UNIDAD 4: MEDIDAS DESCRIPTIVAS: Medidas de dispersión

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIDAD 4: MEDIDAS DESCRIPTIVAS: Medidas de dispersión"

Transcripción

1 UNIDAD 4: MEDIDAS DESCRIPTIVAS: Medidas de dispersión Para el desarrollo de este capítulo, vaya revisando conjuntamente con esta guía el capítulo 3 del texto básico, págs y capítulo 4 en las páginas 99 a INTRODUCCIÓN Una vez que se han analizado las medidas que permiten determinar características puntuales sobre un conjunto de datos y dependiendo de las necesidades del investigador, es preciso también abordar el estudio de otras medidas que nos permiten llegar a mayores conclusiones al respecto. Estas medidas se denominan medidas de dispersión, ya que podemos identificar la variación o la distancia existente entre cada valor con respecto a aquel que nos sirve como referencia. Las medidas de variación son de gran utilidad porque a través de ellas se puede además llegar a tomar decisiones adecuadas porque si bien las medidas de tendencia central nos permiten tener un valor referencial, a través de las medidas de dispersión podemos llegar a conocer la variabilidad del conjunto de datos. Veamos entonces cuáles son estas medidas y en qué consiste cada una de ellas MEDIDAS DE DISPERSIÓN Qué entiende por dispersión?, vamos a leer el texto en la página 71 y determinemos además la importancia de este tipo de medidas en el tratamiento de datos. Ahora puede usted expresar su propia definición sobre lo que es una medida de dispersión. Según la necesidad de la investigación, encontramos varios tipos de medidas que tienen su aplicabilidad específica, las mismas que, entre las de mayor uso, se pueden resumir de la siguiente manera, complete usted las medidas que faltan: igual (http://creativecommons.org/licenses/by nc sa/3.0/ec/).

2 Amplitud de variación o rango Desviación Media Medidas de dispersión Varianza Desviación Típica o estándar Cuartiles, deciles y percentiles Desarrollemos ahora cada una de estas medidas AMPLITUD DE VARIACIÓN Este es un concepto que ya se lo abordó cuando trabajamos las distribuciones de frecuencia, recordemos que el rango o también conocidoo como recorrido o amplitud de variación, nos ayudaa a conocer el número de puestos o lugares que recorre la variable desde el menor valor hasta el mayor. Después de la lectura sobre el tema en el texto, usted puede expresar su propia definición. Al rango lo determinamos a través de la diferencia entre el valor máximo y el valor mínimo: Y lo que nos explica es el número de puestoss que recorre la variable desde el valor menor hastaa el valor mayor DESVIACIÓN MEDIA Definición: Usted que la puede enunciar su propia definición después de la lectura en el texto básico, y puede decir desviación media, es:. igual (http://creativecommons.org/licenses/by nc sa/3.0/ec/).

3 Características: La desviación media posee ciertas características que la diferencian de las demás. Estas características las podemos llegar a escribir en las siguientes líneas, pues, como toda medida tiene sus ventajas y tiene también sus limitaciones. Citemos ahora las ventajas e inconvenientes que hemos podido detectar después de haber leído los temas (complete las que faltan): Considera todos los valores del conjunto a diferencia del rango que solamente toma los dos valores extremos Toma en cuenta los valores absolutos de las diferencias entre cada uno de los valores registrados y la media aritmética Formas de cálculo: El cálculo de esta medida no reviste mayor dificultad, pues no es más que determinar el promedio de las diferencias entre cada valor con respecto a la media aritmética, pero cada una de estas diferencias se encuentra expresada en términos o valores absolutos 1. Si se trata de valores no agrupados o simples: DM X X n Ejemplo: Si tenemos los siguientes datos: 4, 6, 3, 6, 7, 4, 5, 8, 4, 5 Determinamos primero la media aritmética, usted puede calcularla y obtendrá que la misma es: 5,2 1 Un valor absoluto es aquel que no considera el signo de la operación matemático y se lo denota entre, por ejemplo el 3 en valor absoluto será 3 = 3. igual (http://creativecommons.org/licenses/by nc sa/3.0/ec/).

4 Luego identificamos las diferencias en términos absolutos entre cada valor con respecto a la media de la siguiente manera: igual (http://creativecommons.org/licenses/by nc sa/3.0/ec/).

5 4 5,2 = 1,2 5 5,2 = 0,2 8 5,2 = 2,8 4 5,2 = 1,2 5 5,2 = 0,2 4 5,2 = 1,2 6 5,2 = 0,8 3 5,2 = 2,2 6 5,2 = 0,8 7 5,2 = 1,8 Finalmente aplicamos la fórmula correspondiente y tenemos el valor: DM 12,4 10 DM 1,24 Este resultado significa entonces que, en promedio, la distancia entre cada uno de los valores con respecto a la media aritmética es de 1,24. Si se trata de datos agrupados en una distribución de frecuencias, debemos considerar las frecuencias que afectan a cada una de las marcas de clase, por lo que la fórmula quedaría definida de la siguiente manera: Desarrollemos un ejemplo: DM X i X n i n Vamos a tomar los datos del ejercicio que hemos venido trabajando anteriormente:

6 Número de solicitudes Frecuencia absoluta (n i ) Marcas de clase (Xi) ,16 139, ,84 9, ,84 47, ,84 38,52 Diferencia entre la marca de clase y la media aritmética que, como sabemos, es 8, ,84 18, ,84 24,84 Total ,64 DM 278,64 50 DM 5,57 Interprete ahora este resultado. Puede revisar adicionalmente el ejemplo resuelto que se encuentra en el texto básico VARIANZA Y DESVIACIÓN ESTÁNDAR DEFINICIÓN: Remítase ahora a la página 76 del texto básico, allí puede encontrar las definiciones de estas dos medidas de dispersión que son complementarias, pues partimos de la varianza y luego llegamos a la desviación típica o estándar. Con la lectura realizada, ahora establezca su propia definición respecto a la varianza y a la desviación típica, escríbalas en forma resumida en su cuaderno de trabajo CARACTERÍSTICAS: Después de haber definido estas medidas, también se pueden establecer las características de cada una de ellas y comparar con la desviación media.

7 Puede enumerar estas características? Inténtelo luego de la lectura. Coincidirá usted conmigo, que a diferencia de la desviación media, en donde se toman en cuenta las diferencias absolutas entre cada valor con respecto a la media aritmética, en la desviación típica o estándar no hace falta tomar los valores absolutos sino que se parte de la determinación de la varianza para llegar a la desviación típica. También coincidiremos si usted indica que una de las dificultades para la interpretación del valor obtenido como varianza es que las unidades de medida de la variable vendrían expresadas en forma cuadrática, y que por ello se considera a la desviación típica o estándar. Pasemos ahora a determinar las formas de cálculo de estas medidas FORMAS DE CÁLCULO: Revise en el texto básico este acápite, allí va a encontrar que hacemos una diferenciación en el cálculo cuando se trata de trabajar una muestra y una población. También consideraremos el caso de trabajar con datos no agrupados y datos agrupados. Identifique los pasos que se sugieren para calcular el valor de la varianza, puede completarlos? 1. Determine la media aritmética Divida la suma de las diferencias elevadas al cuadrado para el número de datos. Existe una diferencia cuando se tratan datos poblacionales y datos muestrales, como denominador en un caso se utiliza el total N y en el otro caso se utiliza el denominador (n 1), con la lectura puede conocer el porqué de esta situación. Cuando se trata de calcular cualquier medida, es necesario realizar ejercicios de aplicación. Observe los ejemplos y la solución que se han desarrollado en el texto en las páginas 77 y 79 y practique con los ejercicios propuestos de las páginas 78 y COEFICIENTE DE VARIACIÓN: Este tema no se encuentra desarrollado específicamente en el texto, por lo que vamos a abordarlo aquí. Cuando se requiere hacer comparaciones entre dos o más conjuntos de datos, es útil hacerlo a través del coeficiente de variación ya que no interesa aquí la unidad de medida, pues es adimensional.

8 Para su cálculo se debe utilizar la desviación típica o estándar y la media aritmética de cada uno de los conjuntos de datos y lo expresamos en forma porcentual. Trabajando con la muestra o la población tendremos las siguientes fórmulas a aplicar: 100 Coeficiente de variación de la muestra 100 Coeficiente de variación de la población Revisemos su aplicación a través de un ejemplo: Un estudio sobre el monto de bonos pagados y los años de servicio de varios empleados, dio como resultado los siguientes datos estadísticos: la media de los bonos pagados fue de $200 y la desviación estándar fue de $40. La media del número de años de servicio fue 20 años y la desviación estándar 2 años. Compare las dispersiones relativas de las dos distribuciones empleando el coeficiente de variación. Como observamos, tenemos dos grupos de datos: los primeros expresados en dólares y los segundos expresados en años. Necesitamos comparar estos dos grupos, entonces procedemos a aplicar el coeficiente de variación. Para los bonos Para los años de servicio s s CV X * 100 CV X * 100 CV * 100 CV 20% CV 2 20 * 100 CV 10% En este caso podemos observar que existe mayor dispersión relativa con respecto a la media aritmética en los bonos pagados en comparación con el conjunto de datos de los años de servicio ASIMETRÍA: Otra de las medidas que permiten caracterizar un conjunto de datos es la determinación del tipo de asimetría o sesgo que tiene el conjunto de datos, de manera que con ello podemos determinar si la tendencia es a distribuirse de manera similar o de pronto la mayoría de los datos se ubican en los valores mayores o menores.

9 Este tema se encuentra desarrollado en el texto con el título SESGO, a partir de la página 113. Allí encuentra los tipos de sesgo y la forma de calcularlo. Podemos encontrar tres tipos de conjuntos de datos: Simétricos, aquellos que como su nombre lo indica se encuentran distribuidos simétricamente, es decir existe igual número de datos a partir de un valor central. Si comparamos los valores de la media, mediana y moda, veremos que es igual. Sesgados positivamente, o denominados también sesgados a la derecha, son aquellos que se encuentran más acumulados hacia los valores mayores, es decir en este caso la media aritmética es menor a la mediana y menor a la moda. Sesgados negativamente, o sesgados a la izquierda, son aquellos que se encuentran acumulados en mayor cantidad hacia los valores menores. En este caso al comparar la media es mayor a la mediana y mayor a la moda. Para determinar la magnitud de la simetría en un conjunto de datos, se lo puede hacer a través del cálculo de: Coeficiente de sesgo de Pearson Coeficiente de sesgo calculado con software. Para conocer las fórmulas que se deben aplicar, remítase al texto en su capítulo 4, página 113 y con la lectura, determine cuáles son las características y aplicaciones que se realiza a cada uno de ellos. Puede usted identificar además que en el caso del coeficiente de sesgo de Pearson, sus resultados van a estar entre 3 y 3, de manera que con ello podemos llegar a identificar el tipo de sesgo que tiene el conjunto de datos. Para reafirmar el uso de estas medidas examine el ejemplo resuelto que se encuentra en el texto al finalizar este tema OTRAS MEDIDAS DE DISPERSIÓN: Existen otras medidas que nos permiten también identificar la posición de determinados valores, entre ellas encontramos a los cuartiles, los deciles y los percentiles. Volvemos al texto y usted puede encontrar el desarrollo de estas medidas a partir de la página CUARTILES Los cuartiles, por definición, serían aquellas medidas que dividen en cuatro partes iguales al conjunto de datos y por ello encontraremos 3 cuartiles. Gráficamente podríamos representar de la siguiente manera esta definición: X min Q 1 Q 2 Q 3 X máx

10 El cálculo de estas medidas lleva el mismo procedimiento que para la mediana, tanto para datos agrupados como para datos no agrupados, la única diferencia es que en lugar de dividir el conjunto de datos para 2, ahora lo dividimos para 4. Cómo las vamos a interpretar? Vamos a decir que: Q 1, nos indica que el 25% de datos se encuentran por debajo de ese valor y que el 75% supera dicho valor. Q 2, al igual que el valor de la mediana, es el valor que se encuentra ocupando la posición central y que por tanto por debajo y sobre él se encuentra el 50% de datos. Q 3, significa que este valor supera al 75% de datos analizados y es superado por el 25% restante. Revisemos ahora, lo concerniente a los deciles DECILES Llevando el mismo sentido que la medida anteriormente analizada, los deciles son aquellos que dividen al conjunto de datos en 10 partes iguales y que por tanto tendremos 9 deciles. Cada uno de los deciles, corresponde a la décima parte correspondiente. Su cálculo será similar a los cuartiles, con la diferencia que al dividir al conjunto de datos para determinar la posición del valor ya no dividimos para 2 ni para 4 sino que ahora lo hacemos para 10. Si tenemos por ejemplo el decil 1 (D 1 ), significa que es el valor que supera a la décima parte de los datos y es superado por las nueve décimas partes del conjunto de datos. Si calculamos el decil 7 (D 7 ), significará que es aquel valor que supera las siete décimas (7/10) partes del conjunto de datos y es superado por las restantes tres décimas (3/10) partes de dicho conjunto. Pasemos a revisar ahora los percentiles, que algunos autores también los denominan como centiles PERCENTILES Seguimos con los mismos procedimientos anteriores y ahora dividimos el conjunto en 100 partes iguales de manera que tendremos 99 percentiles.

11 Este tipo de medida nos permite entonces llegar a identificar un valor en una posición que sea de nuestro interés como investigadores. Generalmente cuando se realizan análisis en el ámbito económico sobre la distribución del ingreso se utilizan estas medidas. Para calcular y ejercitar sobre estas medidas le recomiendo primero revisar el ejercicio resuelto y también desarrollar los otros ejercicios que se encuentran propuestos. Concluyendo con este tema, como usted ha observado, llevamos el mismo procedimiento para calcular estas medidas conjuntamente con el cálculo de la mediana, de ahí que podemos establecer algunas medidas que se relacionan, por ejemplo: D1 = P10 D2 = P20 D3 = P30 Q1 = P25 D4 = P40 D5 = P50 = Q2 = Me Puede seguir estableciendo las demás relaciones? D6, D7, D8, D9, Q3 Muy bien, ahora que ha cumplido con estas relaciones usted puede comprender que es indistinto si queremos calcular el D9 y el P90. Será el mismo resultado. O, si debemos calcular el P70, será igual al D7, y así sucesivamente. En el texto se encuentran desarrollados otros temas que puede usted revisarlos aunque no se encuentran contemplados en nuestro plan de estudio, sin embargo le van a aportar conocimientos que le pueden ser de utilidad posterior.

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO LICENCIATURA EN TURISMO UNIDAD DE APRENDIZAJE: ESTADISTICA TEMA 1.5 : ESTADISTICA DESCRIPTIVA M. EN C. LUIS ENRIQUE KU MOO FECHA:

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA Medidas de tendencia central y de dispersión Giorgina Piani Zuleika Ferre 1. Tendencia Central Son un conjunto de medidas estadísticas que determinan un único valor que define el

Más detalles

Z i

Z i Medidas de Variabilidad y Posición. Jesús Eduardo Pulido Guatire, marzo 010 Cuando trabajamos el aspecto denominado Medidas de Tendencia Central se observó que tanto la media como la mediana y la moda

Más detalles

Tema 3: Estadística Descriptiva

Tema 3: Estadística Descriptiva Tema 3: Estadística Descriptiva Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 3: Estadística Descriptiva Curso 2008-2009 1 / 27 Índice

Más detalles

MEDIDAS DE CENTRALIZACIÓN, POSICIÓN Y DISPERSIÓN. Matemáticas PAI 5 (4ºESO)

MEDIDAS DE CENTRALIZACIÓN, POSICIÓN Y DISPERSIÓN. Matemáticas PAI 5 (4ºESO) CENTRALIZACIÓN, POSICIÓN Y DISPERSIÓN Matemáticas PAI 5 (4ºESO) Ejercicio 2 Actividad de aula 3 Medidas estadísticas Recupera la tabla de frecuencias que realizaste en el ejercicio 2 de la actividad de

Más detalles

Guía de Matemática Cuarto Medio

Guía de Matemática Cuarto Medio Guía de Matemática Cuarto Medio Aprendizaje Esperado: 1. Conocen distintas maneras de organizar y presentar información incluyendo el cálculo de algunos indicadores estadísticos, la elaboración de tablas

Más detalles

II. ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS

II. ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS UNIVERSIDAD INTERAMERICANA PARA EL DESARROLLO ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS Contenido II. ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS II. Tablas de frecuencia II. Gráficos: histograma, ojiva, columna,

Más detalles

TEMA IV PERCENTIL Y ESTADIGRAFOS DE POSICION

TEMA IV PERCENTIL Y ESTADIGRAFOS DE POSICION TEMA IV PERCENTIL Y ESTADIGRAFOS DE POSICION 1. Percentiles, cuartiles y deciies. 2. Estadígrafos de Posición. 3. Sesgo y curtosis o de pastel. Pictogramas. OBJETIVOS DE UNIDAD GENERALES. Que el futuro

Más detalles

ESTADÍSTICA CON EXCEL

ESTADÍSTICA CON EXCEL ESTADÍSTICA CON EXCEL 1. INTRODUCCIÓN La estadística es la rama de las matemáticas que se dedica al análisis e interpretación de series de datos, generando unos resultados que se utilizan básicamente en

Más detalles

Estadística para el análisis de los Mercados S2_A1.1_LECV1

Estadística para el análisis de los Mercados S2_A1.1_LECV1 5. Parámetros estadísticos. 5.1. Parámetros de centralización. Estos parámetros nos indican en torno a que puntos se encuentran los valores de la variable cuantitativa en estudio. Es la forma de representar

Más detalles

Módulo de Estadística

Módulo de Estadística Módulo de Estadística Tema 2: Estadística descriptiva Tema 2: Estadísticos 1 Medidas La finalidad de las medidas de posición o tendencia central (centralización) es encontrar unos valores que sinteticen

Más detalles

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 Preg. 1. Para comparar la variabilidad relativa de la tensión arterial diastólica y el nivel de colesterol en sangre de una serie de individuos, utilizamos

Más detalles

UNIDAD 7 Medidas de dispersión

UNIDAD 7 Medidas de dispersión UNIDAD 7 Medidas de dispersión UNIDAD 7 MEDIDAS DE DISPERSIÓN Al calcular un promedio, por ejemplo la media aritmética no sabemos su representatividad para ese conjunto de datos. La información suministrada

Más detalles

Medidas de dispersión

Medidas de dispersión Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia

Más detalles

Tema 2 Estadística Descriptiva

Tema 2 Estadística Descriptiva Estadística Descriptiva 1 Tipo de Variables 2 Tipo de variables La base de datos anterior contiene la información de 36 alumnos de un curso de Estadística de la Universidad de Talca. En esta base de datos

Más detalles

MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN. Lic. Esperanza García Cribilleros

MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN. Lic. Esperanza García Cribilleros MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN Lic. Esperanza García Cribilleros ANÁLISIS EXPLORATORIO DE DATOS Diagrama de tallo y hojas Diagrama de caja DESCRIPCIÓN N DE LOS DATOS Tablas

Más detalles

Medidas de variabilidad (dispersión)

Medidas de variabilidad (dispersión) Medidas de posición Las medidas de posición nos facilitan información sobre la serie de datos que estamos analizando. Estas medidas permiten conocer diversas características de esta serie de datos. Las

Más detalles

Medidas de centralización

Medidas de centralización 1 1. Medidas de centralización Medidas de centralización Hemos visto cómo el estudio del conjunto de los datos mediante la estadística permite realizar representaciones gráficas, que informan sobre ese

Más detalles

La medición de la desigualdad económica

La medición de la desigualdad económica La medición de la desigualdad económica La medida de desigualdad económica mas comúnmente utilizada es la distribución del ingreso percibido por las personas durante un periodo determinado de tiempo generalmente

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMERICA) MEDIDAS DE TENDENCIA CENTRAL 20/05/2008 Ing. SEMS 2.1 INTRODUCCIÓN En el capítulo anterior estudiamos de qué manera los

Más detalles

Estadística descriptiva y métodos diagnósticos

Estadística descriptiva y métodos diagnósticos 2.2.1. Estadística descriptiva y métodos diagnósticos Dra. Ana Dorado Díaz Consejería de Sanidad Diplomado en Salud Pública Diplomado en Salud Pública - 2 Objetivos específicos 1. El alumno aprenderá a

Más detalles

Medidas de Tendencia Central.

Medidas de Tendencia Central. Medidas de Tendencia Central www.jmontenegro.wordpress.com MEDIDAS DE RESUMEN MDR MEDIDAS DE TENDENCIA CENTRAL MEDIA MEDIANA MODA CUARTILES,ETC. MEDIDAS DE DISPERSIÓN RANGO DESVÍO EST. VARIANZA COEFIC.

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

INSTITUCIÓN EDUCATIVA NUESTRA SEÑORA DEL PALMAR SEDE LICEO FEMENINO GUÍA DE ESTADÍSTICA GRADO DÉCIMO

INSTITUCIÓN EDUCATIVA NUESTRA SEÑORA DEL PALMAR SEDE LICEO FEMENINO GUÍA DE ESTADÍSTICA GRADO DÉCIMO GUÍA DE ESTADÍSTICA GRADO DÉCIMO MEDIDAS DE POSICIÓN Las medidas de posición son medidas que permiten dividir el conjunto de datos en partes porcentuales. Estas medidas se usan para describir la posición

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Curso de nivelación Estadística y Matemática Primera clase: Estadística Descriptiva Programa Técnico en Riesgo, 2016 Agenda 1 Tipos de variables y niveles de medición 2 3 Tipos de variables Variables Cuantitativas

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Descriptiva Para Psicólogos (EST-225)

Más detalles

Medidas de posición para variables cuantitativas

Medidas de posición para variables cuantitativas Medidas de posición para variables cuantitativas Objetivos Que deberían saber al terminar esta clase: Qué es el valor mínimo y el máximo Qué es la moda o modo y como se interpreta Qué son los percentiles,

Más detalles

x i = n = 35 5 =7 MEDIDAS DE CENTRALIZACIÓN Media aritmética: variables cuantitativas , x 2 Datos no agrupados: x 1 ,...,x n x= x 1 +x

x i = n = 35 5 =7 MEDIDAS DE CENTRALIZACIÓN Media aritmética: variables cuantitativas , x 2 Datos no agrupados: x 1 ,...,x n x= x 1 +x MEDIDAS DE CENTRALIZACIÓN Media aritmética: variables cuantitativas Datos no agrupados: x 1, x 2,...,x n x= x 1 +x 2 +... x n n n i=1 = n Ejemplo: dados los valores: X = 1, 4, 16, 11, 3, 6, su media es

Más detalles

UNIDAD 5: INTRODUCCIÓN AL ESTUDIO DE LA PROBABILIDAD

UNIDAD 5: INTRODUCCIÓN AL ESTUDIO DE LA PROBABILIDAD UNIDAD 5: INTRODUCCIÓN AL ESTUDIO DE LA PROBABILIDAD Para el desarrollo de este capítulo, vaya revisando conjuntamente con esta guía el capítulo 5 del texto básico, págs.139 a la 170. 5.1. INTRODUCCIÓN

Más detalles

LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, M TENDENCIA CENTRAL

LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, M TENDENCIA CENTRAL PreUnAB LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, MEDIDAS DE TENDENCIA CENTRAL Clase # 26 Noviembre 2014 ESTADÍGRAFOS Concepto de estadígrafo Un estadígrafo, o estadístico, es un indicador que se calcula

Más detalles

MEDIDAS DE POSICIÓN. FUENTE: Gómez, Elementos de Estadística Descriptiva Levin & Rubin. Estadística para Administradores

MEDIDAS DE POSICIÓN. FUENTE: Gómez, Elementos de Estadística Descriptiva Levin & Rubin. Estadística para Administradores UNIVERSIDAD DE COSTA RICA ESCUELA DE ESTADÍSTICA Prof. Olman Ramírez Moreira MEDIDAS DE POSICIÓN FUENTE: Gómez, Elementos de Estadística Descriptiva Levin & Rubin. Estadística para Administradores 1 OBJETIVO

Más detalles

Tema 2: Estadísticos. Bioestadística. U. Málaga. Tema 2: Estadísticos 1

Tema 2: Estadísticos. Bioestadística. U. Málaga. Tema 2: Estadísticos 1 Bioestadística Tema 2: Estadísticos Tema 2: Estadísticos 1 Parámetros y estadísticos Parámetro: Es una cantidad numérica calculada sobre una población La altura media de los individuos de un país La idea

Más detalles

U.D.1: Análisis estadístico de una variable Consideraciones iniciales: Propuesta: 1.1 Distribución de frecuencias. Variables Cualitativas: Ejemplo

U.D.1: Análisis estadístico de una variable Consideraciones iniciales: Propuesta: 1.1 Distribución de frecuencias. Variables Cualitativas: Ejemplo U.D.1: Análisis estadístico de una variable Consideraciones iniciales: - Población: Es el conjunto de todos los elementos que cumplen una determinada característica. Ej.: Alumnos del colegio. - Individuo:

Más detalles

Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución.

Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. CONTENIDO: MEDIDAS DE DISPERSIÓN INDICADOR DE LOGRO: Determinarás y aplicarás, con perseverancia las medidas de dispersión para datos no agrupados y agrupados Guía de trabajo: Las medidas de dispersión

Más detalles

Fase 2. Estudio de mercado: ESTADÍSTICA

Fase 2. Estudio de mercado: ESTADÍSTICA 1. CONCEPTO DE ESTADÍSTICA. ESTADÍSTICA DESCRIPTIVA 2. 3. TABLA DE FRECUENCIAS 4. REPRESENTACIONES GRÁFICAS 5. TIPOS DE MEDIDAS: A. MEDIDAS DE POSICIÓN B. MEDIDAS DE DISPERSIÓN C. MEDIDAS DE FORMA 1 1.

Más detalles

Probabilidad y Estadística, EIC 311

Probabilidad y Estadística, EIC 311 Probabilidad y Estadística, EIC 311 Medida de resumen 1er Semestre 2016 1 / 105 , mediana y moda para datos no Una medida muy útil es la media aritmética de la muestra = Promedio. 2 / 105 , mediana y moda

Más detalles

ÁREAS DE LA ESTADÍSTICA

ÁREAS DE LA ESTADÍSTICA QUÉ ES LA ESTADÍSTICA? Es el arte de realizar inferencias y sacar conclusiones a partir de datos imperfectos. ÁREAS DE LA ESTADÍSTICA Diseño: Planeamiento y desarrollo de investigaciones Descripción: Resumen

Más detalles

Medidas de tendencia central

Medidas de tendencia central Medidas de tendencia central Medidas de tendencia central Medidas de Posición: son aquellos valores numéricos que nos permiten o bien dar alguna medida de tendencia central, dividiendo el recorrido de

Más detalles

4. Medidas de dispersión

4. Medidas de dispersión FUOC XP00/71004/00017 27 Medidas de dispersión 4. Medidas de dispersión Los cuartiles y la desviación estándar En el capítulo 3 hemos aprendido varias maneras de medir el centro de una distribución. Pero,

Más detalles

UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO ESCUELA PREPARATORIA TEXCOCO

UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO ESCUELA PREPARATORIA TEXCOCO UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO ESCUELA PREPARATORIA TEXCOCO MEDIDAS DE TENDENCIA CENTRAL Y DE DISPERSIÓN PARA DATOS NO AGRUPADOS MATERIAL DIDACTICO SOLO VISION ASIGNATURA QUE CORRESPONDE: ESTADISTICA

Más detalles

Medidas de tendencia central y dispersión

Medidas de tendencia central y dispersión Estadística Aplicada a la Investigación en Salud Medwave. Año XI, No. 3, Marzo 2011. Open Access, Creative Commons. Medidas de tendencia central y dispersión Autor: Fernando Quevedo Ricardi (1) Filiación:

Más detalles

GRUPO A GRUPO B Total = 225 Total = 250. Medidas de tendencia central.

GRUPO A GRUPO B Total = 225 Total = 250. Medidas de tendencia central. Medidas de dispersión o variabilidad Tema 5 Profesor Tevni Grajales G. A dos grupos diferentes de estudiantes se les preguntó cuánto deseaban pagar como cuotas de graduación. En ambos casos el promedio

Más detalles

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana.

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana. Medidas de tendencia central y variabilidada para datos agrupados Media (media aritmética) ( X ) Con anterioridad hablamos sobre la manera de determinar la media de la muestra. Si hay muchos valores u

Más detalles

ANÁLISIS DE DATOS UNIDIMENSIONALES

ANÁLISIS DE DATOS UNIDIMENSIONALES ANÁLISIS DE DATOS UNIDIMENSIONALES TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS MEDIDAS DE POSICIÓN MEDIDAS DE TENDENCIA CENTRAL MEDIA ARITMÉTICA OTRAS MEDIAS: GEOMÉTRICA.ARMÓNICA.MEDIA GENERAL MEDIANA

Más detalles

Estadística Inferencial. Estadística Descriptiva

Estadística Inferencial. Estadística Descriptiva INTRODUCCIÓN Estadística: Ciencia que trata sobre la teoría y aplicación de métodos para coleccionar, representar, resumir y analizar datos, así como realizar inferencias a partir de ellos. Recogida y

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva 1 Qué veremos 1. OBJECTIVOS DEL CURSO. DEFINICIONES IMPORTANTES 2. TIPOS DE VARIABLES 3 5 1. Estadísticos de tendencia central 2. Estadísticos de posición 3. Estadísticos de variabilidad/dispersión

Más detalles

Métodos Matemá-cos en la Ingeniería Tema 5. Estadís-ca descrip-va

Métodos Matemá-cos en la Ingeniería Tema 5. Estadís-ca descrip-va Métodos Matemá-cos en la Ingeniería Tema 5. Estadís-ca descrip-va Jesús Fernández Fernández Carmen María Sordo García DEPARTAMENTO DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN UNIVERSIDAD DE CANTABRIA

Más detalles

La desviación típica y otras medidas de dispersión

La desviación típica y otras medidas de dispersión La desviación típica y otras medidas de dispersión DISPERSIÓN O VARIACIÓN La dispersión o variación de los datos intenta dar una idea de cuan esparcidos se encuentran éstos. Hay varias medidas de tal dispersión,

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales

Curso de Estadística Aplicada a las Ciencias Sociales Curso de Estadística Aplicada a las Ciencias Sociales Tema 6. Descripción numérica (2) Capítulo 5 del manual Tema 6 Descripción numérica (2) Introducción 1. La mediana 2. Los cuartiles 3. El rango y el

Más detalles

UNIVERSIDAD ABIERTA PARA ADULTOS UAPA CARRERA LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS PROGRAMA DE LA ASIGNATURA ESTADÍSTICA I

UNIVERSIDAD ABIERTA PARA ADULTOS UAPA CARRERA LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS PROGRAMA DE LA ASIGNATURA ESTADÍSTICA I UNIVERSIDAD ABIERTA PARA ADULTOS UAPA CARRERA LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS PROGRAMA DE LA ASIGNATURA ESTADÍSTICA I CLAVE: MAT 131 ; PRE REQ.: MAT 111 ; No. CRED.: 4 I. PRESENTACIÓN: Este

Más detalles

Estadística descriptiva VARIABLES CUANTITATIVAS

Estadística descriptiva VARIABLES CUANTITATIVAS Estadística descriptiva VARIABLES CUANTITATIVAS DESCRIPTIVA Medidas de tendencia central Media Mediana Moda Medidas de dispersión Rango Varianza Desviación estándar Coeficiente de variación Cuantiles (

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Estadística descriptiva: problemas resueltos

Estadística descriptiva: problemas resueltos Estadística descriptiva: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es)

Más detalles

68 Bioestadística: Métodos y Aplicaciones. curtosis<0 curtosis=0 curtosis>0. Figura 2.10: Apuntamiento de distribuciones de frecuencias

68 Bioestadística: Métodos y Aplicaciones. curtosis<0 curtosis=0 curtosis>0. Figura 2.10: Apuntamiento de distribuciones de frecuencias 68 Bioestadística: Métodos y Aplicaciones curtosis0 Figura 2.10: Apuntamiento de distribuciones de frecuencias 2.6. Problemas Ejercicio 2.1. En el siguiente conjunto de números,

Más detalles

Relación 2: CARACTERÍSTICAS DE UNA DISTRIBUCIÓN DE FRECUENCIAS

Relación 2: CARACTERÍSTICAS DE UNA DISTRIBUCIÓN DE FRECUENCIAS INTRODUCCIÓN A LA ESTADÍSTICA Relación 2: CARACTERÍSTICAS DE UNA DISTRIBUCIÓN DE FRECUENCIAS 1.- Obtener las medias aritmética, geométrica, armónica para la siguiente distribución: SOL: 2,74; 2,544; 2,318

Más detalles

UNIDAD 6 Medidas de tendencia central

UNIDAD 6 Medidas de tendencia central UNIDAD Medidas de tendencia central UNIDAD MEDIDAS DE TENDENCIA CENTRAL = EJEMPLO. ó Al estudiar la información estadística de los histogramas y los polígonos de frecuencia, se puso en evidencia un significativo

Más detalles

Código: ESA-343. Horas Semanales: 4. Prelaciones: CAL-265

Código: ESA-343. Horas Semanales: 4. Prelaciones: CAL-265 INSTITUTO UNIVERSITARIO JESÚS OBRERO PROGRAMA DE ESTUDIO Unidad Curricular: Estadística I Carrera: Informática Semestre: Tercero Código: ESA-343 Horas Semanales: 4 Horas Teóricas: 2 Horas Prácticas: 2

Más detalles

Unidad Nº 3. Medidas de Dispersión

Unidad Nº 3. Medidas de Dispersión Unidad Nº 3 Medidas de Dispersión 1.-Definición.- Las medidas de tendencia central nos enseñaban a localizar el centro de la información en una serie de observaciones o distribución, pero no a realizar

Más detalles

Y accedemos al cuadro de diálogo Descriptivos

Y accedemos al cuadro de diálogo Descriptivos SPSS: DESCRIPTIVOS PROCEDIMIENTO DE ANÁLISIS INICIAL DE DATOS: DESCRIPTIVOS A diferencia con el procedimiento Frecuencias, que contiene opciones para describir tanto variables categóricas como cuantitativas

Más detalles

UNIDAD 1: QUÉ ES LA ESTADÍSTICA?

UNIDAD 1: QUÉ ES LA ESTADÍSTICA? UNIDAD 1: QUÉ ES LA ESTADÍSTICA? Para el desarrollo de este capítulo, vaya revisando conjuntamente con esta guía el capítulo 1 del texto básico, págs. 1 a la 15 1.1. INTRODUCCION: Como habrán podido comprender

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central Medidas de Tendencia Central En cualquier análisis o interpretación, se pueden usar muchas medidas descriptivas que representan las propiedades de tendencia central, variación y forma para resumir las

Más detalles

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016 ANEXO ESTADÍSTICO 1 : COEFICIENTES DE VARIACIÓN Y ERROR ASOCIADO AL ESTIMADOR ENCUESTA NACIONAL DE EMPLEO (ENE) INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 9 de Abril de 016 1 Este anexo estadístico es una

Más detalles

Medidas de Dispersión

Medidas de Dispersión Medidas de Dispersión Revisamos la tarea de la clase pasada Distribución de Frecuencias de las distancias alcanzadas por las pelotas de golf nuevas: Dato Frecuencia 3.7 1 4.4 1 6.9 1 3.3 1 3.7 1 33.5 1

Más detalles

4. Medidas de tendencia central

4. Medidas de tendencia central 4. Medidas de tendencia central A veces es conveniente reducir la información obtenida a un solo valor o a un número pequeño de valores, las denominadas medidas de tendencia central. Sea X una variable

Más detalles

NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2011

NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2011 NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2011 CÓMO CARACTERIZAR UNA SERIE DE DATOS? POSICIÓN- dividen un conjunto ordenado de datos en grupos con la misma cantidad de individuos CENTRALIZACIÓN-

Más detalles

Dr. Richard Mercado Rivera 18 de agosto de 2012 Matemática Elemental

Dr. Richard Mercado Rivera 18 de agosto de 2012 Matemática Elemental Universidad de Puerto Rico Recinto de Aguadilla Programa CeCiMat Elemental Definición de conceptos fundamentales de la Estadística y la Probabilidad y su aportación al mundo moderno Dr. Richard Mercado

Más detalles

En ciencias e ingeniería (experimentales) es imprescindible realizar mediciones, que consisten en obtener

En ciencias e ingeniería (experimentales) es imprescindible realizar mediciones, que consisten en obtener ERRORES DE MEDICION Y SU PROPAGACION En ciencias e ingeniería (experimentales) es imprescindible realizar mediciones, que consisten en obtener la magnitud fisica de algun atributo de objetos ( proceso,

Más detalles

Tabla de frecuencias agrupando los datos Cuando hay muchos valores distintos, los agruparemos en intervalos (llamados clases) de la misma amplitud.

Tabla de frecuencias agrupando los datos Cuando hay muchos valores distintos, los agruparemos en intervalos (llamados clases) de la misma amplitud. 1. TABLAS Y GRÁFICOS ESTADÍSTICOS Estadística Es la ciencia que estudia conjunto de datos obtenidos de la realidad. Estos datos son interpretados mediante tablas, gráficas y otros parámetros tales como

Más detalles

Estadística. Sesión 4: Medidas de dispersión.

Estadística. Sesión 4: Medidas de dispersión. Estadística Sesión 4: Medidas de dispersión. Contextualización En esta sesión aprenderás a calcular las medidas estadísticas de dispersión, tal es el caso del rango, la varianza y la desviación estándar,

Más detalles

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- Estadística variable unidimensional 1. Conceptos de Estadística 2. Distribución de frecuencias 2.1. Tablas de valores con variables continuas 3. Parámetros

Más detalles

Tema 6. Variables aleatorias continuas

Tema 6. Variables aleatorias continuas Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),

Más detalles

RELACIÓN DE EJERCICIOS TEMA 2

RELACIÓN DE EJERCICIOS TEMA 2 1. Sea una distribución estadística que viene dada por la siguiente tabla: Calcular: x i 61 64 67 70 73 f i 5 18 42 27 8 a) La moda, mediana y media. b) El rango, desviación media, varianza y desviación

Más detalles

ESTADÍSTICA. Individuo. Es cada uno de los elementos que forman la población o muestra.

ESTADÍSTICA. Individuo. Es cada uno de los elementos que forman la población o muestra. ESTADÍSTICA La estadística tiene por objeto el desarrollo de técnicas para el conocimiento numérico de un conjunto de datos empíricos (recogidos mediante experimentos o encuestas). Según el colectivo a

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

1. Determine en cuantas clases se van a resumir los datos. En este caso se van a resumir en 7 clases, como lo indica la actividad.

1. Determine en cuantas clases se van a resumir los datos. En este caso se van a resumir en 7 clases, como lo indica la actividad. EJEMPLO Una tienda departamental desea conocer los mínimos a pagar en, de los clientes que tienen tarjeta de crédito de la tienda. Se toma una muestra elegida al azar de la base de datos del departamento

Más detalles

A qué nos referimos con medidas de dispersión?

A qué nos referimos con medidas de dispersión? Estadística 1 Sesión No. 4 Nombre: Medidas de dispersión. Contextualización A qué nos referimos con medidas de dispersión? En esta sesión aprenderás a calcular las medidas estadísticas de dispersión, tal

Más detalles

Temas de Estadística Práctica Antonio Roldán Martínez

Temas de Estadística Práctica Antonio Roldán Martínez Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 3: Medidas típicas. Índices Resumen teórico Medidas típicas. Índices Clases de puntuaciones Índices de posición

Más detalles

NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2012

NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2012 NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2012 Matilde Ungerovich- mungerovich@fisica.edu.uy DEFINICIÓN PREVIA: Distribución: función que nos dice cuál es la probabilidad de que cada suceso

Más detalles

MEDIDAS DE VARIABILIDAD

MEDIDAS DE VARIABILIDAD MEDIDAS DE VARIABILIDAD 1 Medidas de variabilidad Qué son las medidas de variabilidad? Las medidas de variabilidad de una serie de datos, muestra o población, permiten identificar que tan dispersos o concentrados

Más detalles

ESTADÍSTICA I Código: 8219

ESTADÍSTICA I Código: 8219 ESTADÍSTICA I Código: 8219 Departamento : Metodología Especialidad : Ciclo Básico Prelación : Sin Prelación Tipo de Asignatura : Obligatoria Teórica y Práctica Número de Créditos : 3 Número de horas semanales

Más detalles

Definiciones generales

Definiciones generales Deiniciones generales Objetivo Brindar al participante los conceptos teóricos básicos sobre Media Aritmética para datos no agrupados y agrupados En esta sesión Conceptos básicos de Media Aritmética para

Más detalles

ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA Estadística Descriptiva. Guía y Rubrica. Momento 2

ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA Estadística Descriptiva. Guía y Rubrica. Momento 2 1. Temáticas revisadas Unidad 2. MEDIDAS ESTADISTICAS UNIVARIANTES - MEDIDAS DE TENDENCIA CENTRAL - MEDIDAS DE DISPERSION. - 2. Propósitos Desarrollar en el estudiante competencias interpretativas y propositivas,

Más detalles

ESTADÍSTICA DESCRIPTIVA APLICADA A LA ADMINISTRACIÓN Y LOS NEGOCIOS

ESTADÍSTICA DESCRIPTIVA APLICADA A LA ADMINISTRACIÓN Y LOS NEGOCIOS CURSO ESTADÍSTICA DESCRIPTIVA APLICADA A LA ADMINISTRACIÓN Y LOS NEGOCIOS Ing. Luis Kreither Z. - 2015 - CURSO ESTADÍSTICA DESCRIPTIVA APLICADA A LA ADMINISTRACIÓN Y LOS NEGOCIOS I. DIRIGIDO A: Medianos

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

MÓDULO III. MEDIDAS DE TENDENCIA CENTRAL, DISPERSIÓN Y ASIMETRÍA

MÓDULO III. MEDIDAS DE TENDENCIA CENTRAL, DISPERSIÓN Y ASIMETRÍA 1 UNIVERSIDAD NACIONAL EXPERIMENTAL DE LOS LLANOS OCCIDENTALES EZEQUIEL ZAMORA VICE-RECTORADO DE PLANIFICACIÓN Y DESARROLLO SOCIAL PROGRAMA CIENCIAS SOCIALES Y JURIDICAS SUBPROGRAMA ADMINISTRACIÓN SUBPROYECTO:

Más detalles

TEMA II DISTRIBUCION DE FRECUENCIA

TEMA II DISTRIBUCION DE FRECUENCIA TEMA II DISTRIBUCION DE FRECUENCIA 1. Cuestiones preliminares sobre Distribución de Frecuencia.. Distribución de frecuencia cuando la variable es discreta. 3. Distribución de frecuencia agrupada cuando

Más detalles

Dispone de 1 hora para resolver las siguientes cuestiones planteadas.

Dispone de 1 hora para resolver las siguientes cuestiones planteadas. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE ECONOMÍA Y NEGOCIOS EXAMEN TEÓRICO DE ESTADÍSTICA COMPUTARIZADA NOMBRE: PARALELO: Dispone de 1 hora para resolver las siguientes cuestiones planteadas.

Más detalles

Bioestadística: Estadística Descriptiva

Bioestadística: Estadística Descriptiva Bioestadística: M. González Departamento de Matemáticas. Universidad de Extremadura Bioestadística 1 2 Bioestadística 1 2 Coneptos Básicos ESTADÍSTICA Ciencia que estudia el conjunto de métodos y procedimientos

Más detalles

Métodos de Investigación en Psicología (10) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández

Métodos de Investigación en Psicología (10) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández Métodos de Investigación en Psicología (10) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández El método incluye diferentes elementos Justificación Planteamiento del problema

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Industrial (EST-121) NUMERO DE CREDITOS

Más detalles

(Se corresponde con el tema 14 del libro de Oxford de 4ºESO Opc. B)

(Se corresponde con el tema 14 del libro de Oxford de 4ºESO Opc. B) Estadística (Se corresponde con el tema 14 del libro de Oxford de 4ºESO Opc. B) 1. Conceptos Básicos La Estadística es la ciencia que se encarga de recopilar y ordenar datos referidos a diversos fenómenos

Más detalles

REPASO DE ESTADÍSTICA DESCRIPTIVA

REPASO DE ESTADÍSTICA DESCRIPTIVA ÍNDICE: 1.- Tipos de variables 2.- Tablas de frecuencias 3.- Gráficos estadísticos 4.- Medidas de centralización 5.- Medidas de dispersión REPASO DE ESTADÍSTICA DESCRIPTIVA 1.- Tipos de variables La estadística

Más detalles

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Materia: Estadística I Maestro: Dr. Francisco Javier Tapia Moreno Semestre: 015- Hermosillo, Sonora, a 14 de septiembre de

Más detalles

Duración: 2 horas pedagógicas

Duración: 2 horas pedagógicas PLANIFICACIÓN DE LA SESIÓN DE APRENDIZAJE Grado: Cuarto I. TÍTULO DE LA SESIÓN Duración: 2 horas pedagógicas Medidas de localización UNIDAD 4 NÚMERO DE SESIÓN 14/14 II. APRENDIZAJES ESPERADOS COMPETENCIA

Más detalles

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS 1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias

Más detalles

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24 Comenzado el lunes, 25 de marzo de 2013, 17:24 Estado Finalizado Finalizado en sábado, 30 de marzo de 2013, 17:10 Tiempo empleado 4 días 23 horas Puntos 50,00/50,00 Calificación 10,00 de un máximo de 10,00

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL MEDIDAS DE TENDENCIA CENTRAL Son valores numéricos que localizan e informan sobre los valores medios de una serie o conjunto de datos, se les considera como indicadores debido a que resumen la información

Más detalles

EJERCICIOS TEMA 1. Clasifica los siguientes caracteres estadísticos según sean cualitativos, variables discretas o variables continuas:

EJERCICIOS TEMA 1. Clasifica los siguientes caracteres estadísticos según sean cualitativos, variables discretas o variables continuas: Ejercicio 1. Clasifica los siguientes caracteres estadísticos según sean cualitativos, variables discretas o variables continuas: a) Marca de los coches. b) Peso de los coches. c) Número de coches vendidos

Más detalles

UNIDAD 6. Estadística

UNIDAD 6. Estadística Matemática UNIDAD 6. Estadística 2 Medio GUÍA N 1 MEDIDAS DE DISPERSIÓN PARA DATOS NO AGRUPADOS ACTIVIDAD Consideremos los siguientes conjuntos de valores referidos a las edades de los jugadores de dos

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA TEMA 2: ESTADÍSTICA DESCRIPTIVA Objetivos: En esta práctica utilizaremos el paquete SPSS para calcular estadísticos descriptivos de una muestra. Se representarán gráficamente conjuntos de datos utilizando

Más detalles