Guía ejercicios resueltos Sumatoria y Binomio de Newton

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Guía ejercicios resueltos Sumatoria y Binomio de Newton"

Transcripción

1 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle Guí ejerccos resueltos Sumtor y Bomo de Newto Solucó: ) Como o depede de j, es costte l sumtor. b) c) d)

2 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle e) f) g) h) Ls demás se resuelve de l msm form.

3 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle Solucó: ) b) Como es u sumtor telescópc se slv el prmero y el últmo. c) L sumtor geométrc deberí comezr desde cero, pues coocemos l sguete formul.

4 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle Pr empezr desde cero bst restrle uo los límtes de l sumtor y l vez sumr uo e l vrble detro de l sumtor. Solucó: De est seccó solo relzre el prmero, dd l smplcdd de los ejerccos. Ddo los vlores del eucdo pr. Solucó: )

5 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle b) c) d)

6 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle e) L sumtor geométrc deberí comezr desde cero, pues coocemos l sguete formul. Pr empezr desde cero bst restrle uo los límtes de l sumtor y l vez sumr uo e l vrble detro de l sumtor. f) g) L sumtor geométrc deberí comezr desde cero, pues coocemos l sguete formul. Pr empezr desde cero bst restrle uo los límtes de l sumtor y l vez sumr uo e l vrble detro de l sumtor.

7 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle h) ) L sumtor geométrc deberí comezr desde cero, pues coocemos l sguete formul. Pr empezr desde cero bst restrle uo los límtes de l sumtor y l vez sumr uo e l vrble detro de l sumtor. j) ) J Pr l sumtor que est más l derech el elevdo l, es depedete de j.

8 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle Solucó: Solucó: ) Ls progresoes rtmétcs so de l sguete form: s s s s s s s ( s s) ( *) s s s s s ( ) s ( ) ( )

9 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle ) Ls progresoes rtmétcs so de l sguete form: s s s s s s s Clculemos l sumtor: s s s s s Ahor, sumemos ls dos ecucoes del eucdo. s s s 8 Reemplzdo, 8 8) Ls progresoes rtmétcs so de l sguete form: s s s s s s Clculemos l sumtor: s s s

10 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle s s s s s s Tomdo ls dos ecucoes; s () s () *() - () * s, ) Ls progresoes rtmétcs so de l sguete form: s s s s s s Clculemos l sumtor: s s s 8 s s s s s Tomdo ls dos ecucoes; s 8 () s ()

11 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle *() * () 8 * * * * s ) Ls progresoes geométrcs so de l sguete form: r r r r r r r Resolvedo: r r r r r r r Solucó: Cosdere que, Pr r<.

12 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle Ahor, debemos clculr: Solucó: ) Ls progresoes geométrcs so de l sguete form: r r r r r r r Resolvedo: r r r r 8 r r r El décmo termo es gul r *

13 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle r Solucó: Usdo que, Smplfcr y clculr. Resolveremos los más dfícles, pues e los demás se puede utlzr l clculdor fclmete. Pero sbemos que, Ahor, restemos l ultm ecucó los termos que o est e l prmer sumtor.

14 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle Resover (ultmo), S cosdermos, = y b= L uc dferec co uestr prmer ecucó, es que u prte desde y l otr desde cero. Cosderemos l ultm ecucó y sepremos el prmer termo. Solucó: ) b)

15 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle c) d) Solucó: ) b)

16 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle c) Solucó: Usdo que, )

17 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle b) c) d)

18 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle Solucó: ) Como os pde ecotrr el coefcete que compñ l, bst gulr el epoete del. Etoces, pr ecotrremos el coefcete que compñ.

19 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle b) Como os pde ecotrr el coefcete que compñ l, bst gulr el epoete de. Etoces, pr ecotrremos el coefcete que compñ. * c) Es álogo los dos terores. d) r r r r r r r Como os pde ecotrr el coefcete que compñ l r, bst gulr el epoete de r.

20 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle r r Etoces, pr r ecotrremos el coefcete que compñ r. r r r r r r r. Ecuetre los térmos cetrles e el desrrollo de ) Como os pde ecotrr el termo cetrl del desrrollo del bomo, bst tomr el, pues l sumtor v desde sedo el termo cetrl el. Etoces, el térmo cetrl es gul : * 8 8 b)

21 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle Como os pde ecotrr el termo cetrl del desrrollo del bomo, bst tomr el y el, pues l sumtor v desde estedo dos térmos cetrles, debdo que so térmos los del desrrollo. Etoces, el térmo cetrl es gul : c) b, co b b b b b Como os pde ecotrr el termo cetrl del desrrollo del bomo b, bst tomr el, pues l sumtor v desde sedo el termo cetrl el. Etoces, el térmo cetrl es gul : * * m o Ter

22 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle m b b o Ter. Ecotrr el térmo depedete de e el desrrollo. ) 8 8 Como os pde ecotrr el termo depedete de del bomo, bst gulr cero el epoete de 8, pues el termo depedete de est elevdo l cero. 8 Etoces, el térmo depedete es: * 8 Termo(depe)

23 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle ) Como os pde ecotrr el termo depedete de del bomo, bst gulr cero el epoete de, pues el termo depedete de est elevdo l cero. Etoces, el térmo depedete es: Termo(depe). Clculr el vlor umérco del térmo depedete de. Solucó:

24 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle Como os pde ecotrr el termo depedete de del bomo, bst gulr cero el epoete de y el de, pues por cd sumtor podrí estr u termo depedete de. Pr l prmer sumtor: Como el o es u úmero etero postvo, mplc que ese térmo o este. Pr l segud sumtor: Etoces, el térmo depedete es: Termo(depe) Es decr, l prmer sumtor o port d.. Clculr el coefcete de e el desrrollo de :

25 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle Como os pde ecotrr el coefcete de del bomo 8, bst gulr - el epoete de 8, lo que permtrá coocer el ecesro pr ecotrr el coefcete 8 Etoces, el coefcete de m * 8 o Ter. Determr el vlor de pr los coefcetes de y e el desrrollo de: se gules. Solucó: Teemos cutro sumtor que os portr coefcetes pr y. - Como os pde ecotrr el coefcete de del bomo, bst gulr el epoete de,, y, lo que permtrá coocer el ecesro pr ecotrr el coefcete de cd sumr: Prmer sumtor:

26 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle Segud sumr Tercer sumr Curt sumr No port d, debdo que el myor vlor que puede tomr es. 8 - Como os pde ecotrr el coefcete de del bomo, bst gulr el epoete de,, y, lo que permtrá coocer el ecesro pr ecotrr el coefcete de cd sumr: Prmer sumtor:

27 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle Segud sumr Tercer sumr No port d, debdo que el myor vlor que tom es. Curt sumr No port d, debdo que el myor vlor que tom es. Ahor, guldo el. 8 8 Es decr, pr 8 los coefcetes de y so gules.

28 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle. Hllr el coefcete de e el desrrollo de: Desrrollo: Pr l sumtor que depede de, los térmos que depede de so costtes. Como os pde ecotrr el coefcete de del polomo, bst gulr el epoete de, de es mer cooceremos los posbles vlores que puede tomr e. Co ls sguetes restrccoes, Ahor, Debdo que Debdo que Debdo que Este cso cumple co Debdo que Luego, l úc solucó es co

29 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle coef coef. ) Desrrollo: ) Desrrollo: ) Desrrollo:

30 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle!!!!!!!!!!!!!! v) 8 Desrrollo: 8 Multplcremos por, pr reorder l combtor.

31 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle !!!! 8!!! 8!!! 8! 8! 8 8 Ahor, sumemos cero detro del prétess.

32 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle. Determe: ) e Desrrollo: Prtmos co lgo coocdo, Sumemos tod l ecucó. Por eucdo,

33 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle ) t e y t y t y t t y y ) t e t t t t

34 Aulr: Igco Domgo Trujllo Slv Uversdd de Chle v) t e y y y t t t y y y t

Guía ejercicios resueltos Sumatoria y Binomio de Newton

Guía ejercicios resueltos Sumatoria y Binomio de Newton Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile Guí ejercicios resueltos Sumtori y Biomio de Newto Solució: ) Como o depede de j, es costte l sumtori. b) c) d) Auilir: Igcio Domigo Trujillo Silv

Más detalles

GUÍA EJERCICIOS: NÚMEROS NATURALES

GUÍA EJERCICIOS: NÚMEROS NATURALES UNIVERSIDAD ANDRÉS BELLO DEPARTAMENTO DE MATEMÁTICAS ÁLGEBRA FMM COORD. PAOLA BARILE M. GUÍA EJERCICIOS: NÚMEROS NATURALES PROGRESIONES ARITMÉTICA Y GEOMÉTRICA EJERCICIOS CON RESPUESTAS.- Verfque s ls

Más detalles

21 k. ! en función de n. = 1. Universidad de Santiago de Chile Facultad de Ciencia Depto. Matemática y Ciencia de la Computación

21 k. ! en función de n. = 1. Universidad de Santiago de Chile Facultad de Ciencia Depto. Matemática y Ciencia de la Computación USACH ÁLGEBRA Gbrel Rbles R. Uversdd de Stgo de Chle Fcultd de Cec Depto. Mtemátc y Cec de l Computcó Prof. Gbrel Rbles R. SUMATORIAS EJERCICIOS RESUELTOS: Clculr: ) ) b) [ ) ) ] c) j j j d) el vlor de

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS 1 Epresoes Algebrcs es l uó de úmeros y vrbles medte opercoes de sum, rest, multplccó, dvsó, poteccó y rdccó. Epresó lgebrc rcol: se llm sí quells e ls que ls vrbles está fectds

Más detalles

POLINOMIOS ORTOGONALES Apuntes y Ejercicios RESUMEN DE CONTENIDOS POLINOMIOS ORTOGONALES. Se define, en primer lugar, el operador proyección mediante

POLINOMIOS ORTOGONALES Apuntes y Ejercicios RESUMEN DE CONTENIDOS POLINOMIOS ORTOGONALES. Se define, en primer lugar, el operador proyección mediante Uversdd de Stgo de Chle Fcultd de Cecs Deprtmeto de Mtemátcs y Cecs de l Computcó Aputes y Ejerccos RESUMEN DE CONTENIDOS. Recordr: Proceso de ortogolzcó de Grm-Schmdt: Se defe, e prmer lugr, el operdor

Más detalles

e x Integración numérica Tema 2: Cá álculo umérico Fórmulas de cuadratura. Fórmulas de Newton-Cotes. Fórmulas del trapecio y Simpson. Errores.

e x Integración numérica Tema 2: Cá álculo umérico Fórmulas de cuadratura. Fórmulas de Newton-Cotes. Fórmulas del trapecio y Simpson. Errores. Tem : Itegrcó umérc Tem : Itegrcó ó umérc Prolem Fórmuls de cudrtur. Fórmuls de Newto-Cotes. Fórmuls del trpeco Smpso. Errores. Clculr l sguete tegrl: e d Usremos l tegrcó umérc cudo, por el motvo que

Más detalles

es toda la línea determinada por estos dos puntos, mientras que el conjunto de todas las combinaciones convexas es el segmento de línea que une a

es toda la línea determinada por estos dos puntos, mientras que el conjunto de todas las combinaciones convexas es el segmento de línea que une a 5 dsttos Cosecuetemete el cojuto de tods ls combcoes fes de dos putos R es tod l líe determd por estos dos putos metrs que el cojuto de tods ls combcoes coves es el segmeto de líe que ue y. Obvmete cd

Más detalles

suma sucesiva de los primeros m términos como se ve a continuación m 1

suma sucesiva de los primeros m términos como se ve a continuación m 1 A veces se ecest deterr l su de uchos téros de u sucesó ft. Pr expresr co fcldd ess sus, se us l otcó de sutor. Dd u sucesó ft,,,...,... el síbolo represet l sutor o su sucesv de los preros téros coo se

Más detalles

PROBLEMAS RESUELTOS. Problema 1. Resolver la ecuación en la incógnita x: Solución al problema 1

PROBLEMAS RESUELTOS. Problema 1. Resolver la ecuación en la incógnita x: Solución al problema 1 PROBLEMS RESUELTOS Presetmos cotucó ls solucoes los problems,, del úmero de l Revst, que eví Crlos Mrcelo Css Cudrdo. Problem Resolver l ecucó e l cógt : (bsolutorl ufgbe, Bver, 87 Solucó l problem El

Más detalles

Determinación del Número de Particiones de un Conjunto

Determinación del Número de Particiones de un Conjunto Determcó del Número de rtcoes de u Couto Lus E Ryber E el estudo de prtcoes estblecds e u couto A que posee elemetos se susct l cuestó del úmero totl de tles prtcoes Es evdete y el cálculo sí lo dc que

Más detalles

Resolución de sistemas de congruencias

Resolución de sistemas de congruencias Resolucó de sstems de cogruecs E este prtdo veremos cómo utlzr l rtmétc modulr pr resolver u problem muy tguo, coocdo como problem cho de los restos, que reformulremos hor utlzdo el leguje modero de ls

Más detalles

a, b y POSITIVA, se puede hacer una aproximación del área

a, b y POSITIVA, se puede hacer una aproximación del área BLOQUE III: Aálss -ÁREA BAJO UNA CURVA Tem 5: Itegrles defds Dd u fucó (, y POSITIVA, se puede hcer u promcó del áre compredd etre el eje X y l gráfc de l fucó e el tervlo, del sguete modo: ) Se dvde el

Más detalles

INICIO. Elaborado por: Enrique Arenas Sánchez

INICIO. Elaborado por: Enrique Arenas Sánchez INICIO Elbordo or: Erque Ares Sáchez EL PROMEDIO El cálculo del romedo de u lst de vlores [,, K,,, ], 2 K ormlmete se clcul medte l coocd exresó: m...() U form geerl r clculr el romedo de u lst

Más detalles

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA (Aputes s revsó pr oretr el predzje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA Sumtor Pr represetr e form revd determdo tpo de sums, se utlz como símolo l letr greg sgm. Ejemplos.

Más detalles

INTEGRAL DEFINIDA INTRODUCCIÓN

INTEGRAL DEFINIDA INTRODUCCIÓN INTRODUCCIÓN U medo potete de l vestgcó e mtemátc, físc, mecác y otrs rms de l cec es l tegrl defd. El cálculo de áres lmtds por curvs, de ls logtudes de rcos, volúmees, trjo, velocdd, espco, mometos de

Más detalles

UNIVERSIDAD DE GRANADA PONENCIA DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PONENTE: PROF. FRANCISCO JIMÉNEZ GÓMEZ

UNIVERSIDAD DE GRANADA PONENCIA DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PONENTE: PROF. FRANCISCO JIMÉNEZ GÓMEZ UNIVERSIDD DE GRND ONENCI DE MTEMÁTICS LICDS LS CIENCIS SOCILES ONENTE: ROF FRNCISCO JIMÉNEZ GÓMEZ RUE DE CCESO R MYORES DE ÑOS CONVOCTORI DE ENUNCIDOS Y RESOLUCIÓN DE LOS EJERCICIOS ROUESTOS EN MTEMÁTICS

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS NÚMEOROS COMPLEJOS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS NÚMEOROS COMPLEJOS NÚMEOROS COMPLEJOS Defcó: El cojuto de los úmeros complejos es C R R {(, / R y b R} C está formdo por todos los pres ordedos de úmeros reles etre los que defmos u relcó, l guldd, y dos opercoes brs que

Más detalles

a es la parte real, bi la parte imaginaria.

a es la parte real, bi la parte imaginaria. CAPÍTULOIX 55 NÚMEROS COMPLEJOS Coocmetos Prevos Supoemos coocdo que: ) El cojuto de úmeros complejos está e correspodec buívoc co el cojuto de los putos de u plo. b) U úmero complejo expresdo e form boml

Más detalles

El MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE ARITMÉTICO DECRECIENTE

El MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE ARITMÉTICO DECRECIENTE Mg Mrco oo Plz Vdurre El MÉTODO MTEMÁTIO PR LS SERIES VRIBLES ON RDIENTE RITMÉTIO DEREIENTE El presee documeo desrroll e delle el méodo ulzdo por Jme rcí e su lro Memács cers co ecucoes e dferec f, sedo

Más detalles

3.1. Elección del Método de las Esferas.

3.1. Elección del Método de las Esferas. Método de ls Esfers 3. Método de ls Esfers. 3.. Eleccó del Método de ls Esfers. El Método de ls Esfers represet u mplemetcó l cul lustr ls propeddes geométrcs del lgortmo del elpsode, y hered su robustez

Más detalles

Potencias y radicales

Potencias y radicales Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de

Más detalles

TEORÍA DE RENTAS DISCRETAS Rentas Variables en Progresión Geométrica (teoría)

TEORÍA DE RENTAS DISCRETAS Rentas Variables en Progresión Geométrica (teoría) TEORÍ DE RENTS DISCRETS Rets Vrbles e Progresó Geométrc (teorí Profesor: Ju too Gozález Díz Deprtmeto Métodos Cutttos Uersdd Pblo de Olde www.clsesuerstrs.com RENTS VRIBLES EN PROG. GEOMÉTRIC VLORCIÓN

Más detalles

Se puede observar que una partición de un intervalo lo divide en n subintervalos, y a cada uno de ellos se les llama también celda.

Se puede observar que una partición de un intervalo lo divide en n subintervalos, y a cada uno de ellos se les llama también celda. Itegrl defd. Fucó tegrle Sum de Rem Se el tervlo [, ]. E cojuto de putos: P = { 0,,......., } Dode 0 = ; = ; < ; =,,....., Se llm prtcó o red de tervlo [, ] Se puede oservr que u prtcó de u tervlo lo dvde

Más detalles

APROXIMACION DE FUNCIONES

APROXIMACION DE FUNCIONES APROXIMACION DE FUNCIONES Metodos Numercos 6 Fmls de Fucoes Bses - Moomos : 3 - Trgoométrcs: sωt cosωt sωt... - Fs. Sle: olomos trozos - Fs. Eoecles: e e 4 Metodos Numercos 6 Iterolcó Suogmos teer u cojuto

Más detalles

Resumen Unidades II-V

Resumen Unidades II-V Resume Uddes II-V II. Iterpolcó polomo de Newto uco que ps por todos los putos sple cuco - u vlor IV. Itegrcó Fucó tuld segmetos_desgules Fucó lítc - regls_smpso c Dereccó dervds_lt pr u sere de dtos sple_cuco

Más detalles

- Función Polinómica f es toda función de dominio el conjunto de los números reales, tal que la imagen de cada número real x es:

- Función Polinómica f es toda función de dominio el conjunto de los números reales, tal que la imagen de cada número real x es: POLINOMIOS Defcó: Fucó Polóc - Fucó Polóc f es tod fucó de doo el cojuto de los úeros reles, tl que l ge de cd úero rel es: f = + + + + +, dode,,,,, so ueros reles y es turl Defcó: Poloo - Poloo de vrble

Más detalles

PAIEP. Sumas de Riemann

PAIEP. Sumas de Riemann Progrm de Acceso Iclusivo, Equidd y Permeci PAIEP Uiversidd de Stigo de Chile Sums de Riem Ddo u itervlo de l form [, b], co y b e R, < b, u prtició del itervlo [, b] es u colecció de putos P = {x, x,...,

Más detalles

210. Se considera el experimento aleatorio consistente en tirar tres dados al aire y anotar los puntos de las caras superiores.

210. Se considera el experimento aleatorio consistente en tirar tres dados al aire y anotar los puntos de las caras superiores. Hojs de Prolems Estdístc I. Se cosder el expermeto letoro cosstete e trr tres ddos l re y otr los putos de ls crs superores. ) utos elemetos tee el espco de sucesos? ) lculr l proldd de scr l meos dos.

Más detalles

ELECCIÓN ÓPTIMA DEL PLAZO DE UN PRÉSTAMO EN FUNCIÓN DE PREFERENCIAS INDIVIDUALES

ELECCIÓN ÓPTIMA DEL PLAZO DE UN PRÉSTAMO EN FUNCIÓN DE PREFERENCIAS INDIVIDUALES ELECCÓN ÓPTM DEL PLZO DE UN PRÉSTMO EN FUNCÓN DE PREFERENCS NDVDULES Jesús Mª Sáchez Motero jsmoter@us.es Mª Ágeles Domíguez Serro doser@us.es Jver Gmero Rojs jgm@us.es Deprtmeto Ecoomí plcd Uversdd de

Más detalles

Lenguaje humano. Representación de la información. Utiliza un conjunto de símbolos alfanuméricos. Puede representar Información

Lenguaje humano. Representación de la información. Utiliza un conjunto de símbolos alfanuméricos. Puede representar Información Leguje humo Represetcó de l formcó Utlz u cojuto de símbolos lfumércos Crcteres lfbétcos:, B, C,.Z,, b, c,...z Símbolos umércos 9 sgos de putucó... Puede represetr Iformcó umérc lfumérc Leguje del ordedor

Más detalles

Binomio de Newton. Teorema: Sean a, b dos números reales no nulos, y sea n N un número natural. Entonces: a n k b k. n 1 a n 1 b + 2.

Binomio de Newton. Teorema: Sean a, b dos números reales no nulos, y sea n N un número natural. Entonces: a n k b k. n 1 a n 1 b + 2. Biomio de Newto Teorem del biomio de Newto Teorem: Se, b dos úmeros reles o ulos, y se N u úmero turl. Etoces: b b b b b b L expresió l derech se deomi el desrrollo biomil de b. Observmos que este desrrollo

Más detalles

Universidad Eafit Universidad Eafit ISSN (Versión impresa): X COLOMBIA

Universidad Eafit Universidad Eafit ISSN (Versión impresa): X COLOMBIA Uversdd Eft Uversdd Eft revst@eft.edu.co ISSN (Versó mpres): -34X COLOMBIA Oscr Robledo MATEMÁTICAS FINANCIERAS CON ECUACIONES DE DIFERENCIAS FINITAS OTRA APROXIMACIÓN AL CÁLCULO DEL VALOR DEL DINERO EN

Más detalles

TEMA 2. Métodos iterativos de resolución de Sistemas de Ecuaciones Lineales

TEMA 2. Métodos iterativos de resolución de Sistemas de Ecuaciones Lineales TEMA : Métodos tertvos de resolucó TEMA. Métodos tertvos de resolucó de Sstems de Ecucoes Leles. Métodos tertvos: troduccó Aplcr u método tertvo pr l resolucó de u sstem S A = b, cosste e trsformrlo e

Más detalles

Potencias y radicales

Potencias y radicales Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de

Más detalles

Supongamos que divide también a 3n + 1, entonces divide a (3n + 1) (3n 3)=4 o divide a (3n + 3) (3n + 1) = 2, entonces a = 2.

Supongamos que divide también a 3n + 1, entonces divide a (3n + 1) (3n 3)=4 o divide a (3n + 3) (3n + 1) = 2, entonces a = 2. Hojs de Problems Algebr III 8. ) Demostrr que s es r, los úmeros turles y so rmos etre s. b) Demostrr que s m, etoces l ctdd de úmeros eteros ostvos dsttos de cero que o so myores que m y que o se dvde

Más detalles

20/06/2012 ECUACIONES QUE RIGEN EL FLUJO DE AGUA A TRAVÉS DE LA MASA DE SUELO. GRADIENTE HIDRAULICO CRÍTICO: Para flujo vertical ascendente:

20/06/2012 ECUACIONES QUE RIGEN EL FLUJO DE AGUA A TRAVÉS DE LA MASA DE SUELO. GRADIENTE HIDRAULICO CRÍTICO: Para flujo vertical ascendente: /6/ GRDIENTE HIDRUICO CRÍTICO Pr l codcó drostátc st + st (+) ( st - ) Pr flujo vertcl descedete st + st (+-) ( st - )+ Pr flujo vertcl scedete st + st (++) ( st - )- E el flujo vertcl scedete, es cudo

Más detalles

Sucesiones de funciones

Sucesiones de funciones Tem 7 Sucesioes de fucioes Defiició 7. Se A IR y F A, IR el cojuto de ls fucioes de A e IR. Llmremos sucesió de fucioes de A culquier plicció de IN F A, IR, y l deotremos por f } = ó f } =. 7. Covergeci

Más detalles

Números Complejos PREGUNTAS MÁS FRECUENTES

Números Complejos PREGUNTAS MÁS FRECUENTES Repaso de º de Bachllerato Números Complejos PREGUNTAS MÁS FRECUENTES. Qué es la udad magara? Es u elemeto del que coocemos úcamete su cuadrado:.obvamete, o se trata de u úmero real.. Qué es u úmero complejo?

Más detalles

está localizado en el renglón i-ésimo y la j-ésima columna del arreglo A.

está localizado en el renglón i-ésimo y la j-ésima columna del arreglo A. Pág del Colego de temátcs de l ENP-UN trces y ermtes utor: Dr. José uel ecerr Espos RICES Y DEERINNES E V V. DEFINICIÓN DE RIZ U mtrz es u cojuto de úmeros, ojetos u operdores, dspuestos e u rreglo dmesol

Más detalles

1. Mi sitio Web con tareas:

1. Mi sitio Web con tareas: . M sto Web co tres: http://www.educt.org/stud/tre.sp. ANALISIS NUMERICO BURDEN, RICHARD L. \ FAIRES J. DOUGLAS 99. METODOS NUMERICOS LUTHE, RODOLFO \ OLIVERA ANTONIO, SCHUTZ FERNANDO 988 4. METODOS NUMERICOS

Más detalles

ADMINISTRACIÓN Y FINANZAS. GRADO SUPERIOR RENTAS CONSTANTES. TEMA 5 TEMA 5: RENTAS

ADMINISTRACIÓN Y FINANZAS. GRADO SUPERIOR RENTAS CONSTANTES. TEMA 5 TEMA 5: RENTAS TEMA 5: RENTA. INTRODUCCIÓN Llmmos ret u sucesó de cptles que se hce efectvos e vecmetos peródcos. Ejemplo: lquler, slros, préstmos, etc. A cd uo de estos cptles se le deom térmos o ulddes (A. Llmmos durcó

Más detalles

Análisis Numérico y Programación. Unidad III. -Interpolación mediante trazadores: Lineales, cuadráticos y cúbicos

Análisis Numérico y Programación. Unidad III. -Interpolación mediante trazadores: Lineales, cuadráticos y cúbicos Aálss Numérco y Programacó Udad III -Iterpolacó medate trazadores: Leales, cuadrátcos y cúbcos Prmavera 9 Aálss Numérco y Programacó Coceptos geerales Problema geeral: Se tee u cojuto dscreto de valores

Más detalles

POLINOMIOS. - Ejemplo: es un polinomio ordenado segun la variable x, cuyos coeficientes son: 2

POLINOMIOS. - Ejemplo: es un polinomio ordenado segun la variable x, cuyos coeficientes son: 2 POLINOMIOS Defcó: Fucó Polóc - Fucó Polóc f es tod fucó de doo el cojuto de los úeros reles, tl que l ge de cd úero rel x es: f x = x + x + + x + x+, dode,,,,, so ueros reles y es turl Defcó: Poloo - Poloo

Más detalles

3. Unidad Aritmética Lógica (ALU)

3. Unidad Aritmética Lógica (ALU) 3. Udd rtmétc Lógc (LU) bordremos los spectos que permte l mplemetcó de l rtmétc de u computdor, trbuto fucol de l Udd rtmétc Lógc (LU). Prmero se revstrá lo relcodo l form de represetr los úmeros como

Más detalles

Dado el sistema de ecuaciones lineales de la forma

Dado el sistema de ecuaciones lineales de la forma Aálss del Error e Solucó de Sstems de Ecucoes Leles Ddo el sstem de ecucoes leles de l form R A b, dode A ; b R E reldd teemos: A δa δ b δb A Aδ δa δa δ A δb S desprecmosδa δ : δ A - δb δa Métodos Numércos

Más detalles

5.2 SUMAS Y NOTACIÓN SIGMA

5.2 SUMAS Y NOTACIÓN SIGMA Mosés Vlle Muñoz Cp. 5 Sucesoes y Seres 5 5. SUCESIONES 5. SUMAS Y NOTACIÓN SIGMA 5. SERIES NUMÉRICAS INFINITAS 5.. A SERIE GEOMÉTRICA. 5.. SERIES TEESCÓPICA 5.. SERIES DE TÉRMINOS POSITIVOS 5... CRITERIO

Más detalles

TEMA III ELEMENTOS DEL ÁLGEBRA MATRICIAL

TEMA III ELEMENTOS DEL ÁLGEBRA MATRICIAL TE III EEENTS DE ÁGER TRICI E este tem vmos repsr los coocmetos de mtrces que predmos e cursos terores y que vmos ecestr e est sgtur. I.- TRICES Qué es u mtrz? U mtrz es u dsposcó de úmeros pr l cul este

Más detalles

Aplicaciones prácticas de la antiderivación y la Integral Definida. Universidad Diego Portales CALCULO II

Aplicaciones prácticas de la antiderivación y la Integral Definida. Universidad Diego Portales CALCULO II Aplccoes práctcs de l tdervcó y l Itegrl Defd Uversdd Dego Portles Aplccoes práctcs A cotucó se preset lguos prolems e que se cooce l rzó de cmo de u ctdd y el ojetvo es hllr u epresó pr l ctdd msm. Como

Más detalles

1.4 SERIES NUMÉRICAS.SUMA DE SERIES. (46 Problemas ) sabiendo que n

1.4 SERIES NUMÉRICAS.SUMA DE SERIES. (46 Problemas ) sabiendo que n . SERIES NUMÉRICAS.SUMA DE SERIES. (6 Problems.- Estudir el crácter de ls series:! 0 b + si >0, segú vlores de. 0.- Clculr cos α sbiedo que x x e 0! 0! 3.- Estudir l serie de térmio geerl. π se.- Cosidermos

Más detalles

TEMA 5 VALORACIÓN FINANCIERA DE RENTAS (II)

TEMA 5 VALORACIÓN FINANCIERA DE RENTAS (II) Fcultd de CC.EE. Dpto. de Ecoomí Fcer I Mtemátc Fcer Dpotv TEMA 5 VALORACIÓN FINANCIERA DE RENTAS (II). Ret cotte temporle y perpetu. 2. Ret dferd y tcpd 3. Ret vrble e progreó geométrc y rtmétc Fcultd

Más detalles

El MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE ARITMÉTICO CRECIENTE

El MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE ARITMÉTICO CRECIENTE Mg Mrco oo Plz Vdurre El MÉTODO MTEMÁTICO PR LS SERIES VRIBLES CON RDIENTE RITMÉTICO CRECIENTE El resee documeo desrroll e delle el méodo ulzdo or el uor Jme rcí e su lro Memács cers co ecucoes e dferec

Más detalles

2.1 SUCESIONES 2.2 SUMAS Y NOTACIÓN SIGMA

2.1 SUCESIONES 2.2 SUMAS Y NOTACIÓN SIGMA Sucesoes. SUCESIONES. SUMAS Y NOTACIÓN SIGMA Objetvos: Se pretede que el estudte: Determe covergec o dvergec de sucesoes. Alce Mootoí de sucesoes. Coozc ls propeddes de l otcó sgm. 5 Sucesoes.. SUCESIONES..

Más detalles

PROGRAMA DE ESTUDIO DE MATEMÁTICA V

PROGRAMA DE ESTUDIO DE MATEMÁTICA V PROGRAMA DE ESTUDIO DE MATEMÁTICA V CONTENIDOS CONCEPTUALES. Udd : Cojuto de los Números Complejos. Números mgros: Cocepto, defcó. Udd mgr, potec de u udd mgr. El complejo ddo como u pr de ordedo de úmeros

Más detalles

( 2) RECORDAR: = + = b. También es importante saber que: algo. 1. Calcular las siguientes potencias de exponente natural (sin usar calculadora):

( 2) RECORDAR: = + = b. También es importante saber que: algo. 1. Calcular las siguientes potencias de exponente natural (sin usar calculadora): POTENCIAS EJERCICIOS RECORDAR m m m ) b b) m m b m b b b Tmbié es importte sber que lgo bse egtiv ) pr ) bse egtiv ) impr ) pr impr Añde ests fórmuls l formulrio que relizrás lo lrgo del curso). Clculr

Más detalles

FUNDAMENTOS DE MATEMÁTICA MATERIAL CON FINES DIDÁCTICOS UNEFA NÚCLEO TÁCHIRA PRODUCTOS NOTABLES.

FUNDAMENTOS DE MATEMÁTICA MATERIAL CON FINES DIDÁCTICOS UNEFA NÚCLEO TÁCHIRA PRODUCTOS NOTABLES. PRODUCTOS NOTABLES. Productos Notbles: So poliomios que se obtiee de l multiplicció etre dos o más poliomios que posee crcterístics especiles o expresioes prticulres, cumple cierts regls fijs; es decir,

Más detalles

GUÍA RAICES 2º MEDIO. Solo se pueden sumar y restar raíces del mismo índice y mismo radicando:

GUÍA RAICES 2º MEDIO. Solo se pueden sumar y restar raíces del mismo índice y mismo radicando: Liceo Polivlete Arturo Alessdri plm Deprtmeto de Mtemátic Profesor Jet Espios Nivel º medio GUÍA RAICES º MEDIO Objetivo: Utilizr propieddes de ríces pr l multiplicció, sum y rest. Recoocer y plicr rciolizció.

Más detalles

Escrito. 1) Transforma a las bases indicadas:

Escrito. 1) Transforma a las bases indicadas: Escrto ) Trasforma a las bases dcadas: a. 765 base (0) b. AB base 7 0 (6) base ) Halla los dígtos a y b sabedo que: aam 6 ( 5 ) mam( 6 ) 3) Trasforma a la base dcada usado ua tabla de correspodeca.. 00

Más detalles

x x x x x Y se seguía operando

x x x x x Y se seguía operando . INTRODUCCIÓN. DEFINICIONES UNIDAD : Números complejos Cuado se teta resolver ecuacoes de segudo grado como por ejemplo x 4x 0, se observa que o 4 6 5 4 6 tee solucoes reales x x, pues o exste raíces

Más detalles

Guía de actividades. PROGRESIONES SERIES Profesor Fernando Viso

Guía de actividades. PROGRESIONES SERIES Profesor Fernando Viso Guí de ctividdes PROGRESIONES SERIES Profesor Ferdo Viso GUIA DE TRABAJO Mteri: Mtemátics Guí #. Tem: Progresioes ritmétics Fech: Profesor: Ferdo Viso Nombre del lumo: Secció del lumo: CONDICIONES: Trbjo

Más detalles

4. Fórmula de Lagrage El polomo de terpolacó de Hermte, p (x, de la fucó f e los putos dsttos x,,x admte la expresó: p( x f (x L (x + f '(x L (x, (Fór

4. Fórmula de Lagrage El polomo de terpolacó de Hermte, p (x, de la fucó f e los putos dsttos x,,x admte la expresó: p( x f (x L (x + f '(x L (x, (Fór Capítulo 4 Iterpolacó polomal de Hermte E determadas aplcacoes se precsa métodos de terpolacó que trabaje co datos prescrtos de la fucó y sus dervadas e ua sere de putos, co el objeto de aumetar la aproxmacó

Más detalles

Minimizando el error cuadrático medio se calculan los coeficientes a k : [ ] a, queda [ ] [ ] = [ ] [ ]

Minimizando el error cuadrático medio se calculan los coeficientes a k : [ ] a, queda [ ] [ ] = [ ] [ ] TCNOLOGÍ DL HBL. CUSO 9/ TM : PDICCIÓN LINL. Los vlores de se uede romr or u combcó lel de ls últms muestrs. co.. Método de l utocorrelcó. rror e Mmzdo el error cudrátco medo se clcul los coefcetes : e

Más detalles

Cálculo Numérico (0258) TEMA 5 DIFERENCIACIÓN E INTEGRACIÓN NUMÉRICA. Semestre

Cálculo Numérico (0258) TEMA 5 DIFERENCIACIÓN E INTEGRACIÓN NUMÉRICA. Semestre Cálculo Numérco (58) Semestre - TEMA 5 DIFERENCIACIÓN E INTEGRACIÓN NUMÉRICA Semestre - Septemre Dfereccó e Itegrcó Numérc U.C.V. F.I.U.C.V. CÁLCULO NUMÉRICO (58) - TEMA 5 Ls ots presetds cotucó tee como

Más detalles

Polinomios de Taylor

Polinomios de Taylor Poliomios de Tylor Itroducció Los poliomios so de ls ucioes más bues que hemos usdo lo lrgo de uestros cursos de álisis. Este cliictivo reside e el hecho de que so ucioes cotius co iiits derivds cotius;

Más detalles

EJEMPLO CADENA DE CORREOS.

EJEMPLO CADENA DE CORREOS. Uidd 4 (2) CADENA DE CORREOS MCCVT EJEMPLO CADENA DE CORREOS. ----------------------------------------------------------------------------- Actulmete hy e el mudo u totl de 7, 323, 557, 942.0 (iicios de

Más detalles

1 Áreas de regiones planas.

1 Áreas de regiones planas. Cálculo Mtemático. (Tem 7) Hoj Escuel Uiversitri de Arquitectur Técic Cálculo Mtemático. Tem 7: L itegrl defiid Curso 8-9 Áres de regioes pls. Defiició.- Se f u fució cotiu y o egtiv e el itervlo [, b].

Más detalles

Ejercicios para entrenarse

Ejercicios para entrenarse Uidd Potecis de úmeros reles Ejercicios pr etrerse Clcul ls siguietes expresioes: : 0 :. : 9 :. c)) - 0 -. d)) : : - 9 9 9 - /. Clcul ls siguietes expresioes: x x x x x : x x - x - /x. ( -x) x x x x x

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó

Más detalles

En este capítulo expondremos brevemente (a modo de repaso) conceptos básicos sobre los sistemas de numeración.

En este capítulo expondremos brevemente (a modo de repaso) conceptos básicos sobre los sistemas de numeración. Arquitectur del Computdor ots de Teórico SISTEMAS DE UMERACIÓ. Itroducció E este cpítulo expodremos brevemete ( modo de repso) coceptos básicos sobre los sistems de umerció. o por secillo el tem dej de

Más detalles

!!!""#""!!! !!!""#""!!! 25 Obtén con la calculadora: aa) ) ) ,5 = 9.5 x y 2 x 1/y 5 = 2,

!!!#!!! !!!#!!! 25 Obtén con la calculadora: aa) ) ) ,5 = 9.5 x y 2 x 1/y 5 = 2, Tem Nº ritmétic y álgebr! Obté co l clculdor:, y /y,0 bb ± /y -,0 cc [(--- ---] y /y, dd y ± /y 0,0 ee y /y, f y ± /y 0, gg 0,0 -/ 0,0 00 y ±,00 hh 0, 00 000 /y y ±,0 Epres e form epoecil: dd bb ee cc

Más detalles

TEMA 8: SUCESIONES DE NÚMEROS. PROGRESIONES. a 1, a 2, a 3,, a n

TEMA 8: SUCESIONES DE NÚMEROS. PROGRESIONES. a 1, a 2, a 3,, a n TEMA 8: UCEIONE DE NÚMERO. PROGREIONE.- UCEIONE DE NÚMERO RACIONALE: U sucesió es u cojuto ordedo de úmeros reles:,,,, - Los úmeros turles se llm ídices. El subídice idic el lugr que el térmio ocup e l

Más detalles

COTAS Y EXTREMOS DE CONJUNTOS DE NUMEROS REALES

COTAS Y EXTREMOS DE CONJUNTOS DE NUMEROS REALES VALORES ABSOLUTOS Defiició: si 0 =, si < 0 = Por lo tto 0 R Teorem 2 = 2 Demostrció: si 0 2 = 2, si < 0 2 = ( ) 2 = 2 PROPIEDADES. =. = + + (desiguldd trigulr) = Teorem x x Demostrció: x x 2 2 x 2 2 x

Más detalles

8 1 2n 2. 2( n 1) 1 2n 1 2n 1 2n 1

8 1 2n 2. 2( n 1) 1 2n 1 2n 1 2n 1 E.T.S.I. Idustriles y Telecomuicció Curso 00-0 Grdos E.T.S.I. Idustriles y Telecomuicció Asigtur: Cálculo I Tem : Sucesioes y Series Numérics. Series de Potecis. Ejercicios resueltos Estudir l mootoí de

Más detalles

CAPÍTULO I: LA INTEGRAL

CAPÍTULO I: LA INTEGRAL CAPÍTULO I: LA INTEGRAL. Coceptos geerles. Atdervd. Sums de Rem. Itegrl ded.. Propeddes de l tegrl ded.. Clculo de l tegrl ded. Teorem Fudmetl del Cálculo. Coceptos Geerles Hstórcmete, el cálculo tegrl

Más detalles

= se cumplen todas las igualdades: Por tanto, una solución del sistema se puede considerar como un vector ( s s s s )

= se cumplen todas las igualdades: Por tanto, una solución del sistema se puede considerar como un vector ( s s s s ) SISTEMAS DE ECUACIONES LINEALES Todo problem cuyo eucdo somete úmeros descoocdos vrs codcoes, es susceptble de ser epresdo por medo de gulddes o desgulddes que form u sstem de ecucoes o ecucoes. De hí

Más detalles

FUNDAMENTOS DE CLASE

FUNDAMENTOS DE CLASE FUNDAMENTOS DE CLASE b c r b c Rodrgo A. Ocoró Métodos Numércos Rodrgo A. Ocoró UNIVERSIDAD SANTIAGO DE CALI FACULTAD: INGENIERIAS PROGRAMA: INGENIERÍA DE SISTEMAS ASIGNATURA: METODOS NUMERICOS PRERREQUISITO:

Más detalles

Sucesiones de números reales

Sucesiones de números reales Apédice A Sucesioes de úmeros reles Ejercicios resueltos. Está l sucesió de térmio geerl U cot iferior es pues 5 cotd? 5 5 4 4 lo cul se cumple culquier que se el úmero turl. U cot superior es pues 5 5

Más detalles

TEMA 4. REGRESIONES LINEALES Y NO LINEALES

TEMA 4. REGRESIONES LINEALES Y NO LINEALES TEMA 4. REGRESIONES LINEALES Y NO LINEALES. Itroduccó. Noecltur 3. Lelzcó de ecucoes 4. Ajuste lel 5. Regresó lel últple 6. Regresoes o leles 7. RESUMEN 8. Progrcó e Mtlb . Itroduccó E este te se lz coo

Más detalles

Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino

Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino i quieres que lgo se hg, ecárgselo u perso ocupd Proverbio chio hht ttpp: ://ppeer rssoo..wddoooo..eess/ /ti iimoomt tee Noviembre 006 PROGREIONE DEFINICIÓN DE UCEIÓN NUMÉRICA U sucesió uméric es u cojuto

Más detalles

Métodos Numéricos de Integración. Supóngase que se tiene una función continua en el intervalo [a, b]; entonces para lograr un valor aproximado de

Métodos Numéricos de Integración. Supóngase que se tiene una función continua en el intervalo [a, b]; entonces para lograr un valor aproximado de Uiddd Métodos de itegrció y pliccioes.6 Métodos uméricos de itegrció. Métodos Numéricos de Itegrció Supógse que se tiee u ució cotiu e el itervlo [, b]; etoces pr logrr u vlor proximdo de x dx se divide

Más detalles

CÁLCULO NUMÉRICO (0258)

CÁLCULO NUMÉRICO (0258) CÁLCULO NUÉRICO (58) Tema 4. Apromacó de Fucoes Juo. Ecuetre los polomos de meor grado que terpola a los sguetes cojutos de datos plateado y resolvedo u sstema de ecuacoes leales: 7 y 5-4 7 y 4 9 6.5.7.

Más detalles

C n i V0 V10 V'0 V'10 1.000 10 0,05 7721,73493 12577,8925 8107,82168 13206,7872

C n i V0 V10 V'0 V'10 1.000 10 0,05 7721,73493 12577,8925 8107,82168 13206,7872 9. lcúlese los vlores cl y fl de u ret dscret, medt, formd por térmos de cutí. y vlord u tto perodl del %. Dstgur los csos prepgble y pospgble. Solucó: 7.7,7 ;.77,9 ; (pospgble).7, ;.,79 ; (prepgble).....

Más detalles

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m Igreso Potecició e R: Ddo u úmero rel, que le llmremos bse y u umero turl, l que le llmremos epoete. defiimos: =.... Propieddes de l potecició: veces ( epoete) Ests propieddes se eplic mejor si se etiede

Más detalles

EJERCICIOS DE RAÍCES. a b = RECORDAR: Definición de raíz n-ésima: Equivalencia con una potencia de exponente fraccionario:

EJERCICIOS DE RAÍCES. a b = RECORDAR: Definición de raíz n-ésima: Equivalencia con una potencia de exponente fraccionario: EJERCICIOS DE RAÍCES RECORDAR: Defiició de ríz ésim: x x Equivleci co u poteci de expoete frcciorio: m x Simplificció de rdicles/ídice comú: Propieddes de ls ríces: x m/ b b b p m p b m m ( ) m Itroducir/extrer

Más detalles

Ejercicios Resueltos de Estadística: Tema 5: Inferencia: estimación y contrastes

Ejercicios Resueltos de Estadística: Tema 5: Inferencia: estimación y contrastes Ejerccos Resueltos de Estdístc: Tem 5: Iferec: estmcó y cotrstes . S X ~ N (40,0), clculr Pr (39 X 4) pr 0. E qué tervlo se obtedrá el 95% de los resultdos? 39 40 X Pr (39 X 4) Pr ( 0 40 4 40 ) Pr(-0.363

Más detalles

Fundación Educativa de Desarrollo Social Centro Integral Empresarial por Madurez CIEM

Fundación Educativa de Desarrollo Social Centro Integral Empresarial por Madurez CIEM Fudció Eductiv de Desrrollo Socil Cetro Itegrl Empresril por Mdurez Lbortorio Le deteidmete, ls propieddes de l potecició Si N es decir Ejemplos: y R, etoces... veces 6 PROPIEDADES DE LA POTENCIACION.

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES SISTEMS DE ECUCIONES U sistem de ecucioes es u cojuto de ecucioes que cotiee ls misms vribles. L solució so los vlores de ls vribles pr los cules el sistem se cumple. Resolver u sistem es ecotrr tods ls

Más detalles

Progresiones aritméticas y geométricas

Progresiones aritméticas y geométricas Progresioes ritmétics y geométrics Progresioes ritmétics y geométrics. Esquem de l uidd PROGRESIONES Progresioes Aritmétics Progresioes Geométrics Iterés compuesto Sum de térmios Sum de térmios Producto

Más detalles

Capítulo 10. Teoría de pertubaciones

Capítulo 10. Teoría de pertubaciones Cpítulo Teorí de pertubcoes Desrrollo perturbtvo Vlores propos Norlzcó Desrrollo de ls correccoes e l bse del hltoo de referec Estdos o degeerdos Eeplo: Oscldor róco e u cpo de fuerz costte Eeplo: Efecto

Más detalles

TEMA 4. LOGARITMOS 1. REPASO DE POTENCIAS 2. DEFINICIÓN DE LOGARITMO. Ejercicio 1. a = 1 = 3 porque 1 = ACCESO UNIVERSIDAD

TEMA 4. LOGARITMOS 1. REPASO DE POTENCIAS 2. DEFINICIÓN DE LOGARITMO. Ejercicio 1. a = 1 = 3 porque 1 = ACCESO UNIVERSIDAD TEMA 4. LOGARITMOS. REPASO DE POTENCIAS - Poteci de epoete turl: = ( veces) - Poteci de epoete ulo: 0 = - Poteci de epoete egtivo: - = / - Poteci de epoete frcciorio: Propieddes: - m = +m - : m = -m -

Más detalles

1. ESTIMACIÓN DE RADICALES Llamaremos estimar una raíz a dar una aproximación de ella. Por ejemplo, Raíz de 178 aproximadamente es 13 4.

1. ESTIMACIÓN DE RADICALES Llamaremos estimar una raíz a dar una aproximación de ella. Por ejemplo, Raíz de 178 aproximadamente es 13 4. Amplició potecis y rdicles º ESO Curso 06_07. ESTIMACIÓN DE RADICALES Llmremos estimr u ríz dr u proimció de ell. or ejemplo, 78. Ríz de 78 proimdmete es.. RADICALES EN FORMA DE OTENCIA El vlor de u ríz

Más detalles

Tema 3: Progresiones.

Tema 3: Progresiones. Tem : Progresioes. Ejercicio. Los dos primeros térmios de u progresió geométric so 50 y 00. Clculr r, 6 y. Solució: 00 r 00 50 r r, 50 50, 00, 60, 4 4, 58, 5 4 ; 6, 08 6 TÉRMINO GENERAL: 50, - Ahor lo

Más detalles

INSTITUCIÓN EDUCATIVA DINAMARCA DOCENTE LETICIA LOPERA ZULETA GUÍA # 4- GRADO NOVENO POTENCIACIÓN Y RADICACIÓN NOMBRES: POTENCIA DE UN NÚMERO

INSTITUCIÓN EDUCATIVA DINAMARCA DOCENTE LETICIA LOPERA ZULETA GUÍA # 4- GRADO NOVENO POTENCIACIÓN Y RADICACIÓN NOMBRES: POTENCIA DE UN NÚMERO INSTITUCIÓN EDUCATIVA DINAMARCA DOCENTE LETICIA LOPERA ZULETA GUÍA # 4- GRADO NOVENO POTENCIACIÓN Y RADICACIÓN NOMBRES: Si POTENCIA DE UN NÚMERO N y R, etoces, es igul l producto de veces el úmero rel

Más detalles

Intensificación en Estadística

Intensificación en Estadística GRADO EN VETERINARIA DEPARTAMENTO DE ESTADÍSTICA E IO 0-0 IV Curso Cero Itesfcacó e Estadístca Itroduccó a la fucó Sumatoro Itroduccó Cocepto de fucó sumatoro Aplcacoes Itroduccó Cocepto de fucó sumatoro

Más detalles

los coeficientes 10 y 30 tienen los factores comunes 2, 5 y 10, se saca el mayor factor común: 10, de las letras el factor 2

los coeficientes 10 y 30 tienen los factores comunes 2, 5 y 10, se saca el mayor factor común: 10, de las letras el factor 2 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN ) Fctor comú moomio. Ejemplos: descompoer e fctores ) fctor comú como coeficiete de u prétesis; detro de los prétesis se escrie

Más detalles

Matemáticas II Hoja 2: Matrices

Matemáticas II Hoja 2: Matrices Profesor: Miguel Ágel Bez lb (º Bchillerto) Mtemátics II Hoj : Mtrices Opercioes: Ejercicio : Ecotrr ls mtrices X e Y tles que: X Y 5 X Y 7 Ejercicio : 5 Dds ls mtrices y B, clcul: ) -B b) B c) B(-) d)

Más detalles

TERCER PERÍODO 2015 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN

TERCER PERÍODO 2015 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN TERCER PERÍODO 01 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN ) Fctor comú moomio. Ejemplos: descompoer e fctores ) fctor comú como coeficiete de u prétesis; detro de los prétesis

Más detalles

Aproximación al área bajo una curva.

Aproximación al área bajo una curva. Aproimció l áre jo u curv. Por: Miguel Solís Esquic Profesor de tiempo completo Uiversidd Autóom de Cips Clculr cd u de ls áres de los rectágulos que lle l regió cotd pr lczr el vlor del áre ecesrimete

Más detalles

2.5. Área de una superficie.

2.5. Área de una superficie. .5. Área de ua superfce. Sea g ua fucó co prmeras dervadas parcales cotuas, tal que z g( x y), 0 e toda la regó D del plao xy. Sea S la parte de la gráfca de g cuya proyeccó e el plao xy es como se lustra

Más detalles

Método del spline cúbico. Cuando un número grande de datos tiene que ajustarse a una curva suave, la interpolación de Lagrange no es adecuada.

Método del spline cúbico. Cuando un número grande de datos tiene que ajustarse a una curva suave, la interpolación de Lagrange no es adecuada. MÉTODO DEL PLINE CÚBICO PROGRAMACIÓN AVANZADA emestre 09- Método del sple úo. Cudo u úmero grde de dtos tee que justrse u urv suve l terpoló de Lgrge o es deud. Pr esto se emple el método del sple úo este

Más detalles