TEMA 3: EQUIVALENCIA FINANCIERA DE CAPITALES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 3: EQUIVALENCIA FINANCIERA DE CAPITALES"

Transcripción

1 Maemácas Faceras Prof. Mª Mercees Rojas e Graca TEMA 3: EQUIVALENIA FINANIERA DE APITALE ÍNDIE. PRINIPIO DE EQUIVALENIA DE APITALE: ONEPTO. APLIAIONE DEL PRINIPIO DE EQUIVALENIA: UTITUIÓN DE APITALE.... DETERMINAIÓN DEL APITAL OMÚN DETERMINAIÓN DEL VENIMIENTO OMÚN DETERMINAIÓN DEL VENIMIENTO MEDIO.. 7. PRINIPIO DE EQUIVALENIA DE APITALE: ONEPTO uao se spoe e varos capales e ferees cuaías y suaos e ferees momeos e empo puee resular coveee saber cuál e ellos es más eresae ese el puo e vsa facero (porque valga más o meos que los emás). Para ecr habría que compararlos, pero o basa co fjarse solamee e las cuaías, se ería que coserar, a la vez, el momeo e empo oe se ecuera suaos. Aemás, la comparacó ebería ser homogéea, es ecr, ería que llevarse oos los capales a u msmo momeo y ahí efecuar la comparacó. omprobar la equvaleca facera ere capales cosse e comparar os o más capales suaos e sos momeos y, para u po ao, observar s ee el msmo valor e el momeo e que se compara. Para gualar los capales e u momeo eermao se ulzará la capalzacó o el escueo. Dos capales, y, que vece e los momeos y respecvamee, so equvalees cuao, valoraos e u msmo momeo e empo, ee la msma cuaía. Esa efcó se cumple cualquera que sea el úmero e capales que ervega e la operacó. Tema 3: Equvaleca Facera e apales -- La formacó e ese ema esá exraía cas e su oala e

2 Maemácas Faceras Prof. Mª Mercees Rojas e Graca os o más capales se ce que so equvalees resulará feree cualquera e ellos, o habeo prefereca por guo e parcular. Por el coraro, s o se cumple la equvaleca habrá uo sobre el que eremos prefereca y, e cosecueca, lo elegremos. el prcpo e equvaleca se cumple e u momeo e empo cocreo, o ee por qué cumplrse e oro momeo cualquera (seo lo ormal que o se cumpla e gú oro momeo). osecueca e esa crcusaca será que la eleccó e la fecha oe se haga el esuo comparavo afecará y cocoará el resulao.. APLIAIONE DEL PRINIPIO DE EQUIVALENIA: UTITUIÓN DE APITALE La susucó e u(os) capal(es) por oro u oros e vecmeos y/o cuaías ferees a las aerores, sólo se porá llevar a cabo s faceramee resula ambas aleravas equvalees. Para ver s os aleravas so faceramee equvalees se erá que valorar e u msmo momeo e empo y oblgar a que ega las msmas cuaías. A ese momeo e empo oe se realza la valoracó se le eoma época o fecha focal o, smplemee, fecha e esuo. Para plaear ua susucó e capales el acreeor y el euor ha e esar e acuero e las sguees cocoes fuameales: Momeo e empo a parr el cual se compua los vecmeos. Momeo e el cual se realza la equvaleca, eeo e cuea que al varar ese ao varía el resulao el problema. Tao e valoracó e la operacó. Decr s se ulza la capalzacó o el escueo. asos posbles: a. Deermacó el capal comú. b. Deermacó el vecmeo comú. c. Deermacó el vecmeo meo. Tema 3: Equvaleca Facera e apales -- La formacó e ese ema esá exraía cas e su oala e

3 Maemácas Faceras Prof. Mª Mercees Rojas e Graca Tema 3: Equvaleca Facera e apales -3- La formacó e ese ema esá exraía cas e su oala e DETERMINAIÓN DEL APITAL OMÚN El capal comú es la cuaía e u capal úco que vece e el momeo, cooco, y que susuye a varos capales,,,, co vecmeos e,,,, respecvamee, oos ellos coocos e cuaías y empos. Para su cálculo se valorará e u msmo momeo al ao elego, por ua pare, los capales e los que se pare y, por ora, el capal úco escooco que los va a susur. la equvaleca se plaea e : Realzao la valoracó co po e erés () : e oe se espejará. ( ) ( ) Realzao la valoracó a po e escueo () : ( ) ( ) ( ) ( ) espejao falmee, quea: Recoremos que el capal cal e el escueo smple racoal se calcula e la sguee forma: Recoremos que el capal cal e el escueo smple comercal se calcula e la sguee forma: ( )?

4 Maemácas Faceras Prof. Mª Mercees Rojas e Graca ( ) ( ) ( ) s ( s ) el esuo se realza e el momeo, habrá que eer e cuea que aquellos capales que ega u vecmeo feror a habrá que capalzarlos (empleao u po e erés ), meras que aquellos capales co vecmeos superores habrá que escoarlos, puéose emplear be u po e erés o be e escueo.? Realzao la valoracó co po e erés () 3 : [ ( ) ] [ ( ) ] ( ) e espejará, pues oo lo emás se cooce. Para aquellos vecmeos que sea superores a a los que se les aplque u escueo comercal, la expresó aeror queará como sgue: [ ( ) ] [ ( ) ] [ ( ) ] EJEMPLO U señor ee res euas e., 4. y 5. euros co vecmeos a los 6, 8 y meses, respecvamee. Propoe susur las res euas por ua sola a pagar a los 9 meses. e pe calcular el mpore a pagar s la operacó se cocera al 8% e erés smple aual e los os casos sguees: er caso: fecha e esuo e : / 3 Recoremos que el capal fal e el escueo smple racoal se calcula e la sguee forma: Tema 3: Equvaleca Facera e apales -4- La formacó e ese ema esá exraía cas e su oala e

5 Maemácas Faceras Prof. Mª Mercees Rojas e Graca /? meses Teemos que pasar los meses a años, para lo cual los vremos ere : ,8,8,8.3,53.3,53 ( ) ( ) 9,8.48,458,6 º caso: fecha e esuo e 9 meses:? meses..33,55 [ ( ) ] [ ( ) ] ( 9 6) ( 9 8), ,55 ( ),8 5.,8 ( 9).. DETERMINAIÓN DEL VENIMIENTO OMÚN El vecmeo comú es el momeo e empo e que vece u capal úco, cooco, que susuye a varos capales,,,, co vecmeos e,,,, respecvamee, oos ellos coocos. e ee que cumplr: Tema 3: Equvaleca Facera e apales -5- La formacó e ese ema esá exraía cas e su oala e

6 Maemácas Faceras Prof. Mª Mercees Rojas e Graca Tema 3: Equvaleca Facera e apales -6- La formacó e ese ema esá exraía cas e su oala e Para obeer ese vecmeo habría que proceer e la msma forma que e el caso el capal comú, seo ahora la cóga el momeo oe se súa ese capal úco. Así, por ejemplo, s la equvaleca se realza e el orge a ao e erés (): Realzao la valoracó co po e erés (): smplfcao: ( ) Realzao la valoracó a po e escueo (): ( ) ( ) ( ) ( ) se qua los paréess y quea: reoreao e el prmer membro: ( )?

7 Maemácas Faceras Prof. Mª Mercees Rojas e Graca Tema 3: Equvaleca Facera e apales -7- La formacó e ese ema esá exraía cas e su oala e EJEMPLO U señor ee res euas e., 4. y 5. euros co vecmeos a los 6, 8 y meses, respecvamee. De acuero co el acreeor acuera hoy susur las res euas por ua sola e.. e pe calcular el momeo s la operacó se cocera al 8% e erés smple aual. La fecha e esuo es el momeo cero. Teemos que pasar los meses a años, para lo cual los vremos ere :,9533 años,8,76963,8,8 5.,8 8 4.,8 6.. Pasamos los años a meses mulplcao el empo e añosr por meses:,4meses, DETERMINAIÓN DEL VENIMIENTO MEDIO El vecmeo meo es el momeo e empo e que vece u capal úco, cooco, que susuye a varos capales,,,, co vecmeos e,,,, respecvamee, oos ellos coocos. e ee que cumplr: ? meses

8 Maemácas Faceras Prof. Mª Mercees Rojas e Graca Tema 3: Equvaleca Facera e apales -8- La formacó e ese ema esá exraía cas e su oala e El cálculo es éco al vecmeo comú, lo úco que varía es la cuaía el capal úco que susuye al cojuo e capales e los que se pare, que ahora ebe ser gual a la suma arméca e las cuaías a las que susuye. Realzao el esuo e equvaleca e el orge y empleao u po e escueo, quearía así: ( ) ( ) ( ) ( ) quao los paréess: reoreao e el prmer membro: ( ) como ( ) ( ) / / veo la ecuacó por :?

9 Maemácas Faceras Prof. Mª Mercees Rojas e Graca E efva, el vecmeo meo resula ser ua mea arméca poeraa e los vecmeos e los capales e para, seo el mpore e chos capales los facores e poeracó. EJEMPLO 3 U señor ee res euas e., 4. y 5. euros co vecmeos a los 6, 8 y meses, respecvamee. De acuero co el acreeor acuera hoy susur las res euas por ua sola e.. e pe calcular el momeo e pago s la operacó se cocera al 8% e escueo smple aual. La fecha e esuo es el momeo cero ? meses Teemos que pasar los meses a años, para lo cual los vremos ere : ,7años Pasamos los años a meses mulplcao el empo aeror por meses que ee u año:,7 8,55 meses Tema 3: Equvaleca Facera e apales -9- La formacó e ese ema esá exraía cas e su oala e

TEMA 5: CAPITALIZACIÓN COMPUESTA ÍNDICE

TEMA 5: CAPITALIZACIÓN COMPUESTA ÍNDICE Maemácas Faceras Prof. Mª Mercedes Rojas de Graca TEMA 5: APITALIZAIÓN OMPUESTA ÍNDIE. APITALIZAIÓN OMPUESTA..... ONEPTO..... DESRIPIÓN DE LA OPERAIÓN....3. ARATERÍSTIAS DE LA OPERAIÓN....4. DESARROLLO

Más detalles

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES UNIDD.- Marces (ema del lbro). MTRICES Ua mar se puede eeder como ua abla de úmeros ordeados e flas columas Defcó.- Se llama mar de dmesó m a u cojuo de úmeros reales dspuesos e m flas columas de la sguee

Más detalles

VOLUMEN IV CAPITULO 3 METODOLOGÍA PARA LA ACTULIZACIÓN DE LAS CURVA DE COSTOS ÓPTIMOS DE RACIONAMIENTO DE ELECTRICIDAD Y GAS NATURAL

VOLUMEN IV CAPITULO 3 METODOLOGÍA PARA LA ACTULIZACIÓN DE LAS CURVA DE COSTOS ÓPTIMOS DE RACIONAMIENTO DE ELECTRICIDAD Y GAS NATURAL ESTUDO DE OSTOS DE RAONAMENTO DE ELETRDAD Y GAS NATURAL Volume V apulo 3 forme Fal Revsó. VOLUMEN V APTULO 3 METODOLOGÍA PARA LA ATULZAÓN DE LAS URVA DE OSTOS ÓPTMOS DE RAONAMENTO DE ELETRDAD Y GAS NATURAL

Más detalles

Figura 1. Figura 2. Para realizar este análisis asumiremos las siguientes condiciones:

Figura 1. Figura 2. Para realizar este análisis asumiremos las siguientes condiciones: Coverdor PUH PU El coverdor Push Pull es u coverdor que hace uso de u rasformador para eer aslameo ere la esó de erada y la esó de salda. Posee además ua ducaca magezae propa del rasformador que como al

Más detalles

PLAN DE TRABAJO 11 Período 23/10/06 al 3/11/06. Durante estas dos semanas estudiarás los modelos de regresiones lineales.

PLAN DE TRABAJO 11 Período 23/10/06 al 3/11/06. Durante estas dos semanas estudiarás los modelos de regresiones lineales. Pla de Trabajo 0- Año 006 Curso Lbre Assdo de Esadísca II Docees resposables: Lercy Barros - María Sague PLAN DE TRABAJO Período 3/0/06 al 3//06 TEMAS A ESTUDIAR Durae esas dos semaas esudarás los modelos

Más detalles

Taller de Preparación para el examen Models Life Contingencies (MLC) de la SOA.

Taller de Preparación para el examen Models Life Contingencies (MLC) de la SOA. Taller de Preparacó para el eame Models Lfe Cogeces MLC de la SO. Trdad Gozález Bolla El presee es u forme del rabajo desarrollado durae el aller de preparacó para el eame MLC de SO ue uo lugar e la Faculad

Más detalles

Una Estrategia de Acumulación de Reservas Mediante Opciones de Venta de Dólares. El Caso de Banco de México

Una Estrategia de Acumulación de Reservas Mediante Opciones de Venta de Dólares. El Caso de Banco de México Ua Esraega de Acumulacó de Reservas Medae Opcoes de Vea de Dólares. El Caso de Baco de Méxco INDICE I. REUMEN... II. INTRODUCCIÓN...3 III. IV. OPCIONE DE VENTA DE DÓLARE...4 III.. PRINCIPALE CARACTERÍTICA...4

Más detalles

MOF - COMPETENCIA 1 FUNDAMENTOS DE LAS OPERACIONES FINANCIERAS

MOF - COMPETENCIA 1 FUNDAMENTOS DE LAS OPERACIONES FINANCIERAS MOF - OMPETENIA FUNDAMENTOS DE LAS OPERAIONES FINANIERAS apalzacó ompuesa. apalzacó Smple. Acualzacó ompuesa y Smple. Equvalecas Faceras. Aplcacoes de la apalzacó y del Descueo. Valores Medos: Ufcacó de

Más detalles

TEMA 4. EQUIVALENCIA FINANCIERA

TEMA 4. EQUIVALENCIA FINANCIERA ADMIISTRAIÓ Y FIAZAS. GRADO SUPERIOR TEMA 4. EQUIVALEIA FIAIERA TEMA 4: EQUIVALEIA FIAIERA. ITRODUIÓ Estas operacoes se da cuado ua persoa quere susttur uo o varos pagos que tee que realzar (PRIMERA SITUAIÓ)

Más detalles

1.1.- Concepto Definición de cono Definición de función homogénea Interpretación económica de la función homogénea

1.1.- Concepto Definición de cono Definición de función homogénea Interpretación económica de la función homogénea Fucoes homogéeas FUNCIONES HOMOGÉNEAS (ESQUEMA).- Cocepo y propedades...- Cocepo Defcó de coo Defcó de fucó homogéea Ierpreacó ecoómca de la fucó homogéea..- Propedades (Operacoes co fucoes homogéeas)

Más detalles

TEMA 4: VALORACIÓN DE RENTAS

TEMA 4: VALORACIÓN DE RENTAS TEMA 4: ALORACIÓN DE RENTAS 1. Cocepto y valor facero de ua reta 2. Clasfcacó de las retas. 3. aloracó de Retas dscretas. Temporales. 4. aloracó de Retas dscretas. Perpetuas. 5. Ejerccos tema 4. 1. Cocepto

Más detalles

1. Una empresa estudia la evolución de los precios en euros de tres componentes (A, B, C) para una pieza en los últimos 5 años.

1. Una empresa estudia la evolución de los precios en euros de tres componentes (A, B, C) para una pieza en los últimos 5 años. Ejerccos Resuelos Números Ídces Faculad Cecas Ecoómcas y Emresarales Dearameo de Ecoomía Alcada Profesor: Saago de la Fuee Ferádez 1. Ua emresa esuda la evolucó de los recos e euros de res comoees (A,

Más detalles

Seminario de problemas. Curso Hoja 9

Seminario de problemas. Curso Hoja 9 Semiario de prolemas. Curso 05-6. Hoja 9 49. Alero, Berardo y Carla se ha coocido e ua red social. Ellos pregua a Carla cuádo es su cumpleaños; e lugar de respoderles direcamee, ella decide poerles u prolema.

Más detalles

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos Dreccó Facera Pág Sergo Alejadro Herado Westerhede, Igeero e Orgazacó Idustral 5. INTRODUCCIÓN Los prcpales métodos para la seleccó y valoracó de versoes se agrupa e dos modaldades: métodos estátcos y

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II)

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II) Dapotva Matemátca Facera TEMA OPERACIONES DE AMORTIZACION O PRESTAMO (II). Prétamo dcado 2. Prétamo co teree atcpado. Prétamo Alemá 3. Valor facero del prétamo. Uufructo y uda propedad Dapotva 2 Matemátca

Más detalles

TEMA 5: CAPITALIZACIÓN COMPUESTA 1.- INTRODUCCIÓN

TEMA 5: CAPITALIZACIÓN COMPUESTA 1.- INTRODUCCIÓN TEMA 5: CAPITALIZACIÓN COMPUESTA 1- INTRODUCCIÓN Llamamos capializació compuesa a la ley fiaciera segú la cual los iereses producidos por u capial e cada periodo se agrega al capial para calcular los iereses

Más detalles

ANEXO B SISTEMAS NUMÉRICOS

ANEXO B SISTEMAS NUMÉRICOS ANEXO B SISTEMAS NUMÉRICOS Sstema Decmal El sstema ecmal emplea ez ferentes ígtos (,,,, 4, 5, 6, 7, 8 y 9). Por esto se ce que la base el sstema ecmal es ez. Para representar números mayores a 9, se combnan

Más detalles

Las anualidades anticipadas ocurren al inicio de cada periodo de tiempo, el diagrama de flujo de cada de estas anualidades es el siguiente:

Las anualidades anticipadas ocurren al inicio de cada periodo de tiempo, el diagrama de flujo de cada de estas anualidades es el siguiente: Matemátcas faceras 4.2. Aualdades atcpadas 4.2. Aualdades atcpadas UNIDAD IV. ANUALIDADES Las aualdades vecdas so aquellas que sus pagos guales ocurre al falzar cada perodo, u dagrama de flujo de cada

Más detalles

Introducción a la Estadística Descriptiva

Introducción a la Estadística Descriptiva Iroduccó a la Esadísca Descrpva ª Edcó Carla Re Graña María Raml Díaz ITRODUCCIÓ A LA ESTADÍSTICA DESCRIPTIVA. ª Edcó o esá permda la reproduccó oal o parcal de ese lbro, su raameo formáco, la rasmsódeguaformaoporcualquermedo,aseaelecróco,mecáco,porfoocopa,por

Más detalles

CURSO CONVOCATORIA:

CURSO CONVOCATORIA: PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 6-7 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, dero de ella, sólo debe respoder (como

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó

Más detalles

Planificación contra stock. Presentación. Introducción

Planificación contra stock. Presentación. Introducción Plaificació cora sock 09.0.07 Preseació Fabricar cora sock? No iee que ser cero el iveario? Se vio e el capíulo de iroducció. Plaificar cora sock Ciclo de pedido y fabricació idepediees. Demada aual coocida.

Más detalles

t T 1 Y Y T Y = T Y = 3 [ T Y m EJERCICIOS DE FORMAS DE ONDA y DESARROLLOS EN SERIE DE FOURIER.

t T 1 Y Y T Y = T Y = 3 [ T Y m EJERCICIOS DE FORMAS DE ONDA y DESARROLLOS EN SERIE DE FOURIER. EJERCICIOS DE FORMAS DE ONDA DESARROLLOS EN SERIE DE FOURIER. EJERCICIO. Hallar el valor eficaz,, e las foras e oa repreaas e la figura. RESOLUCIÓN: Los valores eficaces e las res foras e oa so iguales.

Más detalles

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente.

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente. Sere de radete (eométrco y rtmétco) y su Relacó co el resete. Certos proyectos de versó geera fluos de efectvo que crece o dsmuye ua certa catdad costate cada período. or eemplo, los gastos de matemeto

Más detalles

LEY FINANCIERA DE DESCUENTO SIMPLE RACIONAL. DESCUENTO BANCARIO

LEY FINANCIERA DE DESCUENTO SIMPLE RACIONAL. DESCUENTO BANCARIO LEY FINANIEA E ESUENTO SIMPLE AIONAL. ESUENTO BANAIO Profesor: Jua Atoo Gozález íaz epartameto Métodos uattatvos Uversdad Pablo de Olavde www.clasesuverstaras.com Ley Facera de escueto Smple acoal La ley

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A . Resolver Solució. l sisema lo defie dos marices la mari de coeficiees la mari ampliada. rg ' rg ' ' Rago de (méodo de ramer) S..D. rg ' rg. Resolver Solució. l sisema lo defie dos marices la mari de

Más detalles

Llamaremos términos amortizativos a las cuantías de los capitales financieros que componen la contraprestación: (a 1, a 2,, a n ).

Llamaremos términos amortizativos a las cuantías de los capitales financieros que componen la contraprestación: (a 1, a 2,, a n ). Tem 3 mortcó e prétmo Defcó y mgtue fumetle opercó e mortcó e prétmo e u opercó fcer e l ue u pero pretmt o creeor cocert etregr otr pero prettro o euor u eterm cutí e u mometo coro y el euor e compromete

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

ELABORACIÓN DE UN ÍNDICE COMPUESTO CAPÍTULO = X

ELABORACIÓN DE UN ÍNDICE COMPUESTO CAPÍTULO = X 5 CAPÍTULO ELABORACIÓN DE UN ÍNDICE COMPUESTO Ls Ídces Cmpuess, expresa de maera resumda la varacó prmed de u cju de varables respec de u períd base. Csderems u Agregad Cmplej "X", csud pr las varables

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

Sistemas Productivos

Sistemas Productivos Ssemas Producvos º Elemeos de dseño del proceso producvo A la hora de dseñar ua udad producva, hay que realzar ua sere de decsoes esraégcas que cluye ecesaramee:. Localzacó de la plaa: lugar dode físcamee

Más detalles

Métodos Actuariales de Primas de Fianzas

Métodos Actuariales de Primas de Fianzas Méodos Acuaales de mas de Fazas o Ac. edo Agula Belá * pagula@csf.gob.mx Resume: La faza ee macadas dfeecas co las opeacoes de seguos. Los pocedmeos acuaales paa el cálculo de pmas de seguos, esula muy

Más detalles

Análisis amortizado. Técnicas Avanzadas de Programación - Javier Campos 205

Análisis amortizado. Técnicas Avanzadas de Programación - Javier Campos 205 Aálss amortzado Téccas Avazadas de Programacó - Javer Campos 205 Aálss amortzado El pla: Coceptos báscos: Método agregado Método cotable Método potecal Prmer ejemplo: aálss de tablas hash dámcas Motículos

Más detalles

Reglas para el manejo de los índices de deuda de la BNV. Bolsa Nacional de Valores Version 4.4 13/07/2005

Reglas para el manejo de los índices de deuda de la BNV. Bolsa Nacional de Valores Version 4.4 13/07/2005 Reglas para el maejo de los ídces de deuda de la BV Bolsa acoal de Valores Verso 4.4 3/07/005 ága de 6 COTEIDO ITRODUCCIÓ... 4. erspecva geeral... 4 MAEJO DE LOS ÍDICES... 6. Comé de Ídces de íulos de

Más detalles

ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO 1 (NOVALES 2.1)

ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO 1 (NOVALES 2.1) ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO (NOVALES.) Cosideremos P P e g. Dado que dicha fució es coiua y que exise y so coiuas las derivadas de odos los órdees, podemos aplicar Taylor

Más detalles

Gestión de operaciones

Gestión de operaciones Gestó de operacoes Modelado de restrccoes co varables baras Modelado de programacó o leal Pedro Sáchez pedro.sachez@upcomllas.es Cotedo Restrccoes especales Restrccoes lógcas Productos de varables Modelos

Más detalles

CRÉDITO PESCA. Consideraciones del producto:

CRÉDITO PESCA. Consideraciones del producto: CRÉDITO PESCA Consderacones del produco: Los crédos se oorgan para el fnancameno de las acvdades de pesca: comerco, exraccón y/o ndusralzacón. Se basan en la capacdad de pago de los clenes y su hsoral

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

RENTABILIDAD DE LA CUOTA DE CAPITALIZACIÓN INDIVIDUAL.

RENTABILIDAD DE LA CUOTA DE CAPITALIZACIÓN INDIVIDUAL. Supertedeca de Admstradoras de Fodos de Pesoes CIRCULAR Nº 736 VISTOS: Las facultades que cofere la ley a esta Supertedeca, se mparte las sguetes struccoes de cumplmeto oblgatoro para todas las Admstradoras

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS

Más detalles

REVISTA INVESTIGACION OPERACIONAL Vol. 22, No. 2, 2001

REVISTA INVESTIGACION OPERACIONAL Vol. 22, No. 2, 2001 REVISA INVESIGACION OPERACIONAL Vol., No., SOLUCIONES A DIFERENES PROBLEMAS DENRO DEL CAMPO DE LA COMUNICACION ESADISICA J. Navarro Moreo, J.C. Ruz Mola y R.M. Ferádez Alcalá, Deparameo de Esadísca e Ivesgacó

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación)

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación) Aputes: Matemáticas Fiacieras 1. Lecció 11 - Operacioes Fiacieras a largo plazo - Préstamos (Cotiuació) 1.1. Préstamo: Método de cuotas de amortizació costates E este caso se verifica A 1 = A 2 = = A =

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA : MATRICES Y DETERMINANTES Juio, Ejercicio 3, Opció B Reserva 2, Ejercicio 3, Opció A Reserva 2, Ejercicio 3, Opció B Reserva 3, Ejercicio

Más detalles

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II Solucoes de los ejerccos de Selectvdad sobre Ifereca Estadístca de Matemátcas Aplcadas a las Cecas Socales II Atoo Fracsco Roldá López de Herro * Covocatora de 006 Las sguetes págas cotee las solucoes

Más detalles

División de Evaluación Social de Inversiones

División de Evaluación Social de Inversiones MEODOLOGÍA SIMPLIFICADA DE ESIMACIÓN DE BENEFICIOS SOCIALES POR DISMINUCIÓN DE LA FLOA DE BUSES EN PROYECOS DE CORREDORES CON VÍAS EXCLUSIVAS EN RANSPORE URBANO Dvsó de Evaluacó Socal de Iversoes 2013

Más detalles

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {lfraco@us.es} Elea Olmedo Ferádez {olmedo@us.es} Jua Mauel Valderas Jaramllo {valderas@us.es}

Más detalles

UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5

UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5 UNIDAD 3 a Escribe los cico primeros térmios de las sucesioes: a.1) a 2, a 3 1 2 a a a 1 2 a.2 b 2 + 1 b Halla el térmio geeral de cada ua de estas sucesioes: b.1 3, 1, 1, 3, 5,... b.2 2, 6, 18, 54,...

Más detalles

ANEXO 2 INTERES COMPUESTO

ANEXO 2 INTERES COMPUESTO ANEXO 2 INTERES COMPUESTO EJERCICIOS VARIOS: 1. Adrés y Silvaa acaba de teer a su primer hijo. Es ua iña llamada Luciaa. Adrés ese mismo día abre ua cueta para Luciaa co la catidad de $3 000,000.00. Qué

Más detalles

3.5 Factores y Coeficientes de Forma

3.5 Factores y Coeficientes de Forma Autoes: Patco Covalá Vea Jame eáez Palma 3.5 Factoes y Coecetes e Foma A es el slo XIX, Towa esaolla la ea e los actoes e oma como ua espuesta a las cultaes suas el uso e los sólos e evolucó. La ea e Towa

Más detalles

TEMA 3.- OPERACIÓN FINANCIERA

TEMA 3.- OPERACIÓN FINANCIERA . DEFINICIÓN Y CLASIFICACIÓN. TEMA 3.- OPEACIÓN FINANCIEA Se deomia operació fiaciera a todo itercambio o simultáeo de capitales fiacieros pactado etre dos agetes, siempre que se verifique la equivalecia,

Más detalles

CESMA BUSINESS SCHOOL

CESMA BUSINESS SCHOOL CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 4 RENTAS y MÉTODOS DE AMORTIZACIÓN Javer Blbao García 1 1.- Introduccón Defncón: Conjunto de captales con vencmentos equdstantes de tempo. Para que exsta

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

Capitalización, actualización y equivalencia financiera en capitalización compuesta

Capitalización, actualización y equivalencia financiera en capitalización compuesta Captalzacó, actualzacó y equvaleca facera e captalzacó compueta 5 E eta Udad aprederá a: 2 3 4 5 Decrbr lo efecto eecale de la captalzacó compueta. Reolver problema facero e captalzacó compueta. Dferecar

Más detalles

EJERCICIOS REPASO I. Profesor: Juan Antonio González Díaz. Departamento Métodos Cuantitativos Universidad Pablo de Olavide

EJERCICIOS REPASO I. Profesor: Juan Antonio González Díaz. Departamento Métodos Cuantitativos Universidad Pablo de Olavide EJERCICIOS REPASO I Profesor: Juan Antono González Díaz Departamento Métodos Cuanttatvos Unversdad Pablo de Olavde 1 EJERCICIO 1: Un nversor se plantea realzar varas operacones de las que desea obtener

Más detalles

Años I0 t (base 1992 = 100)

Años I0 t (base 1992 = 100) Esadísca y Meodología de la vesgacó Dada cualquer varable de la que coocemos los valores referdos a dsos perodos emporales, eedemos por úmero ídce de esa varable e dchos perodos el resulado de dvdr los

Más detalles

Bloque 4. Cálculo Tema 2 límites Ejercicios resueltos

Bloque 4. Cálculo Tema 2 límites Ejercicios resueltos Bloque 4. Cálculo Tema límites Ejercicios resueltos 4.-1 Resolver los siguietes límites: 1 5 1 a) ; b) ; c) ; 1 1 5 5 h d) ; e) ; f) 0 44 h0 h 1 0 a) idetermiació de la forma 1. Para evitarla, 1 0 descompoemos

Más detalles

Tema 5. DIAGONALIZACIÓN DE MATRICES

Tema 5. DIAGONALIZACIÓN DE MATRICES José Maía Maíe Mediao Tema DGONLZCÓN DE MTRCES oducció Poecia de ua mai Sea Supogamos que se desea calcula : 7 7 8 8 Deemia ua egla paa o esula imediao Compobemos, aes de segui adelae, que MDM, siedo M

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

Transformación de Park o D-Q

Transformación de Park o D-Q Apénce B ransformacón e Park o D-Q B.. Expresón e la matrz e transformacón La transformacón e Park o D-Q conerte las componentes 'abc' el sstema trfásco a otro sstema e referenca 'q'. El objeto e la transformacón

Más detalles

Un forward sobre commodities como el oro sufre una pequeña variación ya que se incluye la tasa de interés del oro (lease rate) con la variable l

Un forward sobre commodities como el oro sufre una pequeña variación ya que se incluye la tasa de interés del oro (lease rate) con la variable l El Forward U corao fuuro o a plazo, s odo aqul cuya lqudacó o slm dfr hasa ua fcha posror spulada l msmo, s dcr s dos pas acurda hacr la rasaccó hasa u prodo fuuro dígas por jmplo 6 mss, so s u corao forward.

Más detalles

1.1 INTRODUCCION & NOTACION

1.1 INTRODUCCION & NOTACION 1. SIMULACIÓN DE SISEMAS DE COLAS Jorge Eduardo Ortz rvño Profesor Asocado Departameto de Igeería de Sstemas e Idustral Uversdad Nacoal de Colomba jeortzt@ual.edu.co 1.1 INRODUCCION & NOACION Clete Servdor

Más detalles

ÁLGEBRA II (LSI PI) VALORES Y VECTORES PROPIOS UNIDAD Nº 6. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO

ÁLGEBRA II (LSI PI) VALORES Y VECTORES PROPIOS UNIDAD Nº 6. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO 6 ÁLGEBRA II (LSI PI) UNIDAD Nº 6 VALORES Y VECTORES PROPIOS Facultad de Cecas Exactas y Tecologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO aa Error! No hay texto co el estlo especfcado e el documeto.

Más detalles

Se entiende por sistema de fuerzas a un conjunto de fuerzas como se indica

Se entiende por sistema de fuerzas a un conjunto de fuerzas como se indica CDENADAS VECTIALES DE LS SISTEAS DE FUEZAS Se etede po sstema de fuezas a u cojuto de fuezas como se dca La esultate geeal del sstema se obtee sumado los vectoes equpoletes de cada ua de las compoetes

Más detalles

RIESGO DE INTERÉS DE LAS OPERACIONES ACTUARIALES CLÁSICAS: UNA VALORACIÓN A TRAVÉS DE LA DURACIÓN

RIESGO DE INTERÉS DE LAS OPERACIONES ACTUARIALES CLÁSICAS: UNA VALORACIÓN A TRAVÉS DE LA DURACIÓN RIEGO ITERÉ A OPERACIOE ACTUARIAE CÁICA: UA VAORACIÓ A TRAVÉ A URACIÓ J. Iñak e a Peña Eeba Iuo de Eudo Facero-Acuarale Uerdad del Paí Vaco REUE E el reee rabajo o rooemo realzar u efoque acuaral a la

Más detalles

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D PROBEMAS E IRUITOS ON TRANSISTORES Problema : eermnar los punos de funconameno de los dsposvos semconducores de los sguenes crcuos: +2V +2V +2V β= β= K β= β= (a) (b) (c) (d) Problema 2: eermnar el puno

Más detalles

METODOLOGÍA ÍNDICE DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA, GAS POR CAÑERÍA Y AGUA POTABLE (IDEGA) (Preliminar)

METODOLOGÍA ÍNDICE DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA, GAS POR CAÑERÍA Y AGUA POTABLE (IDEGA) (Preliminar) MEODOLOGÍA ÍNDCE DE DSBUCÓN DE ENEGÍA ELÉCCA, GAS PO CAÑEÍA Y AGUA POABLE (DEGA) (Prelar) SUBDECCÓN ÉCNCA SUBDECCÓN DE OPEACONES Saago, 26 de Dcebre de 2007 CHDA/GGM/GMA/VM ÍNDCE. roduccó...3 2. Marco

Más detalles

2. Calcular el interés que obtendremos al invertir 6.000 euros al 4% simple durante 2 años. Solución: 480 euros

2. Calcular el interés que obtendremos al invertir 6.000 euros al 4% simple durante 2 años. Solución: 480 euros . alcular el motate que obtedremos al captalzar 5. euros al 5% durate días (año cvl y comercal). Solucó: 5., euros (cvl); 5.,5 euros (comercal). 5. o ' 5,5 5,8 5,5 ' 5. 5.,5) 5,5) 5., 5.,5. alcular el

Más detalles

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC 9. IUITOS DE SEGUNDO ODEN Y 9.. INTODUIÓN En el capíulo aneror mos como los crcuos ressos con capacancas o los crcuos ressos con nducancas enen arables que son calculadas medane ecuacones dferencales de

Más detalles

Estadística de Precios de Vivienda

Estadística de Precios de Vivienda Esadísca de recos de Vvenda Meodología Subdreccón General de Esadíscas Madrd, febrero de 2012 Índce 1 Inroduccón 2 Objevos 3 Ámbos de la esadísca 3.1 Ámbo poblaconal 3.2 Ámbo geográfco 3.3 Ámbo emporal

Más detalles

METODOLOGÍA DE CÁLCULO DE LAS TASAS DE INTERÉS PROMEDIO

METODOLOGÍA DE CÁLCULO DE LAS TASAS DE INTERÉS PROMEDIO METODOLOGÍA DE CÁLCULO DE LAS TASAS DE INTERÉS PROMEDIO Nota: A partr del de julo de 200, las empresas reporta a la SBS formacó más segmetada de las tasas de terés promedo de los crédtos destados a facar

Más detalles

Valor de Rescate. Elementos Actuariales para su Determinación Por: Pedro Aguilar Beltrán. Octubre de 2008

Valor de Rescate. Elementos Actuariales para su Determinación Por: Pedro Aguilar Beltrán. Octubre de 2008 alor de escae Elemeos Acuariales ara su Deermiació Por: Pedro Aguilar Belrá Ocubre de 28 El alor de rescae es u coceo que se refiere al moo que le oorgará la aseguradora al asegurado o beeficiario, e caso

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3 Estadística y sus aplicacioes e Ciecias Sociales Práctico 4 - Solució Curso 016 Ejercicio 1 5! 1) Como se trata de muestreo si reposició, se tiee C 5 3 3!! muestras de tamaño =3. ) Distribució muestral

Más detalles

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS. Prof. J.L.Cotto

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS. Prof. J.L.Cotto UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS MAEC 2140: Méodos Cuaiaivos Prof. J.L.Coo DISCUSION Y EJEMPLOS SOBRE EL TEMA FUNCIONES EXPONENCIALS El valor del diero

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

METODOLOGÍA ÍNDICE DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA, GAS POR CAÑERÍA Y AGUA POTABLE (IDEGA) (Preeliminar)

METODOLOGÍA ÍNDICE DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA, GAS POR CAÑERÍA Y AGUA POTABLE (IDEGA) (Preeliminar) MEODOLOGÍA ÍNDCE DE DSBUCÓN DE ENEGÍA ELÉCCA, GAS PO CAÑEÍA Y AGUA POABLE (DEGA) (Preelmar) SUBDECCÓN ÉCNCA SUBDECCÓN DE OPEACONES Saago, 26 de Dcembre de 2007 CHDA/GGM/GMA/VM ÍNDCE Págas. roduccó 3 2.

Más detalles

Matemáticas Financieras Material recopilado por El Prof. Enrique Mateus Nieves. Financial math.

Matemáticas Financieras Material recopilado por El Prof. Enrique Mateus Nieves. Financial math. Matemáticas Fiacieras Material recopilado por El Prof. Erique Mateus Nieves Fiacial math. 2.10 DESCUENO El descueto es ua operació de crédito que se realiza ormalmete e el sector bacario, y cosiste e que

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

Números complejos. Números complejos. Las tribulaciones del estudiante Törless LITERATURA Y MATEMÁTICAS

Números complejos. Números complejos. Las tribulaciones del estudiante Törless LITERATURA Y MATEMÁTICAS Números complejos SOLUCIONARIO Números complejos LITERATURA Y MATEMÁTICAS Las trbulacoes del estudate Törless Dme, etedste be todo esto? Qué? Ese asuto de los úmeros magaros. Sí, o es ta dfícl. Lo úco

Más detalles

CRÉDITO AGRICOLA. Consideraciones del producto:

CRÉDITO AGRICOLA. Consideraciones del producto: Versón: CA-5.04. CRÉDITO AGRICOLA Consderacones del produco: Son crédos que se oorgan para fnancameno de acvdades agropecuaras y se basan en la capacdad de pago de los clenes y su hsoral credco. Se conceden

Más detalles

Duración y Convexidad I

Duración y Convexidad I Marí Herádez errao Modelo Aleravo Duracó y Covexdad I E ese maeral se presea de forma accesble, mas co u grado resposable de rgor maemáco, los cocepos de duracó y covexdad. e asume que el lecor cuea co

Más detalles

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden:

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden: Sisemas. Marices y Deermiaes.- Si y B so marices orogoales del mismo orde: a) 2 b) B c) B 2.- Dadas dos marices iversibles y B NO se verifica e geeral que: a) ( ) ( ) b) ( B) B c) 3.- Dadas las marices

Más detalles

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad.

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad. Propedades Estadístcas de los estmadores MICO Lealdad ) y Y Y Y Y = = = β Y Dado que la = 0 etoces β =.) S defmos el poderador k =, co las propedades sguetes: a) No estocástco b) k = 0 c) k = k d) = kx

Más detalles

CAPÍTULO 3 MARCO TEÓRICO. A lo largo de este capítulo se explican los conceptos básicos que se debieron tener y

CAPÍTULO 3 MARCO TEÓRICO. A lo largo de este capítulo se explican los conceptos básicos que se debieron tener y Capíulo 3 Marco eórico CAPÍTULO 3 MARCO TEÓRICO A lo largo de ese capíulo se explica los cocepos básicos que se debiero eer y cosiderar para la elaboració de la clasificació de maerias primas, los modelos

Más detalles

q q q q q q n r r r qq k r q q q q

q q q q q q n r r r qq k r q q q q urso: FISIA II B 30 00 I Profesor: JOAQIN SALEDO jsalcedo@u.edu.pe Eergía potecal electrostátca. S traemos ua carga desde ua dstaca fta el trabajo ecesaro es ulo. 0 trate ua fumadta, grats,, te vto S luego

Más detalles

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 14 Capitalización compuesta. 23 Descuento comercial simple

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 14 Capitalización compuesta. 23 Descuento comercial simple MÓDULO : FUNDAMENTOS DE LA INVERSIÓN Ídce Coceptos báscos de la versó 2 Cocepto de Captal Facero 3 Comparacó de captales faceros 3 Ley facera Captalzacó 8 Captalzacó smple 4 Captalzacó compuesta Descueto

Más detalles

4º MEDIO: MEDIDAS DE POSICIÓN

4º MEDIO: MEDIDAS DE POSICIÓN 4º MEDIO: MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co

Más detalles

Metodología Índice de Precios de Edificaciones Nuevas

Metodología Índice de Precios de Edificaciones Nuevas Meodología Ídce de recos de Edfcacoes Nuevas COLECCIÓN DOCUMENTOS - ACTUALIZACIÓN 29 Núm. 66 DEARTAMENTO ADMINISTRATIVO NACIONAL DE ESTADÍSTICA HÉCTOR MALDONADO GÓMEZ Drecor CARLOS EDUARDO SEÚLVEDA RICO

Más detalles

7. CAPACITANCIA E INDUCTANCIA

7. CAPACITANCIA E INDUCTANCIA 7. APAITANIA E INDUTANIA 7.. INTRODUIÓN El elemeno paso e os ermnales que hemos so hasa el momeno, eso es la Ressenca, presena un comporameno lneal enre su olaje y correne. Eso prouce ecuacones algebracas

Más detalles

CIRCUITOS CON DIODOS.

CIRCUITOS CON DIODOS. ema 3. Crcus cn dds. ema 3 CCUOS CON OOS. 1.- plcacón elemenal..- Crcus recradres (lmadres)..1.- eslucón de un crcu recradr ulzand las cuar aprxmacnes del dd..1.1.- eslucón ulzand la prmera aprxmacón..1..-

Más detalles

RESUMEN. Códigos de campo JEL: F0 C6 SUMMARY

RESUMEN. Códigos de campo JEL: F0 C6 SUMMARY RESUMEN El ema raado e ese rabao se emarca dero del esquema de Cueas Saéle del Tursmo. Maemácamee se desarrolla u ssema de ecuacoes e dferecas. Se pare de la ecuacó macroecoómca fudameal e equlbro para

Más detalles

Tabla de Contenidos. 1 Conceptos básicos sobre regresión y correlación... 1. 2 Caracterización de rodales... 22

Tabla de Contenidos. 1 Conceptos básicos sobre regresión y correlación... 1. 2 Caracterización de rodales... 22 Tala de Coedo Preeacó... Cocepo áco ore regreó correlacó.... Supueo áco de regreó.... Lo upueo de regreó e Dedromería... 6. Emacó de lo parámero del modelo de regreó leal mple... 7.. El méodo de mímo cuadrado

Más detalles