PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO"

Transcripción

1 PROCESOS ESOCÁSICOS PROCESOS ESOCÁSICOS INEGRAL ESOCÁSICA ECUACIONES DIFERENCIALES ESOCASICAS: LEMA DE IO

2 Procesos esocásicos Un proceso esocásico describe la evolución emporal de una variable aleaoria. ipos de procesos esocásicos: de iempo discreo: aquel en el que la variable puede cambiar de valor únicamene en insanes concreos del iempo de iempo coninuo: aquel en el que la variable puede cambiar de valor en cualquier insane del iempo de variable discrea: aquel en el que la variable sólo puede omar deerminados valores discreos de variable coninua: aquel en el que la variable puede omar cualquier valor de la reca real Nuesro objeivo será deducir un proceso esocásico de variable coninua y en iempo coninuo adecuado para describir el comporamieno de variables económico financieras (precios de las acciones, rendimienos de acivos, ipos de inerés...)

3 Epresión analíica de un proceso esocásico Sabemos que el comporamieno de una variable aleaoria se describe mediane una adecuada disribución de probabilidad. En un proceso esocásico el comporamieno de la variable aleaoria considerada varía en el iempo. Por ano, la disribución de probabilidad uilizada para describirla ambién podrá variar en el iempo. Para describir el proceso esocásico que sigue una variable aleaoria emporal, deberemos indicar en cada insane cual es la disribución de probabilidad asociada a. Ejemplo: Consideremos el procesos esocásico dado por: N( + µ, σ ), µ, σ consanes conocidas En un insane final de iempo, sigue una disribución de probabilidad de media +µ y de varianza σ

4 Cuando se esá modelizando un fenómeno real, resula difícil esablecer direcamene cual va ser la disribución de probabilidad adecuada, asi como deerminar cómo van a variar sus parámeros en el iempo. Por ello es frecuene que los procesos esocásicos vengan dados mediane ecuaciones, similares a las de los modelos discreos en diferencias finias que aparecían en el ejemplo del ema 1. En dichas ecuaciones se relaciona el valor de la variable aleaoria en el insane, con su valor en el insane anerior -1. Ahora bien, para que una ecuación en diferencias sea esocásica es necesario que en su epresión inervenga una variable aleaoria esándar ξ.. De ese modo el valor de no se deduce de forma deerminisa a parir del valor de -1, sino que depende ambién del comporamieno de la variable aleaoria ξ. ξ inducirá en una disribución de probabilidad variable en el iempo. Es decir, seguirá un proceso esocásico.

5 Ejemplos de procesos esocásicos definidos por ecuaciones + ξ + ξ 1 1 ( conocido) Caso 1: ξ sigue una disribución de probabilidad dada por: 1 P( ξ 1) P( ξ 1) La disribución de probabilidad de vendrá inducida a parir de la disribución binomial que sigue ξ. Ese ejemplo se puede ilusrar mediane el eperimeno del lanzamieno de una moneda. Caso : ξ sigue una disribución de probabilidad dada por: P( ξ 1) p P( ξ 1) 1 p Caso 3: ξ sigue una disribución de probabilidad N(,σ)

6 δ + ρ + ξ 1 conocido δ y ρ consanes, siendo -1 ρ 1 ξ sigue una disribución de probabilidad N(,σ) Proceso auoregresivo de primer orden Noa: En muchos casos, es posible deducir a parir de la ecuación que define el proceso esocásico, cual sería la disribución de probabilidad de la variable aleaoria. Veremos ese procedimieno para la ecuación en diferencias esocásica que nos ineresa esudiar en profundidad.

7 Simulación de procesos esocásicos

8 Procesos de Markov Procesos de Wiener Un proceso de Markov es un ipo paricular de proceso esocásico en el que únicamene el esado acual del proceso es relevane a la hora de predecir el esado fuuro. Es decir, la hisoria pasada del proceso y la forma en que el ppresene ha emergido del pasado son irrelevanes. Más formalmene, el valor esperado de una variable aleaoria en el insane, depende únicamene del valor previo -1. Generalizando, si poseemos información sobre r, con r <, enonces a la hora de esimar,, la única información que necesiamos es la de r, para el mayor r para el que engamos información.

9 Se supone habiualmene que los precios de las acciones siguen un proceso de Markov. Esa propiedad de Markov de los precios de las acciones se corresponde con la denominada eficiencia débil del mercado. Dicha eficiencia débil esablece que el precio acual de la acción encierra oda la información conenida en el regisro de los precios del pasado. Si esa propiedad no fuese ciera, los analísas écnicos podrían obener beneficios por encima de la media inerpreando las bases de daos de la hisoria pasada de las acciones. Eise poca evidencia de que sean capaces de hacerlo. Un proceso de Wiener es un ipo especial de proceso esocásico de Markov. Una variable se dice que sigue un proceso de Wiener si cumple la ecuación: + ξ 1 conocido -1 + ξ sigue una disribución de probabilidad N(,1) ξ es independiene de ξ s para odo s

10 Propiedades de los procesos de Wiener Para un inervalo empora dado, el incremeno de la variable aleaoria se disribuye según una normal de media y varianza. N(, ) 1 + ξ 1 ξ Como ξ sigue una disribución deprobabilidad normal, enonces ξ sigue ambién una disribución normal. Veamos cual sería su media y su varianza: [ ] [ ] [ ] µ E E ξ * E ξ * Var E ( µ ) E ( ) E ( ) E ξ * E ξ * E ( ξ ) *1 ξ sigue una N(,1) ξ sigue una N(,1)

11 Supongamos que queremos esudiar el comporamieno de en un inervalo de iempo relaivamene amplio [,]. Procedemos como sigue: Subdividimos el inervalo [,] en q subinervalos de longiud /q Aplicamos la fórmula del proceso de Wiener a cada subinervalo y sumamos miembro a miembro las ecuaciones obenidas: ξq 1 ξq ξ ξ 1 q 1 i ξ i

12 Como las variables aleaorias ξ i son independienes y se disribuyen según una normal N(,1), enonces se disribuye según una normal de media la suma de las medias y de varianza la suma de las varianzas. Por ano, - sigue una disribución normal de media y varianza: i ξ [ ] q q q Var Var Var q i q i i q i i * * 1 * * ) ( ξ ξ [ ] * * ) ( 1 1 E E E q i i q i i ξ ξ (, ) N (, ) N

13 Movimieno Browniano ariméico Un movimieno Browniano ariméico (MBA) es un proceso esocásico definido en érminos de un proceso de Wiener del modo siguiene: µ + σ z 1 µ y σ consanes z ξ es es un un proceso de de Wiener La consane µ represena la asa esperada de cambio de la variable por unidad de iempo. En efeco, si eliminasemos el segundo sumando endríamos que -1 + µ. El érmino σ z perurba la endencia marcada por µ. Dicha perurbación es σ veces un proceso de Wiener z.

14 Propiedades de los MBA Para un inervalo empora dado, el incremeno de la variable aleaoria se disribuye según una normal de media µ y varianza σ. N µ σ (, ) Como z es un proceso de Wiener, sabemos que sigue una disribución de probabilidad normal de media y varianza. Enonces seguirá ambién una disribución normal. Veamos cual es su media y su varianza: [ ] [ ] [ ] µ E E µ + σ z µ + σ E z µ + µ Var E ( ) E ( z) E ( z) E ( z ) Var z [ ] µ σ σ σ σ σ

15 Supongamos que queremos esudiar el comporamieno de en un inervalo de iempo relaivamene amplio [,]. Procedemos como sigue: Subdividimos el inervalo [,] en q subinervalos de longiud /q Aplicamos la fórmula del MBA a cada subinervalo y sumamos miembro a miembro las ecuaciones obenidas: µ + σξq 1 µ + σξ µ + σξ1 µ + σξ q q 1 q 1 i i i i qµ + σ ξ µ + σ ξ

16 [ ] Como las variables aleaorias ξ i son independienes y se disribuyen según una normal N(,1), enonces ξi se disribuye según una normal de media la suma de las medias y de varianza la suma de las varianzas. Por ano, - sigue una disribución normal de media y varianza: q 1 q 1 i i i i E E µ + σ( ξ ) µ + σ E ξ µ + σ * µ q 1 q 1 q 1 Var [ ] E ( µ + σ( ξ i) µ ) E ( σ( ξi) ) σ 1 σ q σ i i i N ( µ, σ ) E ( ) Var Var q 1 q 1 q 1 ξi ξi ξi i i i [ ] N µ σ ( +, )

17 Simulación de MBA

18 Inervalos de confianza para el MBA eniendo en cuena que: (, ) N + µ σ y uilizando propiedades conocidas de la disribución normal, enemos que los inervalos de confianza del 66%, 95% y 99% son respecivamene: ).33,.33 ( ), ( ), ( σ µ σ µ σ µ σ µ σ µ σ µ

19 Movimieno Browniano geomérico Un movimieno Browniano geomérico (MBG) es un proceso esocásico dado por: z 1 µ 1 σ 1 µ y σconsanes z ξ es es un un proceso de de Wiener + Noemos que: 1 1 µ + σ z Es decir, que el cociene del incremeno de la variable dividido enre el valor anerior de la variable sigue un MBA. Ese hecho será uilizado para esudiar la renabilidad de una acción cuando represena el precio de dicha acción.

20 Simulaciones de MBG

21 Inegral esocásica. Procesos de difusión. Ecuaciones diferenciales esocásicas Los movimienos brownianos se basan en la definición del proceso de Wiener. Las rayecorias del proceso de Wiener son coninuas pero no derivables. Por ano el paso de un proceso esocásico de iempo discreo a oro de iempo coninuo no es inmediao. Requiere de la consrucción de una nueva herramiena maemáica: la inegral esocásica En general podemos definir procesos esocásicos cuyos incremenos dependen de un proceso de Wiener. Un proceso de Iô o proceso de difusión es un proceso de Wiener generalizado en el que los parámeros µ y σ son ahora funciones de la propia variable y del iempo:

22 1 f (, ) + + g(, ) z Si en la ecuación anerior hacemos ender, enonces, en iempo coninuo, se puede escribir formalmene: d f (, ) d + g(, ) dz La variable esocásica esá definida si en la ecuación inegral siguiene las inegrales que aparecen ienen senido y son calculables: + f (, ) ds + g(, ) dz

23 La inegral f(, ) ds es una inegral Rieman La inegral gdz (, ) no es Rieman ya que dz no eise. (Aunque z es coninua no es de variación acoada y por ano la inegral ampoco es una inegral de Rieman-Sieljes). Por ano hay que definir un nuevo ipo de inegral: la inegral esocásica. Bibliografía: Malliaris, Broch: "Sochasic Mehods in Economics and Finance"

24 Lema de Iô Sea un proceso de difusión cuya dinámica es: d f (, ) d + g(, ) dz Supongamos que y F(,) es función del proceso anerior, siendo F(,) una función de clase C (R R + ). Enonces y es un proceso de difusión cuya diferencial esocásica viene dada por : F F 1 F F dy + f(, ) + g(, ) d g(, ) + dz

25 Aplicación del Lema de Iô al esudio del MBG Consideramos el siguiene MBG en iempo discreo: µ + σξ + µ + σ z 1 y su generalización a iempo coninuo: d µ d + σ dz Veamos que el proceso y ln sigue un MBA en iempo coninuo: Como y y(, ), enonces podemos calcular: y y 1 y 1,, Aplicando Iô: dy µ + σ d + σ dz µ σ d + σdz

26 Luego y sigue un MBA de parámeros µ - 1/σ y σ. Aplicando los resulados del MBA se iene que: 1 ( ) y ln N( ( µ σ ), σ Si suponemos ln conocido, enonces: 1 y N + Como y ln, enonces ln (ln ( µ σ ), σ ) e Se Se dice que sigue una disribución lognormal Calculemos el valor esperado y la varianza: y

27 Sabemos que si y sigue una disribución normal, enonces: Luego: y E( e ) e 1 E ( y ) + Var ( y ) E( ) e µ µ σ ( ) Var( ) e e 1

28 Sabemos que Inervalos de confianza del MBG + ln N(ln ( µ σ ), σ ) Enonces el inervalo de confianza al 95% viene dado por: 1 1 ln + ( µ σ ) σ,ln + ( µ σ ) + σ Por ano, como: 1 1 ln + ( µ σ ) σ ln ln + ( µ σ ) + σ se concluye que: 1 1 ( µ σ ) σ ( µ σ ) + σ 1 e e

El comportamiento del precio de las acciones

El comportamiento del precio de las acciones El comporamieno del precio de las acciones Esrella Peroi Invesigador enior Bolsa de Comercio de Rosario eperoi@bcr.com.ar Para comprender el funcionamieno de los modelos de valuación de opciones sobre

Más detalles

Cobertura de una cartera de bonos con forwards en tiempo continuo

Cobertura de una cartera de bonos con forwards en tiempo continuo Coberura de una carera de bonos con forwards en iempo coninuo Bàrbara Llacay Gilber Peffer Documeno de Trabajo IAFI No. 7/4 Marzo 23 Índice general Inroducción 2 Objeivos......................................

Más detalles

Métodos de Previsión de la Demanda Datos

Métodos de Previsión de la Demanda Datos Daos Pronósico de la Demanda para Series Niveladas Esime la demanda a la que va a hacer frene la empresa "Don Pinzas". La información disponible para poder esablecer el pronósico de la demanda de ese produco

Más detalles

1 Introducción... 2. 2 Tiempo de vida... 3. 3 Función de fiabilidad... 4. 4 Vida media... 6. 5 Tasa de fallo... 9. 6 Relación entre conceptos...

1 Introducción... 2. 2 Tiempo de vida... 3. 3 Función de fiabilidad... 4. 4 Vida media... 6. 5 Tasa de fallo... 9. 6 Relación entre conceptos... Asignaura: Ingeniería Indusrial Índice de Conenidos 1 Inroducción... 2 2 Tiempo de vida... 3 3 Función de fiabilidad... 4 4 Vida media... 6 5 Tasa de fallo... 9 6 Relación enre concepos... 12 7 Observaciones

Más detalles

Las derivadas de los instrumentos de renta fija

Las derivadas de los instrumentos de renta fija Las derivadas de los insrumenos de rena fija Esrella Peroi, MBA Ejecuivo a cargo Capaciación & Desarrollo Bolsa de Comercio de Rosario eperoi@bcr.com.ar Como viéramos en el arículo el dilema enre la asa

Más detalles

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase Lección 5 Técnicas cualiaivas para las Ecuaciones diferenciales de primer orden: Campos de pendienes y líneas de fase 5.. Técnicas Cualiaivas Hasa ahora hemos esudiado écnicas analíicas para calcular,

Más detalles

Guía de Ejercicios Econometría II Ayudantía Nº 3

Guía de Ejercicios Econometría II Ayudantía Nº 3 Guía de Ejercicios Economería II Ayudanía Nº 3 1.- La serie del dao hisórico del IPC Español desde enero de 2002 hasa diciembre de 2011, esá represenada en el siguiene gráfico: 115 110 105 100 95 90 85

Más detalles

Modelo de regresión lineal simple

Modelo de regresión lineal simple Modelo de regresión lineal simple Inroducción Con frecuencia, nos enconramos en economía con modelos en los que el comporamieno de una variable,, se puede explicar a ravés de una variable X; lo que represenamos

Más detalles

FUNCIONES VECTORIALES CON DERIVE.

FUNCIONES VECTORIALES CON DERIVE. FUNCIONES VECTORIALES CON DERIVE. Las operaciones de cálculo de Dominio, adición susracción, muliplicación escalar y vecorial de funciones vecoriales, se realizan de manera similar a las operaciones con

Más detalles

LÍNEAS DE FASES. Fig. 1. dx (1) dt se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden definida en Ω.

LÍNEAS DE FASES. Fig. 1. dx (1) dt se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden definida en Ω. LÍNEAS DE FASES E. SÁEZ Sea el dominio Ω R R y la función F : Ω R. F R Ω Una epresión de la forma Fig. 1 d (1) = F(,), o bien, ẋ = F(,) se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden

Más detalles

TEMA 2 MODELO LINEAL SIMPLE (MLS) Gujarati, Econometria (2004)

TEMA 2 MODELO LINEAL SIMPLE (MLS) Gujarati, Econometria (2004) EMA 2 MODELO LINEAL SIMPLE (MLS) Gujarai, Economeria (2004). Planeamieno e inerpreación del modelo economérico lineal simple. Capíulo 2 páginas 36 a 39 2. Hipóesis Básicas del Modelo Capíulo 3 páginas

Más detalles

Autor: D. Marcos Javier Olza Tapiz Tutor: Dr. D. Ricardo Vélez Ibarrola

Autor: D. Marcos Javier Olza Tapiz Tutor: Dr. D. Ricardo Vélez Ibarrola Aproximación a FX y Producos Quano en el Marco Black-Scholes Trabajo aprobado para la obención del Tíulo de Maser en Maemáicas Avanzadas de la UNED. Especialidad de Invesigación Operaiva y Esadísica Auor:

Más detalles

UNIDAD IX. Técnicas de Suavización

UNIDAD IX. Técnicas de Suavización UNIDAD IX Técnicas de Suavización UNIDAD IX La esadísica demuesra que suele ser más fácil hacer algo bien que explicar por qué se hizo mal. Allen L. Webser, 1998 Cuál es el objeivo de la Técnica de suavización?

Más detalles

Ecuaciones diferenciales, conceptos básicos y aplicaciones

Ecuaciones diferenciales, conceptos básicos y aplicaciones GUIA 1 Ecuaciones diferenciales, concepos básicos y aplicaciones Las ecuaciones diferenciales ordinarias son una herramiena básica en las ciencias y las ingenierías para el esudio de sisemas dinámicos

Más detalles

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por Represenación gráfica de curvas en forma paramérica x a( sen) 1.- Represenar la curva dada por, siendo a > 0. y a(1 cos).- Emparejar cada curva con su gráfica ì ì x = a) ï x = í b) ï ì í ï c) ï x = - sen

Más detalles

Análisis de inversiones y proyectos de inversión

Análisis de inversiones y proyectos de inversión Análisis de inversiones y proyecos de inversión Auora: Dra. Maie Seco Benedico Índice 5. Análisis de Inversiones 1. Inroducción. 2. Crierios para la valoración de un proyeco. 3. Técnicas de valoración

Más detalles

UNA MODELIZACIÓN PARA LOS ACCIDENTES DE TRABAJO EN ESPAÑA Y ANDALUCÍA

UNA MODELIZACIÓN PARA LOS ACCIDENTES DE TRABAJO EN ESPAÑA Y ANDALUCÍA UNA MODELIZACIÓN PARA LOS ACCIDENTES DE TRABAJO EN ESPAÑA Y ANDALUCÍA Por Mónica Orega Moreno Profesora Esadísica. Deparameno Economía General y Esadísica RESUMEN El aumeno de la siniesralidad laboral

Más detalles

El modelo estocástico de Vasicek para la predicción de tipos de interés

El modelo estocástico de Vasicek para la predicción de tipos de interés MÁSTER UNIVERSITARIO EN DIRECCIÓN FINANCIERA Y FISCAL TRABAJO FIN DE MÁSTER El modelo esocásico de Vasicek para la predicción de ipos de inerés Aplicación al ipo de inerés inerbancario EONIA Direcores:

Más detalles

TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS

TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS 9.2 La asa naural de desempleo y la curva de Phillips La relación enre el desempleo y la inflación La curva de Phillips, basada en los daos aneriores

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C.

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Maemáicas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables Elena Álvarez Sáiz Dpo. Maemáica Aplicada C. Compuación Universidad de Canabria Ingeniería de Telecomunicación Ejercicios: Func. varias

Más detalles

Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo:

Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: Escuela Superior Poliécnica del Lioral Faculad de Economía y Negocios 30-11-2011 Examen Parcial de Economería II Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: REGLAMENTO DE EVALUACIONES Y CALIFICACIONES

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE.

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. Invesigación y écnicas de Mercado Previsión de Venas ÉCNICAS CUANIAIVAS ELEMENALES DE PREVISIÓN UNIVARIANE. (II) écnicas elemenales: Modelos Naive y Medias Móviles. Medición del error de previsión. Profesor:

Más detalles

Keywords: seguro de vida, provisión matemática, probabilidad, función de distribución, solvencia, value at risk, VAT, valor actual neto, VAN.

Keywords: seguro de vida, provisión matemática, probabilidad, función de distribución, solvencia, value at risk, VAT, valor actual neto, VAN. El seguro de vida como variable aleaoria. Cómo calcular su función de disribución. Nieo Ranero, Armando Universiy of Valencia, Spain Do. Maemáicas Económico Empresarial, Edificio Deparamenal Orienal, Av.

Más detalles

Tema 8: SERIES TEMPORALES

Tema 8: SERIES TEMPORALES Inroducción a la Economería Tema 8: ERIE TEMPORALE Tema 8: ERIE TEMPORALE. Concepo y componenes de una serie emporal. Definiremos una serie emporal como cualquier conjuno de N observaciones cuaniaivas

Más detalles

Estimación de modelos de volatilidad estocástica

Estimación de modelos de volatilidad estocástica Esimación de modelos de volailidad esocásica García Ceneno, Mª Carmen; Ibar Alonso, Raquel Deparameno Méodos Cuaniaivos para la Economía Faculad de Ciencias Económicas y Empresariales Universidad San Pablo-CEU

Más detalles

Pablo Vinuesa 2006, vinuesa@ccg.unam.mx; http://www.ccg.unam.mx/~vinuesa/ 1

Pablo Vinuesa 2006, vinuesa@ccg.unam.mx; http://www.ccg.unam.mx/~vinuesa/ 1 BE-IV, L-UNM, México Para el análisis filogenéico de secuencias alineadas virualmene odos los méodos describen la evolución de las secuencias usando un modelo que consa de dos componenes: 1. un árbol filogenéico

Más detalles

Capítulo 4 Sistemas lineales de primer orden

Capítulo 4 Sistemas lineales de primer orden Capíulo 4 Sisemas lineales de primer orden 4. Definición de sisema lineal de primer orden Un sisema de primer orden es aquel cuya salida puede ser modelada por una ecuación diferencial de primer orden

Más detalles

Master en Economía Macroeconomía II. 1 Learning by Doing (versión en tiempo discreto)

Master en Economía Macroeconomía II. 1 Learning by Doing (versión en tiempo discreto) Maser en Economía Macroeconomía II Profesor: Danilo Trupkin Se de Problemas 4 - Soluciones 1 Learning by Doing (versión en iempo discreo) Considere una economía cuyas preferencias, ecnología, y acumulación

Más detalles

MACROECONOMIA II. Grado Economía 2013-2014

MACROECONOMIA II. Grado Economía 2013-2014 MACROECONOMIA II Grado Economía 2013-2014 PARTE II: FUNDAMENTOS MICROECONÓMICOS DE LA MACROECONOMÍA 3 4 5 Tema 2 Las expecaivas: los insrumenos básicos De qué dependen las decisiones económicas? Tipo de

Más detalles

TEMA 2 LOS MODELOS ECONOMETRICOS Y SU PROBLEMATICA

TEMA 2 LOS MODELOS ECONOMETRICOS Y SU PROBLEMATICA TEMA 2 LOS MODELOS ECONOMETRICOS Y SU PROBLEMATICA 1. CONCEPTO DE MODELO El ermino modelo debe de idenificarse con un esquema menal ya que es una represenación de la realidad. En ese senido, Pulido (1983)

Más detalles

Metodología de cálculo del diferencial base

Metodología de cálculo del diferencial base Meodología de cálculo del diferencial base El diferencial base es el resulado de expresar los gasos generales promedio de operación de las insiuciones de seguros auorizadas para la prácica de los Seguros

Más detalles

SERIES TEMPORALES. Cecilia Esparza Catalán

SERIES TEMPORALES. Cecilia Esparza Catalán SERIES TEMPORALES Cecilia Esparza Caalán Cecilia Esparza Caalán ÍNDICE Página.- INTRODUCCIÓN.. 2 2.- ANÁLISIS PRELIMINAR DE UNA SERIE... 3 - Tendencia y nivel de la serie.... 4 - Esacionalidad.... 9 -

Más detalles

Capítulo 5 Sistemas lineales de segundo orden

Capítulo 5 Sistemas lineales de segundo orden Capíulo 5 Sisemas lineales de segundo orden 5. Definición de sisema de segundo orden Un sisema de segundo orden es aquel cuya salida y puede ser descria por una ecuación diferencial de segundo orden: d

Más detalles

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0,

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0, TEMA: FUNCIONES: ÍNDICE:. Inroducción.. Dominio y recorrido.. Gráficas de funciones elemenales. Funciones definidas a rozos. 4. Coninuidad.. Crecimieno y decrecimieno, máimos y mínimos. 6. Concavidad y

Más detalles

Solvencia II. Los Conceptos Básicos. Por: P. Aguilar. Febrero de 2008

Solvencia II. Los Conceptos Básicos. Por: P. Aguilar. Febrero de 2008 Solvencia II Los Concepos Básicos Por: P. Aguilar Febrero de 2008 El esquema regulaorio de Solvencia II planea un impaco relevane en el ejercicio de la prácica acuarial. Tal esquema se caraceriza por descansar

Más detalles

CORRELACIÓN LINEAL Y ANÁLISIS DE REGRESIÓN

CORRELACIÓN LINEAL Y ANÁLISIS DE REGRESIÓN CORRELACIÓN LINEAL Y ANÁLISIS DE REGRESIÓN Auores: Alicia Vila (avilag@uoc.edu), Máximo Sedano (msedanoh@uoc.edu), Ana López (alopezra@uoc.edu), Ángel A. Juan (ajuanp@uoc.edu), MAPA CONCEPTUAL Definición

Más detalles

Estadística de Valor Tasado de Vivienda

Estadística de Valor Tasado de Vivienda Esadísica de Valor Tasado de Vivienda Meodología Subdirección General de Esudios y Esadísicas Madrid, enero de 2016 Índice 1 Inroducción 2 Objeivos 3 Ámbios de la esadísica 3.1 Ámbio poblacional 3.2 Ámbio

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

ECONOMÍA. Teoría del control óptimo: Una guía para principiantes! David Bardey y Hélène Bonnet ISSN 0124 4396

ECONOMÍA. Teoría del control óptimo: Una guía para principiantes! David Bardey y Hélène Bonnet ISSN 0124 4396 ISSN 0124 4396 ECONOMÍA BORRADORES DE INVESTTI I IGACIÓN No. 87. Enero 2006 Teoría del conrol ópimo: Una guía para principianes! David Bardey y Hélène Bonne UNIVERSIDAD DEL ROSARIO Colegio Mayor de Nuesra

Más detalles

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales.

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales. T-1 Inroducción a la elecrónica digial 1 TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL El raamieno de la información en elecrónica se puede realizar de dos formas, mediane écnicas analógicas o mediane écnicas

Más detalles

{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar.

{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar. . Esudia el dominio de las siguienes unciones: a ( : Función Racional, el dominio son odos los números reales ecepo los que anulen el denominador. R / 0 : 0 : : ± [ ( ] { } R ± { } b ( : Función Racional,

Más detalles

Matemática financiera

Matemática financiera UNDAD 2 Maemáica financiera L a necesidad de efecuar numerosos y complicados cálculos dio origen a los logarimos. Los más usados son los logarimos neperianos, llamados así en honor de John Neper (156 1617),

Más detalles

MECANISMOS DE TRANSMISIÓN

MECANISMOS DE TRANSMISIÓN MECANISMOS DE TRANSMISIÓN DE LA POLÍTICA MONETARIA EN MÉXICO MIGUEL MESSMACHER LINARTAS* * Las opiniones expresadas en ese documeno son exclusivamene del auor y no necesariamene reflejan las del Banco

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. Una parícula se muee en la dirección posiia del eje X, de modo que su elocidad aría según la ley = α donde α es una consane. Teniendo en cuena que en el

Más detalles

Unidades Vinculadas al PBI:

Unidades Vinculadas al PBI: Unidades Vinculadas al PBI: Meodología y Valuación. Tesina de Licenciaura en Economía Mercedes Mac Mullen Universidad Caólica Argenina, 2007 TUTOR: Francisco Ciocchini I. Inroducción En el rabajo se provee

Más detalles

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA.

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA. D: 3. ENEGÍA Y OENCA ELÉCCA. La energía es definida como la capacidad de realizar rabajo y relacionada con el calor (ransferencia de energía), se percibe fundamenalmene en forma de energía cinéica, asociada

Más detalles

Práctica 2: Análisis en el tiempo de circuitos RL y RC

Práctica 2: Análisis en el tiempo de circuitos RL y RC Prácica 2: Análisis en el iempo de circuios RL y RC Objeivo Esudiar la respuesa ransioria en circuios serie RL y RC. Se preende ambién que el alumno comprenda el concepo de filro y su uilidad. 1.- INTRODUCCIÓN

Más detalles

Nota Técnica Índice de Tipo de Cambio Efectivo Real Multilateral con ponderadores móviles

Nota Técnica Índice de Tipo de Cambio Efectivo Real Multilateral con ponderadores móviles Noa Técnica Índice de Tipo de Cambio Efecivo Real Mulilaeral con ponderadores móviles 1. Inroducción: La presene noa écnica preende inroducir y explicar al público el Índice de Tipo de Cambio Efecivo Real

Más detalles

Sistemade indicadores compuestos coincidentey adelantado julio,2010

Sistemade indicadores compuestos coincidentey adelantado julio,2010 Sisemade indicadores compuesos coincideney adelanado julio,2010 Sisema de Indicadores Compuesos: Coincidene y Adelanado SI REQUIERE INFORMACIÓN MÁS DETALLADA DE ESTA OBRA, FAVOR DE COMUNICARSE A: Insiuo

Más detalles

INSTITUTO NACIONAL DE PESCA

INSTITUTO NACIONAL DE PESCA INSTITUTO NACIONAL DE PESCA Dirección General de Invesigación Pesquera en el Pacífico Nore Subdirección de Tecnología en el Pacífico Nore. Indicadores económico-financieros para la capura de camarón y

Más detalles

COMPARACION DE PLANES DE PENSIONES DESDE LA PERSPECTIVA DEL INVERSOR

COMPARACION DE PLANES DE PENSIONES DESDE LA PERSPECTIVA DEL INVERSOR COMPARACION DE PLANES DE PENSIONES DESDE LA PERSPECTIVA DEL INVERSOR Monserra Guillén 1, Jens Perch Nielsen 2 y Ana M. Pérez-Marín 3 RESUMEN En ese rabajo se comparan res producos básicos de ahorro exisenes

Más detalles

CAPÍTULO 3: INFILTRACIÓN

CAPÍTULO 3: INFILTRACIÓN 27 CAPÍTULO 3: INFILTRACIÓN 3.1 DEFINICIÓN El agua precipiada sobre la supericie de la ierra, queda deenida, se evapora, discurre por ella o penera hacia el inerior. Se deine como inilración al paso del

Más detalles

REVISTA INVESTIGACION OPERACIONAL Vol. 24, No. 1, 2003

REVISTA INVESTIGACION OPERACIONAL Vol. 24, No. 1, 2003 REVISTA INVESTIGACION OPERACIONAL Vol. 24, No. 1, 2003 ADAPTACION DE LOS TIPOS DE INTERES DE INTERVENCION A LA REGLA DE TAYLOR. UN ANALISIS ECONOMETRICO Carlos Paeiro Rodríguez 1, Deparameno de Análisis

Más detalles

Introducción a la Estadística Empresarial. Capítulo 4.- Series temporales Jesús Sánchez Fernández

Introducción a la Estadística Empresarial. Capítulo 4.- Series temporales Jesús Sánchez Fernández Inroducción a la Esadísica Empresarial. Capíulo 4.- Series emporales CAPITULO 4.- SERIES TEMPORALES 4. Inroducción. Hasa ahora odas las variables que se han esudiado enían en común que, por lo general,

Más detalles

FIABILIDAD (I): CONCEPTOS BÁSICOS

FIABILIDAD (I): CONCEPTOS BÁSICOS Concepos básicos de Fiabilidad FIABILIDAD (I): CONCEPTOS BÁSICOS Auores: Ángel A. Juan (ajuanp@uoc.edu), Rafael García Marín (rgarciamar@uoc.edu). RELACIÓN CON OTROS MATH-BLOCS Ese mah-block forma pare

Más detalles

ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS)

ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS) ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS) Anexo VI Prácicas de Sismología e Ingeniería Sísmica PRACTICA 5. TRATAMIENTO DE ACELEROGRAMAS. 1. OBJETIVO Aprender a llevar a cabo

Más detalles

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS 1º) La facura del gas se calcula a parir de una canidad fija y de un canidad variable que se calcula según los m 3 consumidos (el precio de cada m 3 es consane). El impore de la facura de una familia,

Más detalles

Criterios de evaluación y selección de los proyectos de inversión en Cuba

Criterios de evaluación y selección de los proyectos de inversión en Cuba Crierios de evaluación y selección de los proyecos de inversión en Cuba Auor: Msc. Eliover Leiva Padrón E-Mail: eleyva@ucfinfo.ucf.edu.cu Insiución: Universidad de Cienfuegos Carlos Rafael Rodríguez Carreera

Más detalles

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida.

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida. 1 Qué es necesario señalar para describir correcamene el movimieno de un cuerpo? El sisema de referencia, la posición del cuerpo en cada insane respeco a dicha referencia, el iempo empleado y la rayecoria

Más detalles

TEMA 3 EXPECTATIVAS, CONSUMO E INVERSIÓN

TEMA 3 EXPECTATIVAS, CONSUMO E INVERSIÓN TEMA 3 EXPECTATIVAS, CONSUMO E INVERSIÓN En el Tema 2 analizamos el papel de las expecaivas en los mercados financieros. En ése nos cenraremos en los de bienes y servicios. El papel que desempeñan las

Más detalles

TEMA I: FUNCIONES ELEMENTALES

TEMA I: FUNCIONES ELEMENTALES TEMA I: FUNCIONES ELEMENTALES. Función Logarimo Todos conocemos la definición de logarimo en base b, siendo b un número enero posiivo disino de. u = log b x x = b u y la propiedad fundamenal log b (xy)

Más detalles

UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temístocles Montás

UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temístocles Montás UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temísocles Monás Puede el comporamieno acual de la políica fiscal sosenerse sin generar una deuda pública que crezca sin límie?

Más detalles

ESCUELA POLITÉCNICA NACIONAL

ESCUELA POLITÉCNICA NACIONAL ESCUELA POLIÉCNICA NACIONAL ESCUELA DE CIENCIAS DAOS AÍPICOS Y FALANES, ANÁLISIS DE INERVENCIÓN Y DESESACIONALIZACIÓN DE SERIES CRONOLÓGICAS. APLICACIONES A DAOS DE UNA EMPRESA DE VENA DIRECA PROYECO PREVIO

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAÍTULO 3 Aplicaciones de primer orden 3.2. Modelo logísico El modelo de Malhus iene muchas limiaciones. or ejemplo, predice que una población crecerá exponencialmene con el iempo, que no ocurre en la

Más detalles

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables.

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables. ASAS DE VARIACIÓN ( véase Inroducción a la Esadísica Económica y Empresarial. eoría y Pácica. Pág. 513-551. Marín Pliego, F. J. Ed. homson. Madrid. 2004) Un aspeco del mundo económico que es de gran inerés

Más detalles

Aplicaciones de la Probabilidad en la Industria

Aplicaciones de la Probabilidad en la Industria Aplicaciones de la Probabilidad en la Indusria Cuara pare Final Dr Enrique Villa Diharce CIMAT, Guanajuao, México Verano de probabilidad y esadísica CIMAT Guanajuao,Go Julio 010 Reglas para deección de

Más detalles

EQUIVALENCIA Y SIGNIFICADO DE LAS FORMULAS PARA VALORAR EMPRESAS POR DESCUENTO DE FLUJOS Pablo Fernández 1 INDICE

EQUIVALENCIA Y SIGNIFICADO DE LAS FORMULAS PARA VALORAR EMPRESAS POR DESCUENTO DE FLUJOS Pablo Fernández 1 INDICE EQUIVALENCIA Y SIGNIFICADO DE LAS FORMULAS PARA VALORAR EMPRESAS POR DESCUENTO DE FLUJOS Pablo Fernández INDICE. Fórmulas de valoración. Definiciones de cash flow disponible para las acciones y de free

Más detalles

Resolución Prueba Oficial

Resolución Prueba Oficial JUEVES 6 DE sepiembre DE 01 en n 1 on el maerial de esa edición podrás revisar ocho pregunas del Área emáica de Funciones siee de Geomería. El jueves 1 de sepiembre publicaremos la ercera pare de la resolución

Más detalles

Tema 3. El modelo neoclásico de crecimiento: el modelo de Solow-Swan

Tema 3. El modelo neoclásico de crecimiento: el modelo de Solow-Swan Tema 3. El modelo neoclásico de crecimieno: el modelo de Solow-Swan Inroducción Esquema El modelo neoclásico SIN progreso ecnológico a ecuación fundamenal del modelo neoclásico El esado esacionario Transición

Más detalles

Control de un péndulo invertido usando métodos de diseño no lineales

Control de un péndulo invertido usando métodos de diseño no lineales Conrol de un péndulo inverido usando méodos de diseño no lineales F. Salas salas@caruja.us.es J.Aracil aracil@esi.us.es F. Gordillo gordillo@esi.us.es Depo de Ingeniería de Sisemas y Auomáica.Escuela Superior

Más detalles

LA VELOCIDAD DE CIRCULACION DE DINERO EN EL ECUADOR

LA VELOCIDAD DE CIRCULACION DE DINERO EN EL ECUADOR 1 LA VELOCIDAD DE CIRCULACION DE DINERO EN EL ECUADOR José Luis Moncayo Carrera 1 Ec. Manuel González 2 RESUMEN El presene documeno iene como objeivo, presenar la aplicación de écnicas economéricas en

Más detalles

Cuadernillo de Apuntes de Matemáticas III. M. en C.Luis Ignacio Sandoval Paéz

Cuadernillo de Apuntes de Matemáticas III. M. en C.Luis Ignacio Sandoval Paéz Cuadernillo de Apunes de Maemáicas III M. en C.Luis Ignacio Sandoval Paéz Índice Unidad I vecores. Definición de un vecor en R, R (Inerpreación geomérica), y su n generalización en R.. Operaciones con

Más detalles

6 METODOLOGÍA PROPUESTA PARA VALORAR USOS IN SITU DEL AGUA

6 METODOLOGÍA PROPUESTA PARA VALORAR USOS IN SITU DEL AGUA 38 6 METODOLOGÍA PROPUESTA PARA VALORAR USOS IN SITU DEL AGUA 6.1 Méodo general Para valorar los usos recreacionales del agua, se propone una meodología por eapas que combina el uso de diferenes écnicas

Más detalles

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA MATEMÁTICA

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA MATEMÁTICA UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA MATEMÁTICA VALORIZACIÓN DE INSTRUMENTOS DE RENTA FIJA CON OPCIÓN DE PREPAGO MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO

Más detalles

PROBLEMAS RESUELTOS 1 (continuidad, derivabilidad y diferenciabilidad de funciones de varias variables)

PROBLEMAS RESUELTOS 1 (continuidad, derivabilidad y diferenciabilidad de funciones de varias variables) Funciones de varias variables. PROBLEMAS RESUELTOS 1 (coninuidad, derivabilidad y diferenciabilidad de funciones de varias variables) PROBLEMA 1 Esudiar la coninuidad de la función: xy ( xy, ) (,) x +

Más detalles

Práctica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO

Práctica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO Prácica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO OBJETIVOS Esudiar los procesos de carga y de descarga de un condensador. Medida de capacidades por el méodo de la consane de iempo. MATERIAL Generador

Más detalles

PROYECCION Y ESTUDIO DE UNA POBLACION. EL PAPEL DE LA MORTALIDAD

PROYECCION Y ESTUDIO DE UNA POBLACION. EL PAPEL DE LA MORTALIDAD PROYECCION Y ESTUDIO DE UNA POBLACION. EL PAPEL DE LA MORTALIDAD Ana de Vicene Merino Julio Hernández March Irene Albarrán Lozano Cruz Ramírez Pérez 2 INDICE Página PRESENTACION DE AUTORES... 3 INTRODUCCION:

Más detalles

M.C. Santiago Fernández Fraga

M.C. Santiago Fernández Fraga M.. Saniago Fernández Fraga Agenda 1.Inroducción 2.Definición 3.onfiguraciones 4.Evolución 5.Aplicaciones 6.Referencias Inroducción oncepos Sisemas dinámicos: Sufren cambios a ravés del iempo Suscepibles

Más detalles

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9 4 Reconoce el significado de los eponenes racionales posiivos negaivos uiliza las lees de los eponenes. Por ejemplo: 7 7 7 + 7 4 7 7 7 7 40 ( 7 / ) / 7 / / 7 /0 0 7,... Uiliza la noación cienífica para

Más detalles

Master en Economía Macroeconomía II. 1 Problema de Ahorro-Consumo en Horizonte Finito

Master en Economía Macroeconomía II. 1 Problema de Ahorro-Consumo en Horizonte Finito Maser en Economía Macroeconomía II Profesor: Danilo Trupkin Se de Problemas 1 - Soluciones 1 Problema de Ahorro-Consumo en Horizone Finio Considere un problema de ahorro-consumo sobre un horizone finio

Más detalles

BASES TÉCNICAS ACTUARIALES DEL SISTEMA PARA LA VALORACIÓN DE LOS DAÑOS Y PERJUICIOS CAUSADOS A LAS PERSONAS EN ACCIDENTES DE CIRCULACIÓN.

BASES TÉCNICAS ACTUARIALES DEL SISTEMA PARA LA VALORACIÓN DE LOS DAÑOS Y PERJUICIOS CAUSADOS A LAS PERSONAS EN ACCIDENTES DE CIRCULACIÓN. BASES TÉCNICAS ACTUARIALES DEL SISTEMA PARA LA VALORACIÓN DE LOS DAÑOS Y PERJUICIOS CAUSADOS A LAS PERSONAS EN ACCIDENTES DE CIRCULACIÓN. INSTITUTO DE ACTUARIOS ESPAÑOLES. 5 de junio de 2014. 0 Inroducción

Más detalles

IGEP Tema 2. Leyas financieras básicas: estudio usando aplicaciones informáticas.

IGEP Tema 2. Leyas financieras básicas: estudio usando aplicaciones informáticas. IGEP Tema 2. Leyas financieras básicas: esudio usando aplicaciones informáicas. onenido. apial financiero... 2. Leyes financieras: capialización y descueno...4 2. Leyes de capialización...4 2.2 Leyes de

Más detalles

1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA

1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA hp://www.vinuesa.com 1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA 1.1.- INTRODUCCIÓN Los filros de pila consiuyen una clase de filros digiales no lineales. Un filro de pila que es usado

Más detalles

APUNTE: ELECTRICIDAD-1 INDUCCIÓN ELECTROMAGNÉTICA

APUNTE: ELECTRICIDAD-1 INDUCCIÓN ELECTROMAGNÉTICA APUNTE: EECTRICIDAD- INDUCCIÓN EECTROMAGNÉTICA Área de EET Página de 3 Derechos Reservados Tiular del Derecho: INACAP N de inscripción en el Regisro de Propiedad Inelecual #. de fecha - -. INACAP 00. Página

Más detalles

Ciclos Económicos y Riesgo de Crédito: Un modelo umbral de proyección de la morosidad bancaria de Perú

Ciclos Económicos y Riesgo de Crédito: Un modelo umbral de proyección de la morosidad bancaria de Perú Ciclos Económicos y Riesgo de Crédio: Un modelo umbral de proyección de la morosidad bancaria de Perú Subgerencia de Análisis del Sisema Financiero y del Meado de Capiales Deparameno de Análisis del Sisema

Más detalles

Física 2º Bach. Tema: Ondas 27/11/09

Física 2º Bach. Tema: Ondas 27/11/09 Física º Bach. Tema: Ondas 7/11/09 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Problemas [6 PUNTOS: 1 / APARTADO] 1. Una onda ransversal se propaga en el senido negaivo de las X con una velocidad de 5,00

Más detalles

Solución y criterios de corrección. Examen de mayores de 25 años. 2012. Matemáticas aplicadas a las ciencias sociales.

Solución y criterios de corrección. Examen de mayores de 25 años. 2012. Matemáticas aplicadas a las ciencias sociales. Solución y crierios de corrección. Examen de mayores de años.. Maemáicas aplicadas a las ciencias sociales. BLOQUE A En un cenro de ocio hay salas de cine: A, B y. A una deerminada sesión han acudido personas.

Más detalles

Opciones para la flexibilización de las condiciones de acceso a las jubilaciones

Opciones para la flexibilización de las condiciones de acceso a las jubilaciones Opciones para la flexibilización de las condiciones de acceso a las jubilaciones Informe final, mayo de 2005 1 Equipo écnico: Dr. Alvaro Foreza (direcor), Ec. Marisa Bucheli, Ec. Anna Cariso, Ec. Naalia

Más detalles

Tendencia y Ciclos en el Producto Interno Bruto de Cuba: Estimación con un Modelo Estructural Univariante de Series Temporales. 1

Tendencia y Ciclos en el Producto Interno Bruto de Cuba: Estimación con un Modelo Estructural Univariante de Series Temporales. 1 Tendencia y Ciclos en el Produco Inerno Bruo de Cuba: Esimación con un Modelo Esrucural Univariane de Series Temporales. 1 Pavel Vidal Alejandro * Annia Fundora Fernández ** Noviembre del 2004 Resumen:

Más detalles

PRÁCTICA 3: Sistemas de Orden Superior:

PRÁCTICA 3: Sistemas de Orden Superior: PRÁCTICA 3: Sisemas de Orden Superior: Idenificación de modelo de POMTM. Esabilidad y Régimen Permanene de Sisemas Realimenados Conrol e Insrumenación de Procesos Químicos. . INTRODUCCIÓN Esa prácica se

Más detalles

2 El movimiento y su descripción

2 El movimiento y su descripción El movimieno y su descripción EJERCICIOS PROPUESTOS. Una malea descansa sobre la cina ransporadora de un aeropuero. Describe cómo ve su movimieno un pasajero que esá: parado en la misma cina; en una cina

Más detalles

UNIVERSIDAD DE MATANZAS CAMILO CIENFUEGOS FACULTAD DE INGENIERIAS QUÍMICA MECANICA. MONOGRAFÍA LAS SERIES CRONOLÓGICAS EN EL MANTENIMIENTO PREDICTIVO

UNIVERSIDAD DE MATANZAS CAMILO CIENFUEGOS FACULTAD DE INGENIERIAS QUÍMICA MECANICA. MONOGRAFÍA LAS SERIES CRONOLÓGICAS EN EL MANTENIMIENTO PREDICTIVO UNIVERSIDAD DE MATANZAS CAMILO CIENFUEGOS FACULTAD DE INGENIERIAS QUÍMICA MECANICA. MONOGRAFÍA LAS SERIES CRONOLÓGICAS EN EL MANTENIMIENTO PREDICTIVO Ing. Laureano Suárez Marínez 1 MSc Juan Landa García.

Más detalles

J.1. Análisis de la rentabilidad del proyecto... 3

J.1. Análisis de la rentabilidad del proyecto... 3 Esudio de la implanación de una unidad produciva dedicada a la Pág 1 abricación de conjunos soldados de aluminio J.1. Análisis de la renabilidad del proyeco... 3 J.1.1. Desglose del proyeco en coses ijos

Más detalles

METODOLOGÍA PARA EL AJUSTE DE LAS TASAS DE ESCOLARIZACIÓN A PARTIR DE LA INFORMACIÓN DEL CENSO NACIONAL DE POBLACIÓN, HOGARES Y VIVIENDA DE 2001

METODOLOGÍA PARA EL AJUSTE DE LAS TASAS DE ESCOLARIZACIÓN A PARTIR DE LA INFORMACIÓN DEL CENSO NACIONAL DE POBLACIÓN, HOGARES Y VIVIENDA DE 2001 METODOLOGÍA PARA EL AJUSTE DE LAS TASAS DE ESCOLARIZACIÓN A PARTIR DE LA INFORMACIÓN DEL CENSO NACIONAL DE POBLACIÓN, HOGARES Y VIVIENDA DE 2001 Insiuo Nacional de Esadísica y Censos (INDEC) Dirección

Más detalles

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente.

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente. Cenro Educaivo de Nivel Secundario Nº 45 Anexo Universidad Tecnológica Nacional Dirección de Capaciación No Docene Dirección General de Culura y Educación Provincia de Buenos Aires FÍSICA Segundo Año Unidad

Más detalles

RESUMEN ZERO-COST COLLAR STRATEGY FOR CHILEAN EXPORTERS: BLACK-SCHOLES VALUATION VS MONTE CARLO SIMULATIONS ABSTRACT

RESUMEN ZERO-COST COLLAR STRATEGY FOR CHILEAN EXPORTERS: BLACK-SCHOLES VALUATION VS MONTE CARLO SIMULATIONS ABSTRACT REVISTA INTERNACIONAL ADMINISTRACION & FINANZAS VOLUMEN 7 NUMERO 5 014 ESTRATEGIA COLLAR COSTO CERO PARA EXPORTADORES CHILENOS. VALUACION DE BLACK-SCHOLES VS SIMULACIONES DE MONTECARLO Eduardo Sandoval,

Más detalles

domótico Extras 2.1 Unidad de control 2.2 Dispositivos de entrada 2.4 Electrodomésticos domóticos 2.5 Medios de comunicación en redes domésticas

domótico Extras 2.1 Unidad de control 2.2 Dispositivos de entrada 2.4 Electrodomésticos domóticos 2.5 Medios de comunicación en redes domésticas 2 Elemenos de un sisema domóico Conenidos 2.1 Unidad de conrol 2.2 Disposiivos de enrada 2.3 Acuadores 2.4 Elecrodomésicos domóicos 2.5 Medios de comunicación en redes domésicas 2.6 Tecnologías aplicadas

Más detalles

CARACTERÍSTICAS DEL DESEMPLEO EN MEDELLÍN Y EL VALLE DE ABURRÁ: 1988-2000 JUAN BYRON CORREA FONNEGRA *

CARACTERÍSTICAS DEL DESEMPLEO EN MEDELLÍN Y EL VALLE DE ABURRÁ: 1988-2000 JUAN BYRON CORREA FONNEGRA * CARACTERÍSTICAS DEL DESEMPLEO EN MEDELLÍN Y EL VALLE DE ABURRÁ: 988 - JUAN BYRON CORREA FONNEGRA * Inroducción En las úlimas dos décadas en Colombia se ha presenado un aumeno en los esudios sobre economía

Más detalles

Modelos de Ajuste Nominal Incompleto. Por Agustín Casas, UdeSa. Diego Hofman, Princeton. Analía Olgiati, BID. Javier DiFiori, Morgan Stanley

Modelos de Ajuste Nominal Incompleto. Por Agustín Casas, UdeSa. Diego Hofman, Princeton. Analía Olgiati, BID. Javier DiFiori, Morgan Stanley Modelos de Ajuse Nominal Incompleo Por Agusín Casas, UdeSa. Diego Hofman, Princeon. Analía Olgiai, BID. Javier DiFiori, Morgan Sanley JEL CLASS: E12 - Keynes; Keynesian; Pos-Keynesian E13 - Neoclassical

Más detalles

ESTIMACIÓN DEL VALOR EN RIESGO POR CALCE ENTRE ACTIVOS Y PASIVOS DE SEGUROS

ESTIMACIÓN DEL VALOR EN RIESGO POR CALCE ENTRE ACTIVOS Y PASIVOS DE SEGUROS ESTIMACIÓN DEL VALOR EN RIESGO POR CALCE ENTRE ACTIVOS Y PASIVOS DE SEGUROS Por: J. Gudiño * jgudino@iam.mx 1. ANTECEDENTES Los seguros son conraos que consisen en que una insiución llamada aseguradora,

Más detalles