Aplicaciones de la línea recta

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Aplicaciones de la línea recta"

Transcripción

1 1 FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 10 TALLER Nº: 4 SEMESTRE II RESEÑA HISTÓRICA Aplicaciones de la línea recta RESEÑA HISTÓRICA EUCLÍDES Nació: 365 AC en Alejandría, Egipto y falleció alrededor del 300 AC. Muy poco se sabe con certeza de su vida. Probablemente, fue llamado a Alejandría en el año300 AC. Sin duda que la gran reputación de Euclídes se debe a su famosa obra titulada Los elementos Geométricos, conocida simplemente por Los Elementos. Tal es la importancia de esta obra que se ha usado como texto de estudios cerca de 2000 años, veinte siglos, sin que se le hicieran correcciones de importancia, salvo pequeñas modificaciones. Los Elementos están constituidos por trece libros. A aquellos se ha agregado un XIV libro que comprende un trabajo de Hipsicles del siglo II de nuestra era, y aún un XV libro con un trabajo de menor importancia. Entre sus definiciones de elementos, algunas de las cuales seguimos usando, se encuentran: Punto, que lo define como "una cosa que no tiene parte"; línea "es una cosa que no tiene sino largo; es una longitud sin ancho"; línea recta, es la que está igualmente situada con respecto a sus puntos. OBJETIVO GENERAL Interpretar situaciones que tienen que ver con diferentes áreas para plantear ecuaciones y resolver problemas relacionados con la línea recta y diversas formas de la ecuación de ésta. OBJETIVO ESPECÍFICOS Resolver diferentes problemas asociados con línea recta. Relacionar la pendiente de una recta con diferentes aplicaciones. PALABRAS CLAVES Producto Nacional Bruto (PNB): Magnitud económica que expresa la actividad de la economía en un período de tiempo específico. Razón de Cambio: Cuando se establece el cambio en y en relación con el cambio en unidades en x, lo que se está determina e la pendiente como una razón de cambio Propensión Marginal al Consumo (PMC): Es la razón de cambio de los gastos de consumo con respecto al ingreso disponible.

2 2 Propensión Marginal al Ahorro (PMA): Diferencia entre la unidad y el PMC. Razón de cambio de los gastos con respecto al ahorro. Punto de Equilibrio: Aquel que no representa pérdidas ni utilidades en una operación comercial.. DESARROLLO TEÓRICO EJERCICIOS RESUELTOS 1. En cierto país el porcentaje del producto nacional bruto (PNB) dedicado a los gastos médicos pasó del 10.3%, en 1984, al 10.9%, en Suponiendo que el nivel de crecimiento continúa a esta misma razón, escribir una ecuación lineal que permita describir el porcentaje del producto nacional bruto dedicado a los gastos médicos, y, en el año x. Solución: El planteamiento del problema indica que: y : Porcentaje del PNB dedicado a gastos médicos x : Año En 1984 (x1) el PNB era 10.3% (y1), es decir P1 ( 1984, 10.3) En 1987 (x2) el PNB era 10.9% (y2), es decir P2 ( 1987, 10.9) Con los puntos P1( 1984, 10.3) y P2( 1987, 10.9), se puede determinar la pendiente m = y2 y1 x2 x1 m = m = 0.6 m = La pendiente representa en este caso la razón a la que se da el nivel de crecimiento, es decir, la variación del PNB con respecto a los años. Sustituyendo el valor de la pendiente y las coordenadas de uno de los puntos en la forma general de la ecuación, es posible obtener el valor de b. (forma pendiente-intercepto) Empleando el punto P2( 1987, 10.9) y la pendiente m = 0.2, se tiene que: y = m x + b 10.9 = 0.2(1987) + b 10.9 = b b = b. La ecuación lineal que describe el porcentaje (y) del PNB dedicado a los gastos médicos en un año (x) será: Y = 0.2X

3 3 2. La utilidad que obtiene una empresa de suministros agrícolas, está dada por a,que puede ser calculada mediante la función lineal a = 10b en la que b representa la cantidad de suministros vendidos cada año. a. Graficar la utilidad con respecto a una venta hasta de 8000 suministros b. Determinar el número de suministros que la empresa debe vender para que esté en un punto de equilibrio c. Calcule el número de suministros vendidos si la empresa obtiene una utilidad de $ dólares SOLUCIÓN a. La utilidad a, es una función del número de suministros vendidos b, es decir; la utilidad depende del número de suministros vendidos; por lo tanto b es la variable independiente correspondiente al eje horizontal y a, es la variable dependiente que corresponde al eje vertical del plano cartesiano. Como el número mínimo de suministros que se pueden vender es cero, no es necesario el eje y negativo b. El punto de equilibrio corresponde al número de suministros que se deben vender para que la empresa no tenga ganancias ni pérdidas. En la gráfica, este punto se da donde la recta interfecta al eje x (en este caso eje b), pues allí la utilidad es cero. c. Para obtener una utilidad de $ se deben vender suministros a = 10b = 10b b = b = En la tabla que se presenta a continuación se muestra una relación entre el ingreso disponible de una nación, x (en miles de millones de dólares) y los gastos de consumo personal, y (en miles de millones de dólares). Determinar la razón de cambio de los gastos de consumo personal con respecto al ingreso disponible.

4 4 x y Solución: La razón de cambio es la pendiente de la recta que contiene los puntos (56, 50) y (76, 67.2) m = y2 y1 x2 x1 m = m = 17.2 m = m = 0.86 significa que por cada dólar en que se incremente el ingreso disponible, el consumo se incrementa en 0.86 dólares. En otras palabras, el 86% de cada dólar adicional ganado se gasta y el 14% es ahorrado (propensión marginal al consumo) EJERCICIOS PROPUESTOS 1. El gerente de una fábrica de muebles establece que cuesta dólares fabricar 100 sillas en un día y dólares fabricar 300 sillas en un día. a. Suponiendo que la relación es lineal obtener una ecuación que exprese esta relación y luego grafique. b. Cuál es la pendiente de la recta del inciso a. y que representa. c. Cuál es la intersección en y, y que representa. 2. Teniendo en cuenta que para los economistas la propensión marginal al consumo (PMC) es la razón de cambio de los gastos de consumo con respecto al ingreso disponible. Con los datos de la tabla, en la que el ingreso disponible de una nación se representa por x y los gastos de consumo personal están representados por y. x y a. Calcular la propensión marginal al consumo (PMC) b. Suponer que el ingreso disponible promedio por familia aumenta 1805 dólares en un año. De a acuerdo con la PMC, Cuánto debería incrementarse el consumo? 3. Otra de las razones de cambio consideradas por los economistas es la propensión marginal al ahorro (PMA) dada por : PMA = 1 PMC a. Calcular la propensión marginal al ahorro (PMA) para los datos del ejercicio anterior. b. Si el ingreso disponible fuese incrementado como en la parte b del ejercicio anterior, cuántos dólares adicionales ahorraría la familia promedio?

5 4. la utilidad anual, y, de una tienda de repuestos de maquinaria liviana puede calcularse por medio de la función lineal y = 20x 30,000, en la que x es el número de repuestos de una misma categoría vendidos por año. a. Trace una gráfica de la utilidad en relación con la venta de hasta 6000 repuestos. b. Calcule el número de repuestos que deben venderse para que la compañía no pierda ni gane (punto de equilibrio) c. Calcule el número de repuestos vendidos si la compañía tiene una utilidad de $40, Dadas las siguientes ecuaciones: Oferta: y 0.45p 4 Demanda: y 0.65p 28 a. Trace la gráfica de las dos ecuaciones. b. Estime el punto de equilibrio de la gráfica. c. Estime el precio y la cantidad de la mercancía producida y vendida en el punto de equilibrio. 6. Un fabricante de pequeños aparatos domésticos encuentra que si produce x hornos con tostador en un mes, su costo de producción está dado por la ecuación y 6x 3000 ( y en dólares). a. Trace la gráfica de esta ecuación. b. Que representa la pendiente y la intersección en y de está gráfica. 7. El propietario de una juguetería, se ha fijado un salario mensual de $200 dólares más el 10% de las ventas. a. Escriba una ecuación que exprese su salario mensual, x en relación con las ventas de la tienda, y. b. Trace una gráfica de su salario mensual para ventas de $20,000 y superiores. c. Si en el mes de julio las ventas de la tienda fueron de $15,000, cuál fue el salario del propietario de la juguetería en ese mes? 8. El costo mensual de conducir un automóvil depende del número de millas recorridas. Alberto observó que durante el mes de mayo gasto 380 dólares por 480 millas y en junio 460 dólares por 800 millas. a. Exprese el costo mensual C en función de la distancia recorrida d, suponiendo que la relación es lineal. b. Utilice la parte a. para predecir el costo de conducir millas por mes. c. Trace la gráfica de la ecuación. d. Qué representa la pendiente? e. Qué representa la intersección con el eje y de la gráfica? 9. Una pequeña empresa adquiere una computadora por dólares. Después de 4 años se espera que el valor de la misma sea 200 dólares. Para fines de contabilización, el negocio utiliza la depreciación lineal para obtener el valor de la computadora en un tiempo dado. Esto quiere decir que si v es el valor de la misma en el tiempo t, entonces se utiliza una ecuación lineal para relacionar v con t. a. Obtenga la ecuación lineal que relaciona v con t. 5

6 b. Determine el valor depreciado de la computadora después de 3 años de la fecha de adquisición. 10. Sara parte en su bicicleta a 10 kilómetros por hora. Al mismo tiempo Claudia parte en su bicicleta en la misma dirección desde un punto situado 5 kilómetros más delante de donde parte Sara. Claudia también conduce a 10 kilómetros por hora. Si las chicas continúan a la misma velocidad, Alcanzará Sara a Claudia en algún momento? Explicar. 11. A una empresa le cuesta $1,050,000 producir 100 cajas de cierto producto y $1,250,000 producir 500 cajas. a. Hallar la función de costo b. Determinar el costo fijo y el costo variable por caja c. Dibujar la gráfica de la función de costo 12. La tibia es el hueso del cuerpo humano que conecta la rodilla con el tobillo. Un hombre con una tibia de 38.5cm de largo debería medir 173 cm. de alto, aproximadamente y un hombre con una tibia de cm. De largo debería medir, aproximadamente, 188 cm. de alto. a. Escribe una ecuación lineal que relacione la estatura con la longitud de la tibia, x. b. Aproximadamente, cuánto debería medir un hombre cuya tibia mide 40 cm? 13. El radio es el hueso del cuerpo humano que conecta el codo con la muñeca. Una mujer con un radio de 22 cm. De largo debería medir 160 cm. De altura, aproximadamente, y una mujer con radio con un radio de 26 cm. De largo debería tener cerca de 174 cm. de altura. a. Escribir una ecuación lineal que relacione la estatura y con la longitud del radio, x. b. Aproximadamente Cuál debería ser la longitud del radio de una mujer cuya estatura es cm? 14. la población de una ciudad era de 2,352,000 habitantes en La población creció hasta 3,885,000 en Si x representa el año e y representa la población, halla la razón a la que se incrementa la población. 15. La gráfica representa una función lineal. Determinar la ecuación que la representa e interpretar lo que representa de acuerdo con los datos de cada eje del plano cartesiano. (Cada línea divisoria representa una unidad) 6

7 16. El gerente de un bazar de fin de semana sabe por experiencia que si cobra x dólares por un espacio rentado en el bazar entonces el número de espacios y que puede rentar está dado por la ecuación y 200 4x a. Trace la gráfica de esta ecuación. b. Que representan la pendiente, la intersección en y y la intersección en x de dicha gráfica. 17. Una compañía de transporte enfrenta problemas económicos desde 1985, sus gastos han crecido más rápido que los ingresos. En la siguiente tabla aparecen los gastos de la compañía en los años seleccionados. a. Trace estos puntos en una gráfica. b. conecte los puntos utilizando segmentos de recta. c. Determine la pendiente de cada uno de los tres segmentos de recta. d. En qué período tuvo lugar la razón de cambio promedio más grande? Explique. Año Gastos (en millones de dólares) 1985 $ $ $ $2876 7

Ecuaciones de rectas

Ecuaciones de rectas SECCIÓN.0 Rectas Figura 5 P(, ) Q(8, 5) Ejemplo Determinación de la pendiente de una recta que pasa por dos puntos Calcule la pendiente de la recta que pasa por los puntos P, Q8, 5. Puesto que dos puntos

Más detalles

FUNDAMENTOS DEL ÁLGEBRA. Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES

FUNDAMENTOS DEL ÁLGEBRA. Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES FUNDAMENTOS DEL ÁLGEBRA Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES NOMBRE ID SECCIÓN SALÓN Prof. Eveln Dávila Contenido TEMA: Ecuaciones Lineales En Dos Variables... Solución

Más detalles

MATEMÁTICAS 9. TALLER DE FUNCIONES No 1

MATEMÁTICAS 9. TALLER DE FUNCIONES No 1 MATEMÁTICAS 9 TALLER DE FUNCIONES No 1 1. elabora una tabla de valores para cada función y traza su respectiva gráfica. Dar los valores a x desde -3 hasta 3. a. f(x) = x 5 b. f(x) = 9x + 4 2. determina

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Pobre del estudiante que no aventaje a su maestro. LA LÍNEA RECTA Leonardo da Vinci DESEMPEÑOS Identificar, interpretar, graficar

Más detalles

UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES

UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES Al finalizar esta unidad: - Describirás verbalmente en que consiste el cambio y cuáles son los aspectos involucrados en él. - Identificarás

Más detalles

AYUDAS SOBRE LA LINEA RECTA

AYUDAS SOBRE LA LINEA RECTA AYUDAS SOBRE LA LINEA RECTA AYUDA : Grafiquemos la función Solución: Se debe escoger algunos números que representan a la variable x, para obtener el valor de la variable y respectivamente así: El proceso:

Más detalles

PROGRAMACIÓN LINEAL MÉTODO GRÁFICO

PROGRAMACIÓN LINEAL MÉTODO GRÁFICO 1 PROGRAMACIÓN LINEAL MÉTODO GRÁFICO Dado un problema de programación lineal se debe: 1. Graficar cada una de las restricciones. 2. Encontrar el Polígono de factibilidad, que es la intersección de los

Más detalles

1) Expresar los intervalos como conjuntos y los conjuntos en forma de intervalos y graficar:

1) Expresar los intervalos como conjuntos y los conjuntos en forma de intervalos y graficar: TRABAJO PRÁCTICO N : FUNCIONES DE UNA VARIABLE REAL ASIGNATURA: MATEMÁTICA LIC. ADMINISTRACIÓN - LIC. TURISMO - LIC. HOTELERÍA - 05 ) Epresar los intervalos como conjuntos y los conjuntos en forma de intervalos

Más detalles

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253 Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían

Más detalles

ECUACIÓN DE LA RECTA

ECUACIÓN DE LA RECTA MATEMÁTICA SEMANA 2 ECUACIÓN DE LA RECTA Todos los derechos de autor son de la exclusiva propiedad de IACC o de los otorgantes de sus licencias. No está permitido copiar, reproducir, reeditar, descargar,

Más detalles

Materia: Matemática de Tercer Año Tema: Pendiente

Materia: Matemática de Tercer Año Tema: Pendiente Materia: Matemática de Tercer Año Tema: Pendiente Suponga que tiene un avión de juguete sobre el despegue, que se eleva 5 pies por cada 6 metros que recorre a lo largo de la horizontal. Cuál sería la pendiente

Más detalles

UNIVERSIDAD TECNOLÓGICA DE JALISCO

UNIVERSIDAD TECNOLÓGICA DE JALISCO TITULO DE LA PRACTICA: Ecuaciones limeales de Primer grado. ASIGNATURA: Matemáticas I HOJA: 1 DE: 6 UNIDAD TEMÁTICA: 2 FECHA DE REALIZACIÓN: Junio de 2007 NUMERO DE PARTICIPANTES RECOMENDABLE: 1 ELABORO:

Más detalles

El plano cartesiano y Gráficas de ecuaciones. Copyright 2013, 2009, 2006 Pearson Education, Inc. 1

El plano cartesiano y Gráficas de ecuaciones. Copyright 2013, 2009, 2006 Pearson Education, Inc. 1 El plano cartesiano y Gráficas de ecuaciones Copyright 2013, 2009, 2006 Pearson Education, Inc. 1 Sistema de coordenadas rectangulares En el cap 2 presentamos la recta numérica real que resulta al establecer

Más detalles

Las únicas funciones cuyas gráficas son rectas son las siguientes:

Las únicas funciones cuyas gráficas son rectas son las siguientes: Funciones, 3º ESO () RECTAS Las únicas funciones cuyas gráficas son rectas son las siguientes: - Lineales, de fórmula y mx. Las gráficas de estas funciones pasan por el origen de coordenadas. m es la pendiente

Más detalles

PENDIENTE MEDIDA DE LA INCLINACIÓN

PENDIENTE MEDIDA DE LA INCLINACIÓN Capítulo 2 PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4 Los alumnos utilizaron la ecuación = m + b para graficar rectas describir patrones en los cursos anteriores. La Lección 2.1.1 es un repaso. Cuando

Más detalles

EXAMEN DEPARTAMENTAL DE CÁLCULO DIFERENCIAL MUESTRA FIN TECATE UABC

EXAMEN DEPARTAMENTAL DE CÁLCULO DIFERENCIAL MUESTRA FIN TECATE UABC EXAMEN DEPARTAMENTAL DE CÁLCULO DIFERENCIAL MUESTRA FIN TECATE UABC 1. REACTIVO MUESTRA Sea el número A qué conjunto pertenece? a) trascendente b) irracionales c) Naturales d) Enteros 2. REACTIVO MUESTRA

Más detalles

Ecuaciones en dos Variables Hoja de Trabajo 1. Parte I: Utilice la ecuación y = 5x + 4 para contestar los siguientes:

Ecuaciones en dos Variables Hoja de Trabajo 1. Parte I: Utilice la ecuación y = 5x + 4 para contestar los siguientes: Sistema de Ecuaciones en dos Variables Hoja de Trabajo 1 Parte I: Utilice la ecuación y = 5x + 4 para contestar los siguientes: 1. Complete la siguiente tabla: x y -3 - -1 0 1 3. Identifica la variable

Más detalles

ACTIVIDAD DE APRENDIZAJE

ACTIVIDAD DE APRENDIZAJE ACTIVIDAD DE APRENDIZAJE Sigla Curso MAT330 Nombre Curso Cálculo I Créditos 10 Hrs. Semestrales Totales 5 Requisitos MAT200 o MAT2001 Fecha Actualización Escuela o Programa Transversal Programa de Matemática

Más detalles

Universidad Autónoma del Estado de México Plantel Ignacio Ramírez Calzada Guía de Geometría Analítica Semestre 2012 B

Universidad Autónoma del Estado de México Plantel Ignacio Ramírez Calzada Guía de Geometría Analítica Semestre 2012 B Universidad Autónoma del Estado de México Plantel Ignacio Ramírez Calzada Guía de Geometría Analítica Semestre 2012 B NOMBRE ALUMNO CUENTA No. NOMBRE MAESTRO GRUPO MÓDULO I: RECTA 1. Traza y comprueba

Más detalles

Aplicaciones de la función cuadrática. Máximo y Mínimo Algebra Sigla MAT2001

Aplicaciones de la función cuadrática. Máximo y Mínimo Algebra Sigla MAT2001 TIPO DE ACTIVIDAD: Ejercicios Título Actividad: Nombre Asignatura: Aplicaciones de la función cuadrática. Máximo y Mínimo Algebra Sigla MAT001 Semana Nº: 3-4 Actividad Nº 5 Lugar Sala de clases Otro Lugar

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 8 GUÍA TEÓRICO PRÁCTICA Nº 5 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

Localizando el punto de intersección

Localizando el punto de intersección Localizando el punto de intersección Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. En la gráfica de una función, los valores de la variable están en el eje horizontal y los

Más detalles

EC = (f(x) p 1 )dx EP = (p 1 g(x))dx. El valor promedio de una función y = f(x) en su dominio [a, b], viene dado por. V P = 1 b.

EC = (f(x) p 1 )dx EP = (p 1 g(x))dx. El valor promedio de una función y = f(x) en su dominio [a, b], viene dado por. V P = 1 b. Universidad de Talca. Matemáticas II Algunas aplicaciones de la Integral indefinida 1) Excedente (Superávit) de Consumidor y Productor El precio de equilibrio es aquel en que la demanda de un producto

Más detalles

5 Continuidad y derivabilidad de funciones reales de varias variables reales.

5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5.1 Funciones reales de varias variables reales. Curvas de nivel. Continuidad. 5.1.1 Introducción al Análisis Matemático. El

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS. La línea recta

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS. La línea recta FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 10 TALLER Nº: 3 SEMESTRE II RESEÑA HISTÓRICA La línea recta Galileo Galilei, Pisa, actual Italia, 1564-Arcetri, id., 1642) Físico

Más detalles

Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones

Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

CM2 ENRICH CREUS CARNICERO Nivel 2

CM2 ENRICH CREUS CARNICERO Nivel 2 CM ENRICH CREUS CARNICERO Nivel Unidad Cónicas Conocimientos previos CONOCIMIENTOS PREVIOS PARA CÓNICAS Antes de comenzar con el Trabajo Práctico, necesitás repasar algunas cuestiones como: ) graficar

Más detalles

PROBLEMAS DE PLANTEO CON INTEGRALES INDEFINIDAS

PROBLEMAS DE PLANTEO CON INTEGRALES INDEFINIDAS PROBLEMAS DE PLANTEO CON INTEGRALES INDEFINIDAS Ejemplo: Un minorista recibe un cargamento de 10.000 Kg. De arroz que se consumirán en un período de 5 meses a una razón constante de 2.000 kg. Por mes.

Más detalles

4. Regresión Lineal Simple

4. Regresión Lineal Simple 1 4. Regresión Lineal Simple Introducción Una vez conociendo las medidas que se utilizan para expresar la fuerza y la dirección de la relación lineal entre dos variables, se tienen elementos base para

Más detalles

Razón de Cambio Promedio:

Razón de Cambio Promedio: NOTA: En este PDF encontrará los siguientes temas que debe estudiar para la clase: Aplicaciones de la Derivada a Funciones Económicas, Razón de Cambio Promedio, Razón de Cambio Instantánea, Razones Relacionadas,

Más detalles

1- Dar la ecuación ordinaria de la circunferencia de centro C( - 8; 2) y r = 5. Graficar. R: (x +8) 2 + (y 2) 2 = 25

1- Dar la ecuación ordinaria de la circunferencia de centro C( - 8; 2) y r = 5. Graficar. R: (x +8) 2 + (y 2) 2 = 25 SECCIONES CONICAS CIRCUNFERENCIA 1- Dar la ecuación ordinaria de la circunferencia de centro C( - 8; 2) r = 5. Graficar. R: ( +8) 2 + ( 2) 2 = 25 2- Dar la ecuación general de la circunferencia de centro

Más detalles

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno:

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno: UNIDAD La derivada Objetivos Al terminar la unidad, el alumno: Calculará la derivada de funciones utilizando el álgebra de derivadas. Determinará la relación entre derivación y continuidad. Aplicará la

Más detalles

REGLA DE TRES SIMPLE Y COMPUESTA

REGLA DE TRES SIMPLE Y COMPUESTA FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS REGLA DE TRES SIMPLE Y COMPUESTA GRADO: 6 TALLER 6 SEMESTRE II RESEÑA HISTÓRICA Aunque griegos y romanos conocían las proporciones no llegaron

Más detalles

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas Ondas mecánicas Definición: Una onda mecánica es la propagación de una perturbación a través de un medio. Donde. Así, la función de onda se puede escribir de la siguiente manera, Ondas transversales: Son

Más detalles

Práctica Módulo de torsión

Práctica Módulo de torsión Práctica Módulo de torsión Objetivo eterminar el módulo de torsión de varillas de distintos materiales por los métodos estático y dinámico. Material Aparato de torsión representado en la figura, varillas

Más detalles

Resolución de exámenes. NOTA: La opción resaltada en naranja es la opción correcta.

Resolución de exámenes. NOTA: La opción resaltada en naranja es la opción correcta. Resolución de exámenes NOTA: La opción resaltada en naranja es la opción correcta. Geometría Ejercicio 1: La suma de los ángulos internos de un cuadrilátero vale: A. Depende el cuadrilátero B. 90 C. 360

Más detalles

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias Guía de Estudio Para Ciencias Agropecuarias Unidad: Geometría Analítica Los siguientes ejercicios están relacionados con los principales temas de Geometría Analítica e involucra todos los conocimientos

Más detalles

Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca

Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica I Contenido 1 Introducción 2 La Circunferencia 3 Parábola 4 Elipse 5 Hiperbola Objetivos Se persigue que el estudiante:

Más detalles

Presentación 3 SISTEMAS DE ECUACIONES LINEALES CON DOS VARIABLES

Presentación 3 SISTEMAS DE ECUACIONES LINEALES CON DOS VARIABLES Presentación 3 SISTEMAS DE ECUACIONES LINEALES CON DOS VARIABLES Sistemas de Ecuaciones Lineales Muchos problemas en administración y economía envuelven dos o mas ecuaciones en uno o más variables. Decimos

Más detalles

CAPÍTULO 4 Funciones Económicas

CAPÍTULO 4 Funciones Económicas CAPÍTULO 4 Funciones Económicas Introducción La actividad económica surge de la necesidad de utilizar recursos para producir los bienes materiales que satisfacen los deseos del hombre, ya sean básicos

Más detalles

PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4

PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4 PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4 Los alumnos utilizaron la ecuación = m + b para graficar rectas describir patrones en los cursos anteriores. La Lección 2.1.1 es un repaso. Cuando la ecuación

Más detalles

ü CT = Costos Totales, se encuentran formados por la suma de los costos fijos (CF) y los costos variables (CV).

ü CT = Costos Totales, se encuentran formados por la suma de los costos fijos (CF) y los costos variables (CV). PUNTO DE EQUILIBRIO Todas las empresas o negocios del sector privado, en la actualidad tienen muy bien trazado su objetivo principal, específicamente incrementar su nivel de rentabilidad enfocando su esfuerzo

Más detalles

Aplicaciones en ciencias naturales, económico-administrativas y sociales

Aplicaciones en ciencias naturales, económico-administrativas y sociales Aplicaciones en ciencias naturales, económico-administrativas y sociales Ya hemos resuelto algunos problemas aplicados a las ciencias naturales, así que aquí nos enfocaremos más a problemas de economía,

Más detalles

b) Con sus máquinas actuales tiene una producción anual máxima de 500 unidades.

b) Con sus máquinas actuales tiene una producción anual máxima de 500 unidades. Aplicaciones de máimos y mínimos. Criterio de la segunda Derivada: Sea f una función tal que f eiste en un intervalo ]a, b[, que contiene al número crítico c. a) Si f (c) > 0, entonces la función tiene

Más detalles

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica.

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica. Capítulo 4. Estudio de la línea recta El análisis cartesiano (René Descartes 1596-1650) descubrió que las ecuaciones pueden tener una representación gráfica. Para lograr esa representación gráfica es necesario

Más detalles

La recta se define como el lugar geométrico de todos los puntos de un plano que al tomarse de dos en dos se obtiene la misma pendiente.

La recta se define como el lugar geométrico de todos los puntos de un plano que al tomarse de dos en dos se obtiene la misma pendiente. Formas de la ecuación de una recta. Hasta el momento, se han dado algunas características de la recta tales como la distancia entre dos puntos, su pendiente, su ángulo de inclinación, relación entre ellas,

Más detalles

( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada

( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada Dirección de una curva Dado que la derivada de f (x) se define como la pendiente de la recta tangente

Más detalles

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas

Más detalles

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes Matemáticas. Tercero ESO. Curso 0-03. Exámenes . 9 de octubre de 0 Ejercicio. Calcular: 3 5 4 + 3 0 3 7 8 5 3 5 4 + 3 0 5 + 6 0 3 0 3 7 8 5 3 56 0 3 8 0 84 74 5 5 5 Ejercicio. Calcular: 5 6 [ ( 3 3 3 )]

Más detalles

1. Análisis de Sensibilidad

1. Análisis de Sensibilidad 1. Análisis de Sensibilidad Considerando que la evaluación de los proyectos se basa en proyecciones de variables económicas, es lógico pensar que existe un factor de incertidumbre en los indicadores financieros

Más detalles

UNIDAD IV DISTANCIA ENTRE DOS PUNTOS

UNIDAD IV DISTANCIA ENTRE DOS PUNTOS UNIDAD IV DISTANCIA ENTRE DOS PUNTOS Dados los puntos: P(x1, y1) y Q(x2, y2), del plano, hallemos la distancia entre P y Q. Sin pérdida de generalidad, tomemos los puntos P y Q, en el primer cuadrante

Más detalles

Desigualdades lineales

Desigualdades lineales SECCIÓN.7 Desigualdades 77 Ponga atención especial a las reglas 3 y 4. La regla 3 establece que podemos multiplicar (o dividir) cada miembro de una desigualdad por un número positivo, pero la regla 4 señala

Más detalles

CENTRO REGIONAL UNIVERSITARIO BARILOCHE TALLER DE MATEMATICA INGRESO 2016 LIC. ENFERMERÍA PRACTICO UNIDAD 3

CENTRO REGIONAL UNIVERSITARIO BARILOCHE TALLER DE MATEMATICA INGRESO 2016 LIC. ENFERMERÍA PRACTICO UNIDAD 3 PRACTICO UNIDAD 3 Nota: Los ejercicios propuestos en los prácticos deben servirle para afianzar y practicar temas. Si nota que algunos ejercicios ya los sabe hacer bien, continúe con otros que le impliquen

Más detalles

LISTA DE COTEJO TRABAJO Nº 2 CALIFICACIÓN

LISTA DE COTEJO TRABAJO Nº 2 CALIFICACIÓN LISTA DE COTEJO TRABAJO Nº 2 CALIFICACIÓN N ÍTEMS CALIFICACIÓN 1 Presenta la carátula 1 1.1 No presenta la carátula 0 2 Presenta la Introducción 1 2.1 No presenta la Introducción 0 3 Explica con precisión

Más detalles

Derivada. 1. Pendiente de la recta tangente a una curva

Derivada. 1. Pendiente de la recta tangente a una curva Nivelación de Matemática MTHA UNLP Derivada Pendiente de la recta tangente a una curva Definiciones básicas Dada una curva que es la gráfica de una función y = f() y sea P un punto sobre la curva La pendiente

Más detalles

MANUAL DE LABORATORIO DE FÍSICA GENERAL 9ª Edición EXPERIENCIA N 02

MANUAL DE LABORATORIO DE FÍSICA GENERAL 9ª Edición EXPERIENCIA N 02 GRÁFICAS EXPERIENCIA N René Descartes "Consideraría que no sé nada de Física si tan sólo fuese capaz de epresar cómo deben ser las cosas, pero fuese incapaz de demostrar que no pueden ser de otra manera

Más detalles

ADMINISTRACION DE OPERACIONES

ADMINISTRACION DE OPERACIONES Sesión4: Métodos cuantitativos ADMINISTRACION DE OPERACIONES Objetivo específico 1: El alumno conocerá y aplicara adecuadamente los métodos de pronóstico de la demanda para planear la actividad futura

Más detalles

COSTOS Y PRESUPUESTOS TALLER NO EVALUADO

COSTOS Y PRESUPUESTOS TALLER NO EVALUADO COSTOS Y PRESUPUESTOS TALLER NO EVALUADO Estimado alumno(a), a continuación le invitamos a desarrollar el siguiente taller, el cual tiene por finalidad afianzar el aprendizaje adquirido durante el transcurso

Más detalles

Unidad 6. Análisis costo-volumen-utilidad. Objetivos específicos de aprendizaje

Unidad 6. Análisis costo-volumen-utilidad. Objetivos específicos de aprendizaje Unidad 6 Análisis costo-volumen-utilidad Objetivos específicos de aprendizaje Al terminar de estudiar este capítulo, el estudiante será capaz de: Explicar el concepto de punto de equilibrio. Calcular el

Más detalles

Derivadas Parciales. Aplicaciones.

Derivadas Parciales. Aplicaciones. RELACIÓN DE PROBLEMAS FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Curso 2004/2005 Escuela Universitaria de Ingeniería Técnica Agrícola Departamento de Matemática Aplicada I Tema 3. Derivadas Parciales. Aplicaciones.

Más detalles

TEMA 7. FUNCIONES. - Variables dependiente e independiente.

TEMA 7. FUNCIONES. - Variables dependiente e independiente. TEMA 7. FUNCIONES 7.1. Definiciones. - Función. - Variables dependiente e independiente. - Imagen y antiimagen. - Interpretación de gráficas. - Dominio y recorrido. 7.2. Propiedades de las funciones. -

Más detalles

PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO.

PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. FACULTAD DE MATEMATICAS UNIVERSIDAD VERACRUZANA 2010 Xalapa, Ver. México 1 1. La distancia entre dos puntos en la recta real es 5. Si uno de los puntos

Más detalles

Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué?

Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué? Ecuaciones de la forma y = m. Haga las gráficas de y = y = y = y = y y y y y y a. Como son las rectas b. Cuales son simétricas respecto al origen c. La recta y que tipo de simetría presenta respecto a

Más detalles

1. Simplificar las siguientes expresiones. 2. Simplificar y escribir como un producto de potencias: 3. Escribir en forma exponencial

1. Simplificar las siguientes expresiones. 2. Simplificar y escribir como un producto de potencias: 3. Escribir en forma exponencial . Simplificar las siguientes epresiones. 7 ( ) ( 8) b. + + 79 ( ) ( ) c. ( )( )( ) d. ( ) ( ) e. + f. 8 + 8 + 7 6 g. y ( + y ) ( + y ) ( y ) 0 y 8 h.. Simplificar y escribir como un producto de potencias:

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA UNIVERSIDAD DE CHILE FACULTAD DE ARQUITECTURA Y URBANISMO ESCUELA DE GEOGRAFÍA DEPARTAMENTO DE CIENCIAS DE LA CONSTRUCCIÓN ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : 1er. AÑO PROF. L. ALTIMIRAS

Más detalles

APLICACIÓN DE LAS MATRICES Modelos de Entrada-Salida de Leontief

APLICACIÓN DE LAS MATRICES Modelos de Entrada-Salida de Leontief APLICACIÓN DE LAS MATRICES Modelos de Entrada-Salida de Leontief El modelo desarrollado por Wassily Leontief, es una aplicación interesante de las matrices, que fue útil para pronosticar los efectos en

Más detalles

Medición del módulo de elasticidad de una barra de acero

Medición del módulo de elasticidad de una barra de acero Medición del módulo de elasticidad de una barra de acero Horacio Patera y Camilo Pérez hpatera@fra.utn.edu.ar Escuela de Educación Técnica Nº 3 Florencio Varela, Buenos Aires, Argentina En este trabajo

Más detalles

GUÍA DE LA UNIDAD FUNCIONES : DERIVADAS

GUÍA DE LA UNIDAD FUNCIONES : DERIVADAS Funciones Límites Derivadas Aplicaciones Gráficas C ontenidos Idea de Función. Elementos notables de la gráfica de una función. Funciones lineales. Función definida por intervalos. Función Valor Absoluto.

Más detalles

Circunferencia. Circunferencia centrada en el origen C(0,0)

Circunferencia. Circunferencia centrada en el origen C(0,0) Circunferencia Se llama circunferencia al lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. El radio de la circunferencia es la distancia de un punto cualquiera de

Más detalles

IDENTIDADES TRIGONOMÉTRICAS DE SUMA Y RESTA

IDENTIDADES TRIGONOMÉTRICAS DE SUMA Y RESTA FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 10 TALLER Nº: 13 SEMESTRE II IDENTIDADES TRIGONOMÉTRICAS DE SUMA Y RESTA RESEÑA HISTÓRICA Karl Gustav Jacob Jacobi: Nació el 10

Más detalles

Función lineal Ecuación de la recta

Función lineal Ecuación de la recta Función lineal Ecuación de la recta Función constante Una función constante toma siempre el mismo valor. Su fórmula tiene la forma f()=c donde c es un número dado. El valor de f() en este caso no depende

Más detalles

MUNICIPIO DE MEDELLÍN GRADO 10 CONCEPTOS BÁSICOS DE TRIGONOMETRÍA

MUNICIPIO DE MEDELLÍN GRADO 10 CONCEPTOS BÁSICOS DE TRIGONOMETRÍA CONCEPTOS BÁSICOS DE TRIGONOMETRÍA ÁREA MATEMÁTICAS PERÍODO 01 FECHA: 13 de enero de 2014 LOGROS: MUNICIPIO DE MEDELLÍN GRADO 10 Construir y clasificar los diferentes tipos de ángulos, expresando su medida

Más detalles

EL PROBLEMA DE LA TANGENTE

EL PROBLEMA DE LA TANGENTE EL PROBLEMA DE LA TANGENTE El problema de definir la tangente a una curva y f (x) en un punto P ( x, y ) ha llevado al concepto de la derivada de una función en un punto P ( x, y ). Todos sabemos dibujar

Más detalles

1. a) Qué significa una potencia de exponente negativo?... ; b)

1. a) Qué significa una potencia de exponente negativo?... ; b) MATEMÁTICAS - SEPTIEMBRE TAREA DE VERANO 4º E.S.O.-B 1. a) Qué significa una potencia de eponente negativo?..... b) Simplificar: b 1) : b 4 ) b ) 9 1 b 4) 1 4. Simplificar potencias: a) 4 ( ) d) 9000 0'000000006

Más detalles

Trabajo Práctico 2 - ECUACIÓN DE LA RECTA

Trabajo Práctico 2 - ECUACIÓN DE LA RECTA Trabajo Práctico - ECUACIÓN DE LA RECTA ) Un barril tiene una capacidad de 00 litros. El barril se encuentra sobre una balanza y al echarle distintas cantidades de un aceite, se puede tomar el peso que

Más detalles

Campo Magnético en un alambre recto.

Campo Magnético en un alambre recto. Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar

Más detalles

PRUEBA DE ENTRADA LÓGICO MATEMÁTICA DE SEXTO GRADO. 1. Identifica qué operación entre conjuntos representa cada diagrama:

PRUEBA DE ENTRADA LÓGICO MATEMÁTICA DE SEXTO GRADO. 1. Identifica qué operación entre conjuntos representa cada diagrama: PRUEBA DE ENTRADA LÓGICO MATEMÁTICA DE SEXTO GRADO Lee con atención y luego responde: 1. Identifica qué operación entre conjuntos representa cada diagrama: 2. En esta recta aparecen señalados las décimas.

Más detalles

ANALISIS DEL PUNTO DE EQUILIBRIO.

ANALISIS DEL PUNTO DE EQUILIBRIO. ANALISIS DEL PUNTO DE EQUILIBRIO. 1 INTRODUCCIÓN. Toda empresa en pleno desarrollo, tiene como es lógico suponer entre sus metas y objetivos, obtener utilidades cada vez mayores, situación que solo es

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

Moisés Villena Muñoz Cap. 3 Aplicaciones de la Integral

Moisés Villena Muñoz Cap. 3 Aplicaciones de la Integral Moisés Villena Muñoz Cap. Aplicaciones de la Integral.1 ÁREAS DE REGIONES PLANAS. APLICACIONES ECONÓMICAS..1. CAMBIO NETO... EXCESO DE UTILIDAD NETA... GANANCIAS NETAS... EXCEDENTES DE CONSUMIDORES Y EXCEDENTE

Más detalles

APUNTE: Introducción a la Programación Lineal

APUNTE: Introducción a la Programación Lineal APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La

Más detalles

Matemática I (BUC) - Cálculo I. Práctica 1: FUNCIONES

Matemática I (BUC) - Cálculo I. Práctica 1: FUNCIONES Matemática I (BUC) - Cálculo I Práctica : FUNCIONES Matemática I (BUC) / Cálculo I - Funciones. Indique cuales de los siguientes dibujos podrían corresponder al gráfico de una función. Marque en el gráfico

Más detalles

Una variable, y, es función de otra, x, si existe una relación entre ambas de forma tal que: para cada valor de x existe solamente uno de y

Una variable, y, es función de otra, x, si existe una relación entre ambas de forma tal que: para cada valor de x existe solamente uno de y Funciones Una variable, y, es función de otra, x, si existe una relación entre ambas de forma tal que: para cada valor de x existe solamente uno de y Notamos de la siguiente manera: y = f(x) Leemos: y

Más detalles

En primer lugar voy a trasladar el enunciado a lenguaje matemático. Me fijo en lo que me preguntan: a una variable la llamo x y a otra y.

En primer lugar voy a trasladar el enunciado a lenguaje matemático. Me fijo en lo que me preguntan: a una variable la llamo x y a otra y. PROGRAMACIÓN LINEAL EJERCICIO TIPO Una confitería se elaboran tartas de nata y de manzana. Cada tarta de nata requiere medio kilo de azúcar y 8 huevos; y una de manzana, 1 kg de azúcar y 6 huevos. En la

Más detalles

PARÁBOLA IX.

PARÁBOLA IX. IX. PARÁBOLA Lugar geométrico de todos los puntos tales que la distancia de éstos a un punto fijo (foco) es siempre la misma a una recta fija (directriz). p = distancia del vértice al foco o del vértice

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

Consideremos dos situaciones que se muestran en los cuadros a continuación:

Consideremos dos situaciones que se muestran en los cuadros a continuación: Materia: Matemática de Octavo Tema: Relaciones entre conjuntos Supongamos que deseas predecir el costo de ir a ver una película en el cine, le mandas un mensaje de texto a algunos de tus amigos que han

Más detalles

CANTIDAD A `PRODUCIR = FUNCION DE LA COMBINACION OPTIMA DE FACTORES DE LA PRODUCCION

CANTIDAD A `PRODUCIR = FUNCION DE LA COMBINACION OPTIMA DE FACTORES DE LA PRODUCCION PRODUCCION Y COSTOS DEFINICION DE EMPRESA Las empresas son agentes económicos dedicados a producir una serie de bienes y servicios en base a una serie de insumos o inputs intermedios y la utilización de

Más detalles

MATEMÁTICA APLICADA ADMINISTRACIÓN DE EMPRESAS MATEMÁTICAS PARA ADMINISTRACIÓN TALLER 04 (MÍNIMOS CUADRADOS) Manizales, 28 de Abril de 2014

MATEMÁTICA APLICADA ADMINISTRACIÓN DE EMPRESAS MATEMÁTICAS PARA ADMINISTRACIÓN TALLER 04 (MÍNIMOS CUADRADOS) Manizales, 28 de Abril de 2014 http://www.matematicaaplicada.info 1 de 6 jezasoft@gmail.com MATEMÁTICA APLICADA ADMINISTRACIÓN DE EMPRESAS MATEMÁTICAS PARA ADMINISTRACIÓN TALLER 04 (MÍNIMOS CUADRADOS) Manizales, 28 de Abril de 2014

Más detalles

Explorando la ecuación de la recta pendiente intercepto

Explorando la ecuación de la recta pendiente intercepto Explorando la ecuación de la recta pendiente intercepto Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. Los puntos que están en la misma recta se dice que son. 2. Describe el

Más detalles

REESCRIBIR ECUACIONES CON MÚLTIPLES VARIABLES Ejemplo 2. Ejemplo 4

REESCRIBIR ECUACIONES CON MÚLTIPLES VARIABLES Ejemplo 2. Ejemplo 4 REESCRIBIR ECUACIONES CON MÚLTIPLES VARIABLES 6.1.1 Para reescribir una ecuación con más de una variable debes usar el mismo proceso que para resolver una ecuación de una variable. El resultado final suele

Más detalles

En el mercado de un bien la demanda viene expresada por la función Q = 20 P y la oferta por P = 1/3 Q 4/3.

En el mercado de un bien la demanda viene expresada por la función Q = 20 P y la oferta por P = 1/3 Q 4/3. CURSO 08-09. 1º ING INDUSTRIAL. FINAL. NUMERO: Nombre y apellidos:... (contestar utilizando el espacio en blanco en las hojas correspondientes a este ejercicio y el dorso de las mismas; NO SE CORREGIRÁ

Más detalles

GUÍA N 1 DE CÁLCULO I Funciones y sus Gráficas

GUÍA N 1 DE CÁLCULO I Funciones y sus Gráficas GUÍA N 1 DE CÁLCULO I Funciones y sus Gráficas I Funciones En esta guía trabajaremos con funciones polinómicas tanto en su forma algebraica como gráfica. Tendrás que graficar funciones lineales y cuadráticas

Más detalles

4. El largo de un terreno rectangular mide 3 metros más que su ancho, determine la expresión algebraica que representa el perímetro del terreno.

4. El largo de un terreno rectangular mide 3 metros más que su ancho, determine la expresión algebraica que representa el perímetro del terreno. GUÍA DE EJERCICIOS Nº 4 Contenidos: Lenguaje algebraico: Utiliza letras para representar números desconocidos Evaluación de expresiones algebraicas: Hallar el valor numérico de una expresión 1. En cada

Más detalles

Hoja 6: Estadística descriptiva

Hoja 6: Estadística descriptiva Hoja : Estadística descriptiva Hoja : Estadística descriptiva May Dada la siguiente distribución de frecuencias, halle: a) la mediana; b) la media. Número (x) Frecuencia (y) May De enero a septiembre la

Más detalles

Materia: Matemática de 5to Tema: Ecuación de la Recta. Marco Teórico

Materia: Matemática de 5to Tema: Ecuación de la Recta. Marco Teórico Materia: Matemática de 5to Tema: Ecuación de la Recta Marco Teórico Simplemente comenzar con la ecuación general de la forma pendiente-intersección de una línea, y luego conecte los valores dados de y

Más detalles

Tema 1 El objeto de análisis de la economía

Tema 1 El objeto de análisis de la economía Ejercicios resueltos de Introducción a la Teoría Económica Carmen Dolores Álvarez Albelo Miguel Becerra Domínguez Rosa María Cáceres Alvarado María del Pilar Osorno del Rosal Olga María Rodríguez Rodríguez

Más detalles

NOCIONES PRELIMINARES (*) 1

NOCIONES PRELIMINARES (*) 1 CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras

Más detalles