1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA"

Transcripción

1 MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse en dos grandes grupos (grupo A y grupo B), pero su clasificación no es sencilla, bien porque implique un estudio costoso, bien porque se refiera al futuro, o por cualquier otro motivo. Sin embargo, el conocimiento de los valores de algunas variables de esos individuos puede resultar de mucha ayuda para su clasificación. Ejemplos Los individuos de cierta especie de aves pueden pertenecer a dos subespecies. A simple vista, no es fácil determinar a cuál de ellas pertenece un ejemplar determinado, pero el conocimiento de su peso y de su envergadura pueden ayudar a una correcta clasificación. En este caso, podemos llamar A y B a las dos subespecies. La supervivencia de los árboles tras el paso de una tormenta de gran intensidad se piensa que depende, sobre todo, de su diámetro y de una medida de la severidad local de la tormenta. En este caso, podemos decir que un árbol estaría en el grupo A si no sobrevive, y en el grupo B cuando sobrevive. 2 Modelo. Hipótesis del modelo Consideramos, por tanto que los individuos de una población pueden pertenecer a dos grupos que llamaremos A y B. Los elementos que van a intervenir en un modelo de regresión logística son los siguientes: Una variable respuesta (o dependiente), Y, que será una variable dicotómica, que tomará el valor (cuando el individuo pertenece al grupo A) y el valor 0 (cuando el individuo pertenece al grupo B). Formalmente, será una variable aleatoria de tipo discreto con distribución de Bernoulli. Varias posibles variables explicativas (o regresoras o independientes), X,..., X k, que serán variables numéricas (o cuantitativas). Finalmente, necesitamos datos. Supondremos que disponemos de n conjuntos de datos: (y i, x i,..., x ki ) para i =,..., n Por supuesto, sigue siendo absolutamente necesario que los datos vayan unidos en el sentido de que (y i, x i,..., x ki ) representan los valores de Y, X,..., X k en el i-ésimo individuo o unidad muestral. El objetivo del modelo de regresión logística es expresar la probabilidad de pertenecer al grupo A en función de los valores de las variables explicativas o regresoras. En principio, ese modelo podría ser algo del siguiente estilo: P r(a) = P r(y i = ) = β 0 + β x i β j x ji β k x ki para i =,..., n Pero este modelo tiene el inconveniente obvio de que el segundo miembro raramente tendrá un valor entre 0 y. Por este y otros motivos, se va a recurrir a una

2 versión sencilla de la función logística (que se estudió en el curso de Matemáticas): f(x) = + e x Esta función tiene la ventaja de que siempre toma valores entre 0 y, siendo por tanto una función muy adecuada para modelizar probabilidades. En resumen, el modelo de regresión logística es de la siguiente forma: P r(a) = P r(y i = ) = + e β 0 β x i... β j x ji... β k x ki para i =,..., n Es decir, el modelo de regresión logística estipula que la probabilidad de que un individuo pertenezca al grupo A (o en términos técnicos, la probabilidad de que la variable Y tome el valor ) depende de los valores concretos que tengan las variables X,..., X k en ese individuo, a través de la función anterior. En resumen, las hipótesis iniciales del modelo de regresión logística son las siguientes: () Las observaciones Y,..., Y n son independientes. (2) Cada Y i sigue una distribución de Bernoulli. (3) La probabilidad de que Y i sea igual a (probabilidad de que el individuo pertenezca al grupo A) depende de los valores de las variables X,..., X k a traves del siguiente modelo: P r(a) = P r(y i = ) = + e β 0 β x i... β j x ji... β k x ki para i =,..., n Como en todos los modelos de regresión, necesitaremos estimar los parámetros del modelo, β 0,...β j,..., β k, mediante estimadores puntuales, mediante intervalos de confianza, y también estaremos interesados en algún contraste de hipótesis sobre esos parámetros. 3 Significado de los parámetros Una vez que los valores de los parámetros hayan sido estimados, el modelo de regresión logística proporciona (aproximadamente) la probabilidad de que un individuo concreto pertenezca al grupo A, cuando los valores de las variables regresoras para ese individuo son x,..., x k, mediante la fórmula: P r(a) = P r(y = ) = + e β 0 β x... β j x j... β k x k Es muy conveniente saber cuál es el significado intuitivo de los parámetros β,..., β j,..., β k. En el modelo de regresión lineal múltiple, el significado intuitivo de β j era muy sencillo, ya que β j medía la variación media que experimentaba la variable respuesta cuando X j aumentaba una unidad. En el modelo de regresión logístico, la interpretación se complica un poco. Esta interpretación se explica en los siguientes pasos: 2

3 () En primer lugar, calculamos el siguiente cociente o razón de probabilidades, que se representará con la letra O (del inglés odds): O(x,..., x j,..., x k ) = P r(a) P r(b) +e β 0 β x... β j x j... β k x k P r(y = ) = P r(y = 0) = = e β 0+β x +...+β j x j +...+β k x k +e β 0 β x... β j x j... β k x k (2) Si aumentamos la variable X j una unidad, manteniendo las demás en los valores que tenían antes, el cociente de probabilidades sería de la forma: O(x,..., x j +,..., x k ) = e β 0+β x +...+β j (x j +)+...+β k x k (3) Si dividimos los dos cocientes, tenemos: O(x,..., x j +,..., x k ) O(x,..., x j,..., x k ) Escrito de otra forma: = eβ 0+β x +...+β j (x j +)+...+β k x k e β 0+β x +...+β j x j +...+β k x k = e β j O(x,..., x j +,..., x k ) = e β j O(x,..., x j,..., x k ) En consecuencia: El cociente de probabilidades se multiplicará por e β j cuando aumentamos una unidad el valor de X j (manteniendo constantes todas las demás). Por ejemplo, si e β j = 2, el cociente de probabilidades se multiplicaría por 2. 4 Estimadores puntuales Mediante la aplicación del método de máxima verosimilitud, se obtendrían los estimadores puntuales de los parámetros: ˆβ 0, ˆβ,..., ˆβ k Estas estimaciones son ofrecidas por los programas de análisis estadístico. En particular, el SPSS ofrece estas estimaciones en la tabla de Variables en la ecuación que se obtiene mediante: Analizar Regresión Logística binaria En esa misma tabla, aparecen también las estimaciones de e β j, cuyo significado se ha explicado en la sección anterior. 5 Intervalos de confianza Mediante la aplicación del método de la cantidad pivotal, se obtendrían los intervalos de confianza, al nivel α, para estimar β 0, β,..., β k : IC α (β j ) = ( ˆβj ± z α/2 (error típico de ˆβ j ) ) para j = 0,,..., n 3

4 Los errores típicos de ˆβ j aparecerán en la tabla de Variables en la ecuación de SPSS. También es posible obtener intervalos de confianza para e β j mediante el SPSS, activando la opción correspondiente dentro del botón Opciones.... Dichos intervalos aparecerán en la tabla de Variables en la ecuación. 6 Contrastes de hipótesis En esta sección, vamos a considerar los contrastes de hipótesis necesarios para estudiar si las variables regresoras que se introdujeron en el modelo son realmente necesarias o explicativas. El tipo de pregunta que nos planteamos es de la siguiente forma: Disponemos de suficiente evidencia muestral para afirmar que X j tiene un papel relevante en el modelo o, dicho de otra forma, una influencia significativa sobre la probabilidad de clasificación en el grupo A? Dado que la posible influencia de X j desaparecería si su coeficiente β j se anulase, esto nos lleva a elegir entre las posibilidades β j = 0 y β j 0 y, por tanto, al siguiente contraste de hipótesis: H 0 : β j = 0 (X j no influye) H : β j 0 (X j sí influye) Elegiremos un nivel de significación α para tomar una decisión al final del estudio. Esta decisión la podemos tomar utilizando el intervalo de confianza IC α (β j ): Si el valor cero está contenido en IC α (β j ), aceptamos H 0, y la conclusión es que no hay evidencia estadística para afirmar que X j tiene una influencia significactiva sobre la probabilidad de clasificación. Por el contrario, si el valor cero no está contenido en IC α (β j ), rechazamos H 0, y la conclusión en este caso es que disponemos de suficiente evidencia estadística para afirmar que X j tiene una influencia significactiva sobre la probabilidad de clasificación. De manera equivalente, se puede utilizar la siguiente región de rechazo de H 0 : { R = ˆβ } j error típico de ˆβ > z α/2 j También se puede utilizar el p-valor que proporciona la tabla de Variables en la ecuación del SPSS. 7 Evaluación del modelo La evaluación global del modelo se puede efectuar mediante los coeficientes de determinación R 2 de Cox y Snell, y el de Nagelkerke. Los valores de estos coeficientes de determinación se pueden ver en la tabla de Resumen del modelo del SPSS. Ambos coeficiente toman valores entre 0 y, y su interpretación es similar a la interpretación del coeficiente de determinación del modelo de regresión lineal, es decir, cuánto más cercanos están a, mejor es el modelo. 4

5 8 Estimación de las probabilidades Una vez que hemos obtenido las estimaciones puntuales de los parámetros, ˆβ0, ˆβ,..., ˆβ k, es muy sencillo estimar la probabilidad de que un individuo pertenezca al grupo A, cuando los valores de las variables regresoras para ese individuo son X = x,..., X k = x k. Para hacer esto, es suficiente con sustituir las estimaciones de los parámetros en el modelo de regresión logística: P r(a) = P r(y = ) = + e ˆβ 0 ˆβ x... ˆβ k x k En particular, si al utilizar el SPSS, activamos la opción Probabilidades dentro del botón Guardar..., el programa calcula las probabilidades estimadas para cada uno de los individuos que intervienen en la muestra, y las guarda en una nueva columna del Editor de Datos. 9 Clasificación de los individuos Utilizando el modelo de regresión logística, es posible dar una regla sencilla que sirva para clasificar los distintos individuos en el grupo A o en el grupo B? La respuesta es afirmativa y se obtiene mediante un sencillo razonamiento: Clasificaremos a un individuo en el grupo A (es decir, Y =) cuando: P r(a) = P r(y = ) = + e ˆβ 0 ˆβ x... ˆβ k x k > 2 2 > + e ˆβ 0 ˆβ x... ˆβ k x k e ˆβ 0 ˆβ x... ˆβ k x k < ˆβ 0 ˆβ x... ˆβ k x k < 0 ˆβ0 + ˆβ x ˆβ k x k > 0 En resumen, la regla para saber si un individuo debe ser clasificado en el grupo A o en el grupo B, cuando los valores de las variables regresoras para ese individuo son X = x,..., X k = x k, es muy sencilla de describir: Si ˆβ 0 + ˆβ x ˆβ k x k > 0, lo clasificamos en el grupo A (es decir, Y = ) Si ˆβ 0 + ˆβ x ˆβ k x k < 0, lo clasificamos en el grupo B (es decir, Y = 0) Si estamos utilizando el SPSS, y activamos la opción Grupo de pertenencia dentro del botón Guardar..., el programa asigna cada dato a un grupo (A o B) utilizando la regla anterior, y nos muestra esta clasificación (Y = ó Y = 0) en una nueva columna del Editor de Datos. En el caso particular de que estemos trabajando con dos variables regresoras, X y X 2, la regla de clasificación proporciona una recta en el diagrama de dispersión de X 2 sobre X que separa las dos regiones. 5

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M.

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Abordaremos en este capítulo el modelo de regresión lineal múltiple, una vez que la mayor parte de las

Más detalles

Tema 10: Introducción a los problemas de Asociación y Correlación

Tema 10: Introducción a los problemas de Asociación y Correlación Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación

Más detalles

Tema 8: Regresión y Correlación

Tema 8: Regresión y Correlación Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN SIMPLE Julián de la Horra Departamento de Matemáticas U.A.M.

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN SIMPLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción MODELO DE REGRESIÓN SIMPLE Julián de la Horra Departamento de Matemáticas U.A.M. Los modelos de regresión sirven, en general, para tratar de expresar una variable respuesta (numérica) en

Más detalles

Regresión múltiple. Demostraciones. Elisa Mª Molanes López

Regresión múltiple. Demostraciones. Elisa Mª Molanes López Regresión múltiple Demostraciones Elisa Mª Molanes López El modelo de regresión múltiple El modelo que se plantea en regresión múltiple es el siguiente: y i = β 0 + β 1 x 1i + β 2 x 2i +...+ β k x ki +

Más detalles

TEMA 4 Modelo de regresión múltiple

TEMA 4 Modelo de regresión múltiple TEMA 4 Modelo de regresión múltiple José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Estructura de este tema Modelo de regresión múltiple.

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis TODO ECONOMETRIA Bondad del ajuste Contraste de hipótesis Índice Bondad del ajuste: Coeficiente de determinación, R R ajustado Contraste de hipótesis Contrastes de hipótesis de significación individual:

Más detalles

INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M.

INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la estimación mediante Intervalos de Confianza, que es otro de los tres grandes

Más detalles

Tercera práctica de REGRESIÓN.

Tercera práctica de REGRESIÓN. Tercera práctica de REGRESIÓN. DATOS: fichero practica regresión 3.sf3 1. Objetivo: El objetivo de esta práctica es aplicar el modelo de regresión con más de una variable explicativa. Es decir regresión

Más detalles

Contrastes de hipótesis paramétricos

Contrastes de hipótesis paramétricos Estadística II Universidad de Salamanca Curso 2011/2012 Outline Introducción 1 Introducción 2 Contraste de Neyman-Pearson Sea X f X (x, θ). Desonocemos θ y queremos saber que valor toma este parámetro,

Más detalles

Departamento de Medicina Preventiva y Salud Publica e Historia de la Ciencia. Universidad Complutense de Madrid. SPSS para windows.

Departamento de Medicina Preventiva y Salud Publica e Historia de la Ciencia. Universidad Complutense de Madrid. SPSS para windows. TEMA 13 REGRESIÓN LOGÍSTICA Es un tipo de análisis de regresión en el que la variable dependiente no es continua, sino dicotómica, mientras que las variables independientes pueden ser cuantitativas o cualitativas.

Más detalles

TEMA V ANÁLISIS DE REGRESIÓN LOGÍSTICA

TEMA V ANÁLISIS DE REGRESIÓN LOGÍSTICA TEMA V ANÁLISIS DE REGRESIÓN LOGÍSTICA LECTURA OBLIGATORIA Regresión Logística. En Rial, A. y Varela, J. (2008). Estadística Práctica para la Investigación en Ciencias de la Salud. Coruña: Netbiblo. Páginas

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL SIMPLE 1. El problema de la regresión lineal simple. Método de mínimos cuadrados 3. Coeficiente de regresión 4. Coeficiente de correlación lineal 5. El contraste de regresión 6. Inferencias

Más detalles

T2. El modelo lineal simple

T2. El modelo lineal simple T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10 Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

2 Modelo de Diseño de Experimentos con dos factores sin interacción. Hipótesis del modelo

2 Modelo de Diseño de Experimentos con dos factores sin interacción. Hipótesis del modelo MODELO DE DISEÑO DE EXPERIMENTOS (VARIOS FACTORES) Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Los modelos de diseño de experimentos sirven, en general, para tratar de explicar

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

VARIABLES ESTADÍSTICAS BIDIMENSIONALES

VARIABLES ESTADÍSTICAS BIDIMENSIONALES VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1.- En una variable estadística bidimensional, el diagrama de dispersión representa: a) la nube de puntos. b) las varianzas de las dos variables. c) los coeficientes

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

PRÁCTICA 3. REGRESIÓN LINEAL SIMPLE CON SPSS Ajuste de un modelo de regresión lineal simple Porcentaje de variabilidad explicado

PRÁCTICA 3. REGRESIÓN LINEAL SIMPLE CON SPSS Ajuste de un modelo de regresión lineal simple Porcentaje de variabilidad explicado PÁCTICA 3. EGESIÓN LINEAL SIMPLE CON SPSS 3.1. Gráfico de dispersión 3.2. Ajuste de un modelo de regresión lineal simple 3.3. Porcentaje de variabilidad explicado 3.4 Es adecuado este modelo para ajustar

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Prácticas Tema 2: El modelo lineal simple

Prácticas Tema 2: El modelo lineal simple Prácticas Tema 2: El modelo lineal simple Ana J. López y Rigoberto Pérez Departamento de Economía Aplicada. Universidad de Oviedo PRACTICA 2.1- Se han analizado sobre una muestra de 10 familias las variables

Más detalles

Ejercicio 1 (20 puntos)

Ejercicio 1 (20 puntos) ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Examen Montevideo, 15 de diciembre de 2015. Nombre: C.I.: EXAMEN Libre Reglamentado El examen consta de dos partes. La primera parte debe ser realizada

Más detalles

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo Estructura de este tema Tema 3 Contrastes de hipótesis José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Qué es un contraste de hipótesis? Elementos de un contraste: hipótesis,

Más detalles

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r)

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) Correlación El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) El coeficiente de correlación lineal de Pearson (r) permite medir el grado de asociación entre

Más detalles

Unidad IV: Distribuciones muestrales

Unidad IV: Distribuciones muestrales Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

CM0244. Suficientable

CM0244. Suficientable IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE

Más detalles

TEMA 3: Contrastes de Hipótesis en el MRL

TEMA 3: Contrastes de Hipótesis en el MRL TEMA 3: Contrastes de Hipótesis en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 3: Contrastes de Hipótesis Curso 2011-12

Más detalles

Ejemplo 6.2. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística)

Ejemplo 6.2. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística) Ejemplo 6.2 Inferencia en el Modelo de Regresión Lineal General Pilar González y Susan Orbe Dpto. Economía Aplicada III (Econometría y Estadística) Pilar González y Susan Orbe OCW 2013 Ejemplo 6.2 Inferencia

Más detalles

Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Práctica 6: Regresión Logística I

Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Práctica 6: Regresión Logística I Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Índice 1. Objetivos de la práctica 2 2. Estimación de un modelo de regresión logística con SPSS 2 2.1. Ajuste de un modelo de regresión logística.............................

Más detalles

Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables

Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables Pág. N. 1 Índice general Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN 1.1 Diseño 1.2 Descriptiva 1.3 Inferencia Diseño Población Muestra Individuo (Observación, Caso, Sujeto) Variables Ejercicios de Población

Más detalles

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8. UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis Facultad de Ciencias Sociales, UdelaR Índice 1. Introducción: hipótesis estadística, tipos de hipótesis, prueba de hipótesis 2.

Más detalles

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA)

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) El análisis de la varianza permite contrastar la hipótesis nula de que las medias de K poblaciones (K >2) son iguales, frente a la hipótesis alternativa de

Más detalles

Tema 3: Análisis de datos bivariantes

Tema 3: Análisis de datos bivariantes Tema 3: Análisis de datos bivariantes 1 Contenidos 3.1 Tablas de doble entrada. Datos bivariantes. Estructura de la tabla de doble entrada. Distribuciones de frecuencias marginales. Distribución conjunta

Más detalles

Tema 9: Contraste de hipótesis.

Tema 9: Contraste de hipótesis. Estadística 84 Tema 9: Contraste de hipótesis. 9.1 Introducción. El objetivo de este tema es proporcionar métodos que permiten decidir si una hipótesis estadística debe o no ser rechazada, en base a los

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

Jesús Eduardo Pulido Guatire, marzo Diagrama de Dispersión y Correlación Lineal Simple

Jesús Eduardo Pulido Guatire, marzo Diagrama de Dispersión y Correlación Lineal Simple Jesús Eduardo Pulido Guatire, marzo 0 Diagrama de Dispersión y Correlación Lineal Simple Hasta el momento el trabajo lo hemos centrado en resumir las características de una variable mediante la organización

Más detalles

Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística

Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Regresión lineal Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Universidad Católica del Maule Facultad de Ciencias Básicas Pedagogía en Matemática Estadística I 01 de enero de 2012

Más detalles

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 Román Salmerón Gómez Universidad de Granada RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 exacta: aproximada: exacta: aproximada: RSG Incumplimiento de las

Más detalles

GUIA DOCENTE. Curso Académico Licenciatura Administración y Dirección de Empresas

GUIA DOCENTE. Curso Académico Licenciatura Administración y Dirección de Empresas GUIA DOCENTE Curso Académico 2012-2013 1. ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA 1.1. Datos de la asignatura Tipo de estudios Licenciatura Titulación Administración y Dirección de Empresas Nombre

Más detalles

Tema 8: Contraste de hipótesis

Tema 8: Contraste de hipótesis Tema 8: Contraste de hipótesis 1 En este tema: Conceptos fundamentales: hipótesis nula y alternativa, nivel de significación, error de tipo I y tipo II, p-valor. Contraste de hipótesis e IC. Contraste

Más detalles

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste 1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y

Más detalles

Prácticas Tema 6. Modelos de ecuaciones simultáneas

Prácticas Tema 6. Modelos de ecuaciones simultáneas Prácticas Tema 6. Modelos de ecuaciones simultáneas Ana J. López y Rigoberto Pérez Dpto. Economía Aplicada, Universidad de Oviedo PRÁCTICA 6.1- La oferta agregada de determinado producto agrícola (QS)

Más detalles

Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Estadística Básica COMISIÓN 1. 1 Cuatrimestre 2016

Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Estadística Básica COMISIÓN 1. 1 Cuatrimestre 2016 Universidad Nacional de Mar del Plata Facultad de Ingeniería Estadística Básica COMISIÓN 1 1 Cuatrimestre 2016 s. La palabra Estadística procede del vocablo Estado, pues era función principal de los Gobiernos

Más detalles

4.1 Análisis bivariado de asociaciones

4.1 Análisis bivariado de asociaciones 4.1 Análisis bivariado de asociaciones Los gerentes posiblemente estén interesados en el grado de asociación entre dos variables Las técnicas estadísticas adecuadas para realizar este tipo de análisis

Más detalles

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 22 - Diciembre - 2.006 Primera Parte - Test Apellidos y Nombre:... D.N.I. :... Nota : En la realización de este examen sólo esta permitido utilizar calculadoras

Más detalles

Guía docente 2007/2008

Guía docente 2007/2008 Guía docente 2007/2008 Plan 247 Lic.Investigación y Tec.Mercado Asignatura 43579 METODOS CUANTITATIVOS PARA LA INVESTIGACION DE MERCADOS Grupo 1 Presentación Métodos y técnicas cuantitativas de investigación

Más detalles

PROGRAMA DE ESTADÍSTICA DESCRIPTIVA

PROGRAMA DE ESTADÍSTICA DESCRIPTIVA PROGRAMA DE ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS DE ESTADÍSTICA Definición de Estadística Origen del concepto. Evolución histórica de la Estadística Estadística Descriptiva y Estadística Inferencial

Más detalles

Tema 9: Introducción al problema de la comparación de poblaciones

Tema 9: Introducción al problema de la comparación de poblaciones Tema 9: Introducción al problema de la comparación de poblaciones Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 9: Introducción al problema

Más detalles

ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M.

ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la Estimación Puntual, que es uno de los tres grandes conjuntos de técnicas que

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL PROGRAMA DE LA ASIGNATURA DE: IDENTIFICACIÓN DE LA ASIGNATURA

Más detalles

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso Septiembre Primera Parte

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso Septiembre Primera Parte ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 13 - Septiembre - 2.004 Primera Parte Apellidos y Nombre:... D.N.I. :... Nota : En la realización de este examen sólo esta permitido utilizar calculadoras

Más detalles

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. 1. DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad y Estadística Ingeniería Electromecánica EMM - 0528 3 2 8 2.- HISTORIA

Más detalles

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.

Más detalles

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI 2014 Para qué es útil la estadística inferencial? Se utiliza para probar hipótesis y generalizar los resultados obtenidos en la muestra a la población o universo.

Más detalles

CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES

CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES TUTORÍA DE INTRODUCCIÓN A LA ESTADÍSTICA (º A.D.E.) CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES 1º) Qué ocurre cuando r = 1: a) Los valores teóricos no

Más detalles

4º E.S.O Opción A: DEPARTAMENTO DE MATEMÁTICAS

4º E.S.O Opción A: DEPARTAMENTO DE MATEMÁTICAS 4º E.S.O Opción A: DEPARTAMENTO DE MATEMÁTICAS OBJETIVOS 1. Conocer, diferenciar y operar con cualquier número en cualquiera de sus formatos usando las aproximaciones adecuadas. 2. Conocer la importancia

Más detalles

CONTRASTE DE HIPÓTESIS

CONTRASTE DE HIPÓTESIS CONTRASTE DE HIPÓTESIS Antonio Morillas A. Morillas: Contraste de hipótesis 1 CONTRASTE DE HIPÓTESIS 1. Introducción 2. Conceptos básicos 3. Región crítica óptima i. Teorema de Neyman-Pearson ii. Región

Más detalles

CORRELACIÓN Y REGRESIÓN. Raúl David Katz

CORRELACIÓN Y REGRESIÓN. Raúl David Katz CORRELACIÓN Y REGRESIÓN Raúl David Katz 1 Correlación y regresión Introducción Hasta ahora hemos visto el modo de representar la distribución de frecuencias de los datos correspondientes a una variable

Más detalles

ENUNCIADOS DE PROBLEMAS

ENUNCIADOS DE PROBLEMAS UNIVERSIDAD CARLOS III DE MADRID ECONOMETRÍA I 22 de Septiembre de 2007 ENUNCIADOS DE PROBLEMAS Muy importante: Tenga en cuenta que algunos resultados de las tablas han podido ser omitidos. PROBLEMA 1:

Más detalles

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores.

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores. PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO. 159 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 16 EXAMEN RESUELTO POR JAVIER SUÁREZ CABALLERO (@javiersc9) OBSERVACIONES IMPORTANTES:

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre

Más detalles

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos INDICE Prefacio VII 1. Introducción 1 1.1. Qué es la estadística moderna? 1 1.2. El crecimiento y desarrollo de la estadística moderna 1 1.3. Estudios enumerativos en comparación con estudios analíticos

Más detalles

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016 ANEXO ESTADÍSTICO 1 : COEFICIENTES DE VARIACIÓN Y ERROR ASOCIADO AL ESTIMADOR ENCUESTA NACIONAL DE EMPLEO (ENE) INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 9 de Abril de 016 1 Este anexo estadístico es una

Más detalles

UNIDAD 7: SISTEMAS DE ECUACIONES. CONTENIDOS

UNIDAD 7: SISTEMAS DE ECUACIONES. CONTENIDOS UNIDAD 7: SISTEMAS DE ECUACIONES. * Ecuaciones lineales con dos incógnitas. * Sistemas de 2 ecuaciones con 2 incógnitas. Resolución gráfica y analítica. * Sistemas equivalentes. * Tipos de sistemas de

Más detalles

Tribunal de la Oposición al Cuerpo Superior de Estadísticos del Estado

Tribunal de la Oposición al Cuerpo Superior de Estadísticos del Estado Tribunal de la Oposición al Cuerpo Superior de Estadísticos del Estado Pruebas selectivas para el ingreso en el Cuerpo Superior de Estadísticos del Estado. Orden ECC/1517/2015, de 16 de Julio (BOE 27/07/2015).

Más detalles

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS 1 POR QUÉ SE LLAMAN CONTRASTES NO PARAMÉTRICOS? A diferencia de lo que ocurría en la inferencia paramétrica, ahora, el desconocimiento de la población que vamos

Más detalles

Fundamentos de Estadística y Simulación Básica

Fundamentos de Estadística y Simulación Básica Fundamentos de Estadística y Simulación Básica TEMA 4 Distribución de Probabilidades Distribución de Probabilidades Distribución de Probabilidades Variables Aleatorias: Discreta y Continua Función Densidad

Más detalles

= 134, 5 Tercer cuartil: Q 3 = Pueden considerarse normales. =2 P 10 = 118 horas. f(x) =

= 134, 5 Tercer cuartil: Q 3 = Pueden considerarse normales. =2 P 10 = 118 horas. f(x) = SOLUCIONES AL EXAMEN DE MÉTODOS ESTADÍSTICOS 2 0 ITIE. 19 /01/2009 1. X = 132, 25 Mediana: M e = 134 + 135 2 = 134, 5 Tercer cuartil: Q 3 = 140 + 141 2 = 140, 5 11 288 12 11267 13 04566 14 0127 15 12 Pueden

Más detalles

MINISTERIO DE EDUCACIÓN. Educación Técnica y Profesional. Familia de especialidades: Economía. Programa: Estadística

MINISTERIO DE EDUCACIÓN. Educación Técnica y Profesional. Familia de especialidades: Economía. Programa: Estadística MINISTERIO DE EDUCACIÓN Educación Técnica y Profesional Familia de especialidades: Economía Programa: Estadística Nivel: Técnico Medio en Contabilidad. Escolaridad inicial: 12mo. Grado AUTORA MSc. Caridad

Más detalles

Estadística para la Economía y la Gestión IN 3401 Clase 5

Estadística para la Economía y la Gestión IN 3401 Clase 5 Estadística para la Economía y la Gestión IN 3401 Clase 5 Problemas con los Datos 9 de junio de 2010 1 Multicolinealidad Multicolinealidad Exacta y Multicolinealidad Aproximada Detección de Multicolinealidad

Más detalles

Estadística para la Economía y la Gestión IN 3401 Clase 5

Estadística para la Economía y la Gestión IN 3401 Clase 5 Estadística para la Economía y la Gestión IN 3401 Clase 5 21 de octubre de 2009 1 Variables Dummies o cualitativas 2 Omisión de Variables Relevantes Impacto sobre el Insesgamiento Impacto sobre la Varianza

Más detalles

Estadística Descriptiva II: Relación entre variables

Estadística Descriptiva II: Relación entre variables Estadística Descriptiva II: Relación entre variables Iniciación a la Investigación Ciencias de la Salud MUI Ciencias de la Salud, UEx 25 de octubre de 2010 De qué trata? Descripción conjunto concreto de

Más detalles

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado.

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado. NORMAS El examen consta de dos partes: 0.0.1. Diez Cuestiones: ( tiempo: 60 minutos) No se permite ningún tipo de material (libros, apuntes, calculadoras,...). No se permite abandonar el aula una vez repartido

Más detalles

PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07

PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 TEMAS A ESTUDIAR En esta guía nos dedicaremos a estudiar el tema de Estimación por intervalo y comenzaremos a estudiar las pruebas de hipótesis paramétricas.

Más detalles

MINISTERIO DE EDUCACIÓN. Dirección de Educación Técnica y Profesional. Familia de especialidades:servicios. Programa: Estadística Matemática

MINISTERIO DE EDUCACIÓN. Dirección de Educación Técnica y Profesional. Familia de especialidades:servicios. Programa: Estadística Matemática MINISTERIO DE EDUCACIÓN Dirección de Educación Técnica y Profesional Familia de especialidades:servicios Programa: Estadística Matemática Nivel: Técnico Medio en Contabilidad. Escolaridad inicial: 9no.

Más detalles

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 5 Simulación

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 5 Simulación OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 5 Simulación ORGANIZACIÓN DEL TEMA Sesiones: Introducción Ejemplos prácticos Procedimiento y evaluación de resultados INTRODUCCIÓN Simulación: Procedimiento

Más detalles

ESTADÍSTICA I PRESENTACIÓN DE LA ASIGNATURA

ESTADÍSTICA I PRESENTACIÓN DE LA ASIGNATURA ESTADÍSTICA I PRESENTACIÓN DE LA ASIGNATURA Descripción de la asignatura Estadística I El objetivo de la asignatura es proporcionar al estudiante conocimiento Departamento de Estadística y comprensión

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico.

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico. Estadística Definición de Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un

Más detalles

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE INGENIERÍA. práctica, Total: 85 Horas a la semana: 5 teoría: 4 prácticas: 1 Créditos:

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE INGENIERÍA. práctica, Total: 85 Horas a la semana: 5 teoría: 4 prácticas: 1 Créditos: UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE INGENIERÍA Probabilidad y Estadística 18/01/10 Clave: 214 Semestre: 1 Duración del curso: semanas: 17 horas: 68 de teoría y 17 de práctica, Total: 85 Horas

Más detalles

Anova unifactorial Grados de Biología y Biología sanitaria

Anova unifactorial Grados de Biología y Biología sanitaria Anova unifactorial Grados de Biología y Biología sanitaria M. Marvá e-mail: marcos.marva@uah.es Unidad docente de Matemáticas, Universidad de Alcalá 29 de noviembre de 2015 El problema Analizaremos la

Más detalles

Asignatura: ESTADISTICA I (1024) Programa aprobado por Resolución UNM-R Nº 285/11

Asignatura: ESTADISTICA I (1024) Programa aprobado por Resolución UNM-R Nº 285/11 Asignatura: ESTADISTICA I (1024) Programa aprobado por Resolución UNM-R Nº 285/11 Carrera: LICENCIATURA EN RELACIONES DEL TRABAJO (Plan de estudios aprobado por Resolución UNM-R Nº 21/10) 1 Carrera: LICENCIATURA

Más detalles

Tema I. Introducción. Ciro el Grande ( A.C.)

Tema I. Introducción. Ciro el Grande ( A.C.) 1.1. La ciencia de la estadística:. El origen de la estadística:. Ciencia descriptiva. Evaluación de juegos de azar Ciro el Grande (560-530 A.C.) Si tengo 1 As y 2 reyes, que descarte es mas conveniente

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

Artículo de los payasos

Artículo de los payasos Artículo de los payasos (Página 30 a 3 del libro de Técnica estadística y diseño de investigación) Utilizando los datos de la tabla 3 podemos completar la siguiente información (valores p de probabilidad

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO LICENCIATURA EN TURISMO UNIDAD DE APRENDIZAJE: ESTADISTICA TEMA 1.5 : ESTADISTICA DESCRIPTIVA M. EN C. LUIS ENRIQUE KU MOO FECHA:

Más detalles

Análisis de datos Categóricos

Análisis de datos Categóricos Introducción a los Modelos Lineales Generalizados Universidad Nacional Agraria La Molina 2016-1 Introducción Modelos Lineales Generalizados Introducción Componentes Estimación En los capítulos anteriores

Más detalles

Conceptos de Estadística

Conceptos de Estadística Conceptos de Estadística Se llama estadística al conjunto de procedimientos destinados a recopilar, procesar y analizar la información que se obtiene con una muestra para inferir las características o

Más detalles

Repaso Estadística Descriptiva

Repaso Estadística Descriptiva Grado en Fisioterapia, 2010/11 Cátedra de Bioestadística Universidad de Extremadura 13 de octubre de 2010 Índice Descriptiva de una variable 1 Descriptiva de una variable 2 Índice Descriptiva de una variable

Más detalles

matemáticas como herramientas para solución de problemas en ingeniería. PS Probabilidad y Estadística Clave de la materia: Cuatrimestre: 4

matemáticas como herramientas para solución de problemas en ingeniería. PS Probabilidad y Estadística Clave de la materia: Cuatrimestre: 4 PS0401 - Probabilidad y Estadística DES: Ingeniería Programa(s) Educativo(s): Ingeniería de Software Tipo de materia: Obligatoria Clave de la materia: PS0401 Cuatrimestre: 4 UNIVERSIDAD AUTÓNOMA DE Área

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

Capítulo 8. Análisis Discriminante

Capítulo 8. Análisis Discriminante Capítulo 8 Análisis Discriminante Técnica de clasificación donde el objetivo es obtener una función capaz de clasificar a un nuevo individuo a partir del conocimiento de los valores de ciertas variables

Más detalles

Carrera: Ingeniería Civil CIM 0531

Carrera: Ingeniería Civil CIM 0531 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Probabilidad y Estadística Ingeniería Civil CIM 0531 3 2 8 2.- HISTORIA DEL PROGRAMA

Más detalles

Curs de Modelització Estadística Bàsica amb Deducer. Anabel Blasco Ana Vázquez Anna Espinal Llorenç Badiella Oliver Valero

Curs de Modelització Estadística Bàsica amb Deducer. Anabel Blasco Ana Vázquez Anna Espinal Llorenç Badiella Oliver Valero Curs de Modelització Estadística Bàsica amb Deducer Anabel Blasco Ana Vázquez Anna Espinal Llorenç Badiella Oliver Valero 1. Model de Regressió Lineal 2. Model ANOVA 3. Model Lineal General 4. Model de

Más detalles

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple Pronósticos, Series de Tiempo y Regresión Capítulo 4: Regresión Lineal Múltiple Temas Modelo de regresión lineal múltiple Estimaciones de Mínimos Cuadrados Ordinarios (MCO); estimación puntual y predicción

Más detalles