examen Teórico

VI Olimpiada de Informática del estado de Guanajuato Solución Examen Teórico I.- En todos los problemas siguientes de esta sección, encuentra qué número (o números) debe seguir según la sucesión, y explica el por qué. 1) 1, 4, 27, 256,? (5 puntos) R = 3125 Observa que 1=1 1, 4=2

Más detalles

MatemásTIC. Estudio y práctica del álgebra matricial con una aplicación TIC didáctica y sencilla. 65 Noviembre 2010, pp. 57-67

MatemásTIC. Estudio y práctica del álgebra matricial con una aplicación TIC didáctica y sencilla. 65 Noviembre 2010, pp. 57-67 65, pp. 57-67 Estudio y práctica del álgebra matricial con una aplicación TIC didáctica y sencilla MatemásTIC A lo largo de los distintos números de Suma nos planteamos en esta sección descubrir distintas

Más detalles

Teoría de Autómatas, Lenguajes Formales y Gramáticas. David Castro Esteban

Teoría de Autómatas, Lenguajes Formales y Gramáticas. David Castro Esteban Teoría de Autómatas, Lenguajes Formales y Gramáticas David Castro Esteban Copyright c 2003 2004 David Castro Esteban. Permission is granted to copy, distribute and/or modify this document under the terms

Más detalles

1. Examen 21/Junio/1994. Para la inversión de una matriz cuadrada A de orden n n, cuya inversa existe, se ha definido la siguiente iteración

1. Examen 21/Junio/1994. Para la inversión de una matriz cuadrada A de orden n n, cuya inversa existe, se ha definido la siguiente iteración CAPÍTULO 5 EJERCICIOS RESUELTOS: MÉTODOS ITERATIVOS PARA ECUACIONES LINEALES Ejercicios resueltos 1 1. Examen 21/Junio/1994. Para la inversión de una matriz cuadrada A de orden n n cuya inversa existe

Más detalles

Capítulo 5: Ecuaciones de segundo grado y sistemas lineales

Capítulo 5: Ecuaciones de segundo grado y sistemas lineales º de ESO Capítulo : Ecuaciones de segundo grado sistemas lineales Autora: Raquel Hernández Revisores: Sergio Hernández María Molero Ilustraciones: Raquel Hernández Banco de Imágenes de INTEF Ecuaciones

Más detalles

Diferenciabilidad. Definición 1 (Función diferenciable). Cálculo. Segundo parcial. Curso 2004-2005

Diferenciabilidad. Definición 1 (Función diferenciable). Cálculo. Segundo parcial. Curso 2004-2005 Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Diferenciabilidad. 1. Definición de función diferenciable Después del estudio de los ites de funciones

Más detalles

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n.

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n. Ortogonalidad Producto interior Longitud y ortogonalidad Definición Sean u y v vectores de R n Se define el producto escalar o producto interior) de u y v como u v = u T v = u, u,, u n ) Ejemplo Calcular

Más detalles

SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA

SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA DEPARTAMENTO DE PREPARATORIA ABIERTA MATEMÁTICAS II GUIA DE ESTUDIO

Más detalles

Programación: QBASIC

Programación: QBASIC 1. QBASIC Programación: QBASIC Guía del alumno Qbasic es una versión moderna del lenguaje BASIC. Se trata de un lenguaje de alto nivel. En un lenguaje de alto nivel las instrucciones tienen un formato

Más detalles

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal)

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Unidad I Sistemas numéricos 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS.

Más detalles

RECURSION. Se deben hacer cuatro preguntas para construir una solución recursiva:

RECURSION. Se deben hacer cuatro preguntas para construir una solución recursiva: puntes teóricos ño 2013 RECURSION Veremos un nuevo mecanismo, una nueva técnica de diseño, para resolver problemas: L RECURSIÓN. La recursión es una alternativa a la iteración o repetición, y aunque en

Más detalles

L A P R O G R A M A C I O N

L A P R O G R A M A C I O N L A P R O G R A M A C I O N L I N E A L 1. INTRODUCCIÓN: la programación lineal como método de optimación La complejidad de nuestra sociedad en cuanto a organización general y económica exige disponer

Más detalles

Datos del autor. Nombres y apellido: Germán Andrés Paz. Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina

Datos del autor. Nombres y apellido: Germán Andrés Paz. Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina Datos del autor Nombres y apellido: Germán Andrés Paz Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina Correo electrónico: germanpaz_ar@hotmail.com =========0========= Introducción

Más detalles

Módulo 9 Sistema matemático y operaciones binarias

Módulo 9 Sistema matemático y operaciones binarias Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional

Más detalles

Sistema binario. Representación

Sistema binario. Representación Sistema binario El sistema binario, en matemáticas e informática, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno ( y ). Es el que se utiliza

Más detalles

4. FUNCIONES DE VARIAS VARIABLES

4. FUNCIONES DE VARIAS VARIABLES 4. FUNCIONES DE VARIAS VARIABLES INDICE 4 4.1. Definición de una función de dos variables...2 4.2. Gráfica de una función de dos variables..2 4.3. Curvas y superficies de nivel....3 4.4. Límites y continuidad....6

Más detalles

Funciones CONJUNTO EXCEL 2013 AVANZADO

Funciones CONJUNTO EXCEL 2013 AVANZADO EXCEL 2013 AVANZADO Esta función contará la cantidad de celdas que contengan palabras de cuatro letras y que terminen con la A. El asterisco cumple una función similar, pero la diferencia radica en que

Más detalles

Tecnología de la Información y la Comunicación. Base de datos. Consultas - 2007 -

Tecnología de la Información y la Comunicación. Base de datos. Consultas - 2007 - Tecnología de la Información y la Comunicación Base de datos Consultas - 2007 - Profesores del área Informática: Guillermo Storti Gladys Ríos Gabriel Campodónico Consultas Se utilizan consultas para ver,

Más detalles

DEMOSTRACIONES GEOMÉTRICAS

DEMOSTRACIONES GEOMÉTRICAS DEMOSTRACIONES GEOMÉTRICAS Ana M. Martín Caraballo, Universidad Pablo de Olavide de Sevilla. José Muñoz Santonja, IES Macarena de Sevilla. ESTALMAT ANDALUCÍA SEDE SEVILLA ÍNDICE INTRODUCCIÓN PRIMERA PARTE:

Más detalles

Codd propuso estos tres lenguajes como base teórica de cualquier lenguaje que quisiera cumplir con los requisitos formales del modelo.

Codd propuso estos tres lenguajes como base teórica de cualquier lenguaje que quisiera cumplir con los requisitos formales del modelo. 16/05/2012 1 Todo modelo de datos debe definir un lenguaje de definición de datos para crear las estructuras donde se almacenará la información y un lenguaje de manipulación de datos con el que acceder

Más detalles

Unidad II: Diseño de Bases de Datos y el modelo E-R. 2.1 El Proceso de Diseño

Unidad II: Diseño de Bases de Datos y el modelo E-R. 2.1 El Proceso de Diseño Unidad II: Diseño de Bases de Datos y el modelo E-R. 2.1 El Proceso de Diseño El proceso de diseño para una base de datos consta básicamente de 7 pasos, los cuáles se describen en la siguiente imagen.

Más detalles

UNIDAD DE APRENDIZAJE IV

UNIDAD DE APRENDIZAJE IV UNIDAD DE APRENDIZAJE IV Saberes procedimentales 1. Interpreta y utiliza correctamente el lenguaje simbólico ara el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones

Más detalles

Tema 2: Sistemas de representación numérica

Tema 2: Sistemas de representación numérica 2.1 Sistemas de Numeración Definiciones previas Comenzaremos por definir unos conceptos fundamentales. Existen 2 tipos de computadoras: Analógicas: actúan bajo el control de variables continuas, es decir,

Más detalles