Colección de problemas de. Poder de Mercado y Estrategia

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Colección de problemas de. Poder de Mercado y Estrategia"

Transcripción

1 de Poder de Mercado y Estratega Curso 3º - ECO Iñak Agurre Jaromr Kovark Marta San Martín Fundamentos del Análss Económco I Unversdad del País Vasco UPV/EHU

2 Tema. Olgopolo y competenca monopolístca. Suponga una ndustra abastecda por dos empresas que venden un producto homogéneo. La funcón nversa de demanda vene dada por p( x) = 80 x. Ambas empresas producen con los msmos costes tal que C ( x ) = 0 x, =,. a) Suponga que las empresas tenen que decdr entre producr una cantdad alta (H) gual a 0 undades o una cantdad baja (L) gual a 5 undades. Calcule los benefcos correspondentes a cada combnacón de estrategas y represente el juego en forma normal. Calcule el equlbro de Nash. b) Suponga ahora que las empresas decden qué cantdad producr entre cualquer cantdad no negatva. Represente el juego en forma normal. Obtenga las funcones de mejor respuesta y calcule el equlbro de Nash. Represente dcho equlbro.. Consdere un duopolo de Cournot que se enfrenta a una funcón nversa de demanda p(x) = a - bx. Sean c y c los costes margnales constantes de las empresas y, respectvamente (y no hay costes fjos). a + c j () Cuál es el equlbro de Nash s c <,, j =,, j? () Cuál sería el equlbro de Nash s c c a c a + c < < y >?

3 Solucón () () + c j x =,, j =,, j. 3b x =, x = 0. b 3. Sea p(x) = x la funcón nversa de demanda de un mercado que es abastecdo por dos empresas que compten en cantdades, la empresa y la empresa, cuyas funcones de costes totales son, respectvamente: C ( x) = 5x, C ( x ) = 0.5x. a) Represente el juego en forma normal y defna la nocón de equlbro de Cournot- Nash. b) Obtenga las funcones de mejor respuesta. Calcule el preco, las cantdades producdas por cada empresa y los benefcos de cada empresa en el equlbro de Cournot-Nash. Represente gráfcamente dcho equlbro. c) Consdere el acuerdo de colusón. Muestre que dcho acuerdo no puede mantenerse como equlbro. d) Suponga que la empresa actúa de líder en un juego secuencal y la empresa de segudora (es decr, la empresa elge prmero su nvel de produccón y la empresa elge en segundo lugar su nvel de produccón después de observar la eleccón de la empresa ). Calcule el equlbro perfecto en subjuegos, el preco, las cantdades producdas por cada empresa y los benefcos de cada empresa.. Consdere un olgopolo de Cournot con n empresas que producen un ben homogéneo. La funcón nversa de demanda es p( x) 0 = y todas las empresas x 3

4 tenen el msmo coste margnal constante, c > 0 (no hay costes fjos). (Nota: la funcón drecta de demanda es x( p) 00 = p ) () Calcule la produccón de cada empresa en el equlbro (smétrco) de Cournot-Nash, la produccón de la ndustra y el preco de equlbro. () Cuáles son la produccón y el preco de monopolo en este mercado? Consdere el acuerdo de colusón smétrco (reparto equtatvo de la produccón de monopolo) Qué cantdad producría cada empresa s todas ellas respetan el acuerdo? Muestre que el acuerdo de colusón smétrco no se puede sostener como equlbro. 5. En el mercado del producto x, la funcón de demanda es x( p) = 00 0 p. S el coste margnal es sempre cero para cualquer empresa que quera producr ese ben: a) Cuánto se venderá y a qué preco s hay un únco oferente en el mercado? b) Cuánto y a qué preco s lo abastecen dos empresas y se comportan según el modelo de Cournot? c) Aumentaría o dsmnuría la cantdad ofertada s lo abastecen tres empresas comportándose tambén según el modelo de Cournot? Hállense el preco y la cantdad de equlbro de cada una de ellas. d) Cuánto se venderá y a qué preco s hay n oferentes en el mercado? Qué ocurre cuando n? e) Cuál sería la produccón de competenca perfecta? Cuál el preco? f) Compare las cantdades anterores con la cantdad efcente.

5 6. Consdere un olgopolo de Cournot con n empresas que producen un ben homogéneo. La funcón nversa de demanda es p(x) = a bx y todas las empresas tenen el msmo coste margnal constante, c (no hay costes fjos y a > c). () Obtenga la funcón de mejor respuesta de la empresa ante las produccones de las demás empresas, f (x - ), donde x - = x +..+ x x x n = j x j. Calcule la produccón de cada empresa en el equlbro de Cournot-Nash, la produccón de la ndustra, el preco de equlbro y el benefco de cada empresa. Muestre que un aumento en el número de empresas reduce la produccón de cada empresa en equlbro, eleva la produccón agregada, reduce el preco y los benefcos. Qué ocurre cuando n? () Consdere el acuerdo de colusón smétrco (reparto equtatvo de la produccón de monopolo) y muestre que no se puede sostener como equlbro. Calcule el benefco de la empresa cuando se desvía óptmamente y las demás respetan el acuerdo de colusón. () Es el juego de duopolo de Cournot un dlema del prsonero? (v) Suponga que el juego se repte durante nfntos perodos. Obtenga el factor de descuento crítco a partr del cual la colusón se puede sostener como equlbro del juego repetdo. Muestre que el factor de descuento crítco aumenta al aumentar el número de empresas y, por tanto, que cuanto mayor sea el número de empresas más dfícl es que la colusón sea estable. 5

6 Solucón bx () f (x - ) = max,0 b ; x =, =,..., n; b( n + ) n( ) x = b( n + ) lm x ( n) 0 n ; p = a + nc n + ; = lm x ( n) n b (), =,..., n. b(n +) lm n p (n) = c ; lm (n) = 0. n () El acuerdo de colusón smétrco, m m x ( ) x = =, =,..., n no es equlbro n bn de Nash ya que: m m ( )( n + ) x m m x ( a c) = f(( n ) ) = f( x ) > x = =. bn n n bn d m m ( n + ) ( ) = ( f( x ), x ) = 6bn () Un juego es un dlema del prsonero s cada jugador tene una estratega domnante, y el equlbro de Nash resultante no es efcente (exste otra asgnacón que proporcona mayores pagos a ambos jugadores). El juego de duopolo de Cournot no es un dlema del prsonero, ya que los jugadores no tenen estrategas domnantes. Aunque es certo que las empresas obtendrían mayores benefcos s cooperasen. (v) d ( n + ) δ ( n) = = d ( + ) + n m n dδ ( n) > 0 lm δ ( n) = dn n 6

7 7.- Consdere un mercado con n empresas que producen un ben homogéneo. La funcón nversa de demanda es p(x) = a x y todas las empresas tenen el msmo coste margnal constante, c (no hay costes fjos y a > c). () Suponga que n = 3 y las tres empresas elgen smultáneamente sus nveles de produccón. Obtenga la funcón de mejor respuesta de la empresa ante las produccones de las demás empresas, f (x - ). Calcule la produccón de cada empresa en el equlbro de Cournot-Nash, la produccón de la ndustra, el preco de equlbro y el benefco de cada empresa. () Consdere el sguente juego en tres etapas: Etapa : la empresa elge su nvel de produccón x 0. Etapa : la empresa elge su nvel de produccón x 0, después de observar x. Etapa 3: la empresa 3 elge su nvel de produccón x 3 0, después de observar x e x. (a) Obtener el equlbro perfecto en subjuegos, las produccones de las empresas, el preco de mercado y los benefcos. (b) Obtenga otro equlbro de Nash que no sea perfecto en subjuegos. Explque su respuesta. () Consdere el sguente juego en tres etapas: Etapa : la empresa elge su nvel de produccón x 0. Etapa : la empresa elge su nvel de produccón x 0, sn observar x. Etapa 3: la empresa 3 elge su nvel de produccón x 3 0, sn observar x e x. (a) Represente el juego en forma normal. (b) Obtenga el equlbro de Nash y el equlbro perfecto en subjuegos. Compare la solucón con el equlbro de Cournot. 7

8 Solucón x () f (x - ) = max,0 ; x =, =,, 3; 3( ) x p a + 3 c ( ) =, =,, 3. 6 () (a) EPS: x m x = = x ; x( x ) = max,0 ; x x x3 ( x, x) = max,0 x x = x( x ) 7( ) x3 = x3 ( x, x) x 8 8 ( ) 6 ( ) 3 3 p a + 7 = ( ) 6 =. 8 c (b) x x( x ) =, x x ( x, x ) =, x e x Consdere un duopolo de Bertrand que produce un ben homogéneo. La funcón de demanda es x( p) 00 = p y las empresas tenen el msmo coste margnal constante, c > 0 (no hay costes fjos). () Caracterce el equlbro de Bertrand-Nash (descrba el juego en forma normal, la demanda resdual de cada empresa, defna la nocón de equlbro, muestre que la solucón propuesta es efectvamente un equlbro de Nash y que es únco), obtenga la produccón de la ndustra en equlbro y el benefco de cada empresa. 8

9 () Cuáles serían el preco y la produccón de monopolo en este mercado? Qué combnacón de estrategas representaría el acuerdo de colusón? Muestre que el acuerdo de colusón no se puede sostener como equlbro. () Compare la produccón agregada del equlbro de Bertrand con la produccón efcente. Calcule la pérdda rrecuperable de efcenca. 9. Consdere dos empresas que venden productos dferencados cuyas funcones nversas de demanda venen dadas por: p ( x, x) = α β x γ x p( x, x) = α β x γ x () Las funcones drectas de demanda son: x ( p, p) = a bp + dp x( p, p) = a bp + dp () a = α ; b = β y d = γ β + γ β γ β γ () Muestre que. Suponga que los costes de produccón de las empresas son nulos. () Obtenga el equlbro de Nash cuando las empresas compten smultáneamente en cantdades (equlbro de Cournot). () Obtenga el equlbro de Nash cuando las empresas compten smultáneamente en precos (equlbro de Bertrand). (v) Muestre que, en comparacón con los resultados en Bertrand, las produccones de las empresas son menores y los precos mayores en Cournot. 9

10 Solucón c α c αβ () x =, p =, =,. β + γ β + γ b a b ab () p =, x,,. b d = b d = (v) b α( β γ ), b αβ p = x =, =,. β γ ( β + γ )( β γ ) Por tanto, p b < p c, x b > x c, =,. 0

Colección de problemas de. Teoría Microeconómica IV

Colección de problemas de. Teoría Microeconómica IV Coleccón de problemas de Teoría Mcroeconómca IV Curso 3º - LE- 0-0 Iñak Agurre Norma Olazola Marta San Martín Fundamentos del Análss Económco I Unversdad del País Vasco UPV/EHU Tema. Teoría de Juegos No

Más detalles

2.- Considere un oligopolio de Cournot con n empresas que producen un bien

2.- Considere un oligopolio de Cournot con n empresas que producen un bien 2.- Consdere un olgopolo de Cournot con n epresas que producen un en hoogéneo. La funcón nversa de deanda es p ) = A y todas las epresas tenen el so coste argnal constante, c > 0 no hay costes fjos). Nota:

Más detalles

Modelos dinámicos de formación de precios y colusión. Carlos S. Valquez IEF

Modelos dinámicos de formación de precios y colusión. Carlos S. Valquez IEF Modelos dnámcos de formacón de precos y colusón Carlos S. Valquez IEF Modelos dnámcos de formacón de precos y colusón Enfoques empleados en el análss de la nteraccón repetda entre empresas: Juegos repetdos.

Más detalles

En un mercado hay dos consumidores con las siguientes funciones de utilidad:

En un mercado hay dos consumidores con las siguientes funciones de utilidad: En un mercado hay dos consumdores con las sguentes funcones de utldad: U ( + y, y = ln( + U ( = + y con a >,, y a ln( + donde, =,, es la cantdad del ben consumda por el ndvduo, y es la cantdad de renta

Más detalles

Oligopolio. Un mercado oligopólico se define como una estructura de mercado en donde

Oligopolio. Un mercado oligopólico se define como una estructura de mercado en donde Olgopolo Defncón y característcas Un mercado olgopólco se defne como una estructura de mercado en donde exste un número reducdo de frmas y que se caracterza por una sgnfcatva nterdependenca entre las frmas

Más detalles

COMPETENCIA IMPERFECTA

COMPETENCIA IMPERFECTA Notas sobre COMPETENCIA IMPERFECTA Iñak Agurre Departamento de Fundamentos del Análss Económco I Unversdad del País Vasco ÍNDICE Tema. Teoría de Juegos No Cooperatvos Introduccón... Nocones fundamentales...

Más detalles

En este trabajo se hace un análisis conjunto de la separación entre

En este trabajo se hace un análisis conjunto de la separación entre INTEGRACIÓN VERTICAL Y CONTRATOS GERENCIALES: HERRAMIENTAS ESTRATÉGICAS EN MERCADOS IMPERFECTOS Flavo Jácome Lévano* Andrés Mejía Vlla** Karen Mendoza Manjarrés*** En este trabajo se hace un análss conjunto

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

Juegos estáticos con información completa

Juegos estáticos con información completa Teoría de las decsones y de los juegos. Tema : Juegos estátcos con nformacón completa Juego en forma normal g = ( N={,,,n},(S,,S n ), (u,,u n ) ) N conjunto de jugadores, œ N (fnto) S, conjunto de estrategas

Más detalles

UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE. Dpto. de Métodos Cuantitativos e Informáticos. Universidad Politécnica de Cartagena.

UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE. Dpto. de Métodos Cuantitativos e Informáticos. Universidad Politécnica de Cartagena. UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE COURNOT. Autores: García Córdoba, José Antono; josea.garca@upct.es Ruz Marín, Manuel; manuel.ruz@upct.es Sánchez García, Juan Francsco; jf.sanchez@upct.es

Más detalles

APUNTES DE TEORÍA DE JUEGOS II Natalia González Julieth Solano. No. 5

APUNTES DE TEORÍA DE JUEGOS II Natalia González Julieth Solano. No. 5 APUNTES DE TEORÍA DE JUEGOS II Natala González Juleth Solano No. 5 Marzo 005 APUNTES DE ECONOMÍA ISSN 794-09X No. 5, Febrero de 005 Edtor Julo César Alonso C. jcalonso@ces.edu.co Asstente de Edcón Stephane

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

Competencia Imperfecta

Competencia Imperfecta Competenca Imperfecta ISBN: 978-84-69-4353-4 Iñak Agurre 06-09 Notas sobre COMPETENCIA IMPERFECTA Iñak Agurre Departamento de Fundamentos del Análss Económco I Unversdad del País Vasco ÍNDICE Tema. El

Más detalles

Introducción a las Subastas de Múltiples Objetos

Introducción a las Subastas de Múltiples Objetos Introduccón a las Subastas de Múltples Objetos Alvaro J. Rascos Vllegas Unversdad de los Andes Abrl de 2010 lvaro J. Rascos Vllegas (Unversdad de losintroduccón Andes) a las Subastas de Múltples Objetos

Más detalles

Disoluciones. Disolución ideal. Disolución ideal. Disolución ideal. Disolución ideal

Disoluciones. Disolución ideal. Disolución ideal. Disolución ideal. Disolución ideal Dsolucones TEM. Dsolucones reales. otencal químco en dsolucones reales. Concepto de actvdad. Una dsolucón es una mezcla homogénea de un componente llamado dsolvente () que se encuentra en mayor proporcón

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

Juegos Bayesianos. Tema 1: Tipos, Creencias y Equilibrio Bayesiano. Universidad Carlos III de Madrid

Juegos Bayesianos. Tema 1: Tipos, Creencias y Equilibrio Bayesiano. Universidad Carlos III de Madrid Juegos Bayesanos Tema 1: Tpos, Creencas y Equlbro Bayesano Unversdad Carlos III de Madrd Repaso: Juego estátco con Informacón completa Jugadores Estrategas (accones) Pagos para cada combnacón de estrategas

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

INGENIERÍA ENERGÉTICA

INGENIERÍA ENERGÉTICA INGENIERÍA ENERGÉTICA PROGRAMACIÓN DE LA GENERACIÓN DE ENERGÍA ELÉCTRICA Programacón de la generacón MERCADO DIARIO Es el mercado en el que tenen lugar las transaccones de compra y venta de energía para

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES Documento Preparado para la Cámara de Fondos de Inversón Versón 203 Por Rodrgo Matarrta Venegas 23 de Setembre del 204 2 Análss Industral

Más detalles

MICROECONOMIA Y REGIMEN DE LA COMPETENCIA EN LA UE COLUSION EN OLIGOPOLIOS

MICROECONOMIA Y REGIMEN DE LA COMPETENCIA EN LA UE COLUSION EN OLIGOPOLIOS MICROECONOMIA Y REGIMEN DE LA COMPETENCIA EN LA UE PARTE COLUSION EN OLIGOPOLIOS TEMA 8: JUEGOS REPETIDOS: TEOREMAS Y PARADOJAS 1. Juegos repetdos: Conceptos báscos y ejemplos. 2. Paradojas en los juegos

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

DEFINICIÓN DE INDICADORES

DEFINICIÓN DE INDICADORES DEFINICIÓN DE INDICADORES ÍNDICE 1. Notacón básca... 3 2. Indcadores de ntegracón: comerco total de benes... 4 2.1. Grado de apertura... 4 2.2. Grado de conexón... 4 2.3. Grado de conexón total... 5 2.4.

Más detalles

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1). TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen

Más detalles

TEMA 3. La política económica en una economía abierta con movilidad perfecta de capitales

TEMA 3. La política económica en una economía abierta con movilidad perfecta de capitales TEMA 3. La polítca económca en una economía aberta con movldad perfecta de captales Asgnatura: Macroeconomía II Lcencatura en Admnstracón y Dreccón de Empresas Curso 2007-2008 Prof. Anhoa Herrarte Sánchez

Más detalles

TEMA 3. VARIABLE ALEATORIA

TEMA 3. VARIABLE ALEATORIA TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad

Más detalles

ALGUNAS CONSIDERACIONES PARA EL USO DE INDICADORES EN EL ESTUDIO DE LA ESTRUCTURA DE MERCADOS

ALGUNAS CONSIDERACIONES PARA EL USO DE INDICADORES EN EL ESTUDIO DE LA ESTRUCTURA DE MERCADOS ALGUNAS CONSIDERACIONES PARA EL USO DE INDICADORES EN EL ESTUDIO DE LA ESTRUCTURA DE MERCADOS 1. INTRODUCCION Hugo Dorado Aranbar La estructura de los mercados adquere mportanca partcularmente cuando se

Más detalles

1.- Una empresa se plantea una inversión cuyas características financieras son:

1.- Una empresa se plantea una inversión cuyas características financieras son: ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES. Departamento de Economía Aplcada (Matemátcas). Matemátcas Fnanceras. Relacón de Problemas. Rentas. 1.- Una empresa se plantea una nversón cuyas característcas

Más detalles

Modelos unifactoriales de efectos aleatorizados

Modelos unifactoriales de efectos aleatorizados Capítulo 4 Modelos unfactorales de efectos aleatorzados En el modelo de efectos aleatoros, los nveles del factor son una muestra aleatora de una poblacón de nveles. Este modelo surge ante la necesdad de

Más detalles

Equilibrios competitivos y de Bertrand, con y sin diferenciacion de productos

Equilibrios competitivos y de Bertrand, con y sin diferenciacion de productos Revsta equlbros de Análss compettvos Económco, Vol. y 24, de Nº bertrand, 1, pp. 43-53 (Juno con 2009) y sn dferencacon 43 Equlbros compettvos y de Bertrand, con y sn dferencacon de productos Compettve

Más detalles

Análisis Matemático en la Economía: Optimización y Programación. Augusto Rufasto

Análisis Matemático en la Economía: Optimización y Programación. Augusto Rufasto Análss Matemátco en la Economía: Optmzacón y Programacón arufast@yahoo.com-rufasto@lycos.com www.geoctes.com/arufast-http://rufasto.trpod.com La optmzacón y la programacón están en el corazón del problema

Más detalles

El costo de oportunidad social de la divisa ÍNDICE

El costo de oportunidad social de la divisa ÍNDICE El Costo de Oportundad Socal de la Dvsa El costo de oportundad socal de la dvsa ÍNDICE. INTRODUCCIÓN. EL MARCO TEÓRICO 3. CÁLCULO DEL COSTO DE OPORTUNIDAD SOCIAL DE LA DIVISA 3. Nvel agregado 3. Nvel desagregado

Más detalles

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera Tema - MATEMÁTICAS FINANCIERAS Materal realzado por J. Davd Moreno y María Gutérrez Unversdad Carlos III de Madrd Asgnatura: Economía Fnancera Apuntes realzados por J. Davd Moreno y María Gutérrez Advertenca

Más detalles

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1 CAPÍTULO 3 EJERCICIOS RESUELTOS: CONCEPTOS BÁSICOS DE ÁLGEBRA LINEAL Ejerccos resueltos 1 1. La norma p (tambén llamada l p ) en R n se defne como ( ) 1/p x p = x p. Demuestre que cumple los axomas de

Más detalles

Parte I: Mercados de Bienes

Parte I: Mercados de Bienes José L. Zofío Grupos 14/15 MICROECONOMÍA II Lcencatura: Admnstracón y Dreccón de Empresas Curso 2007-08 (2º semestre) Códgo 14474 Curso 2007/2008 1 Parte I: Mercados de Benes Tema 1. Mercados perfectamente

Más detalles

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL.

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. Concepto de varable aleatora. Se llama varable aleatora a toda aplcacón que asoca a cada elemento del espaco muestral de un expermento, un número real.

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

8.- Considere un duopolio de Bertrand que produce un bien homogéneo. La función de

8.- Considere un duopolio de Bertrand que produce un bien homogéneo. La función de 8.- Consdere un duoolo de Bertrand que rodue un ben hoogéneo. La funón de deanda es x = A b y las eresas tenen el so oste argnal onstante, > 0 no hay ostes fos. Caratere el equlbro de Bertrand-Nash desrba

Más detalles

CESMA BUSINESS SCHOOL

CESMA BUSINESS SCHOOL CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 4 RENTAS y MÉTODOS DE AMORTIZACIÓN Javer Blbao García 1 1.- Introduccón Defncón: Conjunto de captales con vencmentos equdstantes de tempo. Para que exsta

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo EL ÁLGEBRA GEOMÉTRICA DEL ESPACIO Y TIEMPO. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA Defncón del álgebra geométrca del espaco-tempo Defno el álgebra geométrca del espaco y tempo como el álgebra de las matrces

Más detalles

Ejercicios y Problemas Resueltos. Paquete didáctico para el curso de Macroeconomía I*

Ejercicios y Problemas Resueltos. Paquete didáctico para el curso de Macroeconomía I* Ejerccos y Problemas Resueltos Paquete ddáctco para el curso de Macroeconomía I* AZCAPOTZALCO Departamento de Economía Ma. Beatrz García Castro** Mayo de 2003 *Agradezco a la ayudante de nvestgacón Paola

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

Facultad de Ingeniería División de Ciencias Básicas Coordinación de Ciencias Aplicadas Departamento de Probabilidad y Estadística

Facultad de Ingeniería División de Ciencias Básicas Coordinación de Ciencias Aplicadas Departamento de Probabilidad y Estadística Facultad de Ingenería Dvsón de Cencas Báscas Coordnacón de Cencas Aplcadas Departamento de Probabldad y Estadístca Probabldad y Estadístca Prmer Eamen Fnal Tpo A Semestre: 00- Duracón máma:. h. Consderar

Más detalles

Tema 2. Oligopolio y Competencia Monopolística

Tema 2. Oligopolio y Competencia Monopolística Tea. Olgoolo y Coetenca Monoolístca Tea. Olgoolo y Coetenca Monoolístca Introduccón.. El odelo de Cournot.... Duoolo.... Olgoolo (n eresas...3. Análss de benestar... El odelo de Bertrand.... Producto hoogéneo....

Más detalles

EL PODER DE MERCADO: EL MONOPOLIO Y EL MONOPSONIO

EL PODER DE MERCADO: EL MONOPOLIO Y EL MONOPSONIO EL PODER DE MERCADO: EL MONOPOLIO Y EL MONOPSONIO El oder de mercado: el monoolo y el monosono. Introduccón. El eulbro de un monoolsta no dscrmnador 3. Pérdda de efcenca del monoolo 4. El monoolsta ue

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

Los Beneficios. Microeconomía Douglas C. Ramírez V. La producción y la oferta

Los Beneficios. Microeconomía Douglas C. Ramírez V. La producción y la oferta Los Benefcos Mcroeconomía Douglas C. Ramírez V. La produccón la oferta La esenca de la actvdad productva es obtener benes servcos (mercancías) con destno fnal al consumo por medo de los recursos de la

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó Comparacón entre dstntos Crteros de decsón (, TIR y PRI) Por: Pablo Lledó Master of Scence en Evaluacón de Proyectos (Unversty of York) Project Management Professonal (PMP certfed by the PMI) Profesor

Más detalles

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa Aplcacón de la termodnámca a las reaccones químcas Andrés Cedllo Departamento de Químca Unversdad Autónoma Metropoltana-Iztapalapa Introduccón Las leyes de la termodnámca, así como todas las ecuacones

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

MODELOS DE ELECCIÓN BINARIA

MODELOS DE ELECCIÓN BINARIA MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA Ingenería Químca Undad I. Introduccón a los cálculos de Ingenería Químca

Más detalles

( ) = ( ) ( ) E X x p. E X Y = E X E Y XY independientes. E X Y E X E Y Cauchy Schwarzt ( ) 2. Pr X a E X a Markov

( ) = ( ) ( ) E X x p. E X Y = E X E Y XY independientes. E X Y E X E Y Cauchy Schwarzt ( ) 2. Pr X a E X a Markov 1 2 Varables aleatoras 2.1 Dscretas 2.1.1 Genércas Esperanza de una v.a. o Valor esperado Propedades de la Esperanza k = ( x ) E X x p EmX+ b = mex + b EK Varanza de una v.a. = K ( + ) = + E X Y E X E

Más detalles

TEMA 5. EL SISTEMA DE PRODUCCIÓN DE LA EMPRESA (I) CONTENIDO

TEMA 5. EL SISTEMA DE PRODUCCIÓN DE LA EMPRESA (I) CONTENIDO Págna de 4 TEMA 5. EL SISTEMA DE PRODUCCIÓN DE LA EMPRESA (I) CONTENIDO INTRODUCCIÓN... 2 2 CLASIFICACIÓN DE LAS ACTIVIDADES PRODUCTIVAS... 4 3 FUNCIÓN DE PRODUCCIÓN... 3 4 CLASIFICACIÓN DE LOS PROCESOS

Más detalles

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general. 3. En el modelo lneal general Y =X β + ε, explcar la forma que

Más detalles

Capítulo 3: La Evolución de la Teoría de Mercadotecnia

Capítulo 3: La Evolución de la Teoría de Mercadotecnia Capítulo 3: La Evolucón de la Teoría de Mercadotecna 3.1 Introduccón Los modelos tradconales de mercadotecna fueron desarrollados a partr de teorías que surgeron durante el sglo XIX, en el cual se llevó

Más detalles

Dasometría / Celedonio L

Dasometría / Celedonio L EJERCICIO Nº 6 Se ha realzado el nventaro forestal de una asa de Pnus pnaster no resnado, por uestreo estadístco, dseñado edante la toa de datos en parcelas rectangulares de 0 x 5 ts. El dáetro íno nventarable

Más detalles

Matemáticas Discretas

Matemáticas Discretas Coordnacón de Cencas Computaconales - INAOE Matemátcas Dscretas Cursos Propedéutcos 2010 Cencas Computaconales INAOE Dr. Lus Vllaseñor Pneda vllasen@naoep.mx http://ccc.naoep.mx/~vllasen Algo de nformacón

Más detalles

CAPÍTULO V ESTRUCTURAS ALGEBRAICAS

CAPÍTULO V ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS 7 CAPÍTULO V ESTRUCTURAS ALGEBRAICAS Estructura Algebraca es todo conjunto no vacío en el cual se han defndo una o más leyes de composcón nterna, luego de cumplr certas propedades

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

El número óptimo de empresas bajo competencia de Bertrand

El número óptimo de empresas bajo competencia de Bertrand El número óptmo de empresas bajo competenca de Bertrand Germán Coloma * Resumen Este trabajo es acerca de un modelo de competenca en precos en el mercado de un producto homogéneo con lbre entrada de empresas

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Undad Central del Valle del Cauca Facultad de Cencas Admnstratvas, Económcas y Contables Programa de Contaduría Públca Curso de Matemátcas Fnanceras Profesor: Javer Hernando Ossa Ossa Ejerccos resueltos

Más detalles

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada.

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada. Introduccón a la Estadístca Empresaral Capítulo - Análss conjunto de dos varables Jesús ánchez Fernández CAPITULO - AÁLII COJUTO DE DO VARIABLE Presentacón de los datos Tablas de doble entrada En el capítulo

Más detalles

Guía de Electrodinámica

Guía de Electrodinámica INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

1. Introducción 2. El mercado de bienes y la relación IS 3. Los mercados financieros y la relación LM 4. El modelo IS-LM

1. Introducción 2. El mercado de bienes y la relación IS 3. Los mercados financieros y la relación LM 4. El modelo IS-LM Tema 4 Los mercados de benes y fnanceros: el modelo IS-LM Estructura del Tema 1. Introduccón 2. El mercado de benes y la relacón IS 3. Los mercados fnanceros y la relacón LM 4. El modelo IS-LM 4.1 La polítca

Más detalles

Oferta de Trabajo Parte 2. Economía Laboral Julio J. Elías LIE - UCEMA

Oferta de Trabajo Parte 2. Economía Laboral Julio J. Elías LIE - UCEMA Oferta de Trabajo Parte 2 Economía Laboral Julo J. Elías LIE - UCEMA Curva de oferta de trabajo ndvdual Consumo Salaro por hora ($) G w=$20 F w=$25 25 Curva de Oferta de Trabajo Indvdual w=$14 20 14 w

Más detalles

Optimización no lineal

Optimización no lineal Optmzacón no lneal José María Ferrer Caja Unversdad Pontfca Comllas Planteamento general mn f( x) x g ( x) 0 = 1,..., m f, g : n R R La teoría se desarrolla para problemas de mnmzacón, los problemas de

Más detalles

1.- Elegibilidad de estudiantes. 2.- Selección de estudiantes - 2 -

1.- Elegibilidad de estudiantes. 2.- Selección de estudiantes - 2 - Unversdad Euskal Herrko del País Vasco Unbertstatea NORMATIVA PARA SOCRATES/ERASMUS Y DEMÁS PROGRAMAS DE MOVILIDAD AL EXTRANJERO DE ALUMNOS (Aprobada en Junta de Facultad del día 12 de marzo de 2002) La

Más detalles

Números complejos. Actividades. Problemas propuestos. Matemáticas 1 Bachillerato? Solucionario del Libro

Números complejos. Actividades. Problemas propuestos. Matemáticas 1 Bachillerato? Solucionario del Libro Matemátcas Bachllerato? Soluconaro del Lbro Actvdades Dado el número complejo se pde: qué valor ha de tener x para que x? Calcula el opuesto de su conjugado Calcula el conjugado de su opuesto x x x El

Más detalles

Política de defensa de la competencia y acuerdos entre empresas para invertir en I+D: análisis de incentivos*

Política de defensa de la competencia y acuerdos entre empresas para invertir en I+D: análisis de incentivos* POLÍTICA DE DEFENSA ECONOMÍA DE LA COMPETENCIA Y DESARROLLO, Y ACUERDOS VOLUMEN ENTRE EMPRESAS 3 NÚMERO PARA, INVERTIR SEPTIEMBRE EN ID: 004 ANÁLISIS DE INCENTIVOS 8 Polítca de defensa de la competenca

Más detalles

Cinemática del Brazo articulado PUMA

Cinemática del Brazo articulado PUMA Cnemátca del Brazo artculado PUMA José Cortés Parejo. Enero 8. Estructura del brazo robótco El robot PUMA de la sere es un brazo artculado con artculacones rotatoras que le proporconan grados de lbertad

Más detalles

Mecánica Clásica ( Partículas y Bipartículas )

Mecánica Clásica ( Partículas y Bipartículas ) Mecánca lásca ( Partículas y Bpartículas ) Alejandro A. Torassa Lcenca reatve ommons Atrbucón 3.0 (0) Buenos Ares, Argentna atorassa@gmal.com Resumen Este trabajo consdera la exstenca de bpartículas y

Más detalles

Prof. Antonio Santillana del Barrio y Ainhoa Herrarte Sánchez Universidad Autónoma de Madrid Curso 2012-2013

Prof. Antonio Santillana del Barrio y Ainhoa Herrarte Sánchez Universidad Autónoma de Madrid Curso 2012-2013 Tema 6 El modelo IS-LM Prof. Antono Santllana del Barro y Anhoa Herrarte Sánchez Unversdad Autónoma de Madrd Curso 2012-2013 Bblografía oblgatora Capítulo 5, Macroeconomía, (Blanchard et al) Apuntes de

Más detalles

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II PRACTICA 11: Crcutos no lneales elementales con el amplfcador operaconal OBJETIVO: El alumno se famlarzará con

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco

Más detalles

Efectos fijos o aleatorios: test de especificación

Efectos fijos o aleatorios: test de especificación Cómo car?: Montero. R (2011): Efectos fjos o aleatoros: test de especfcacón. Documentos de Trabajo en Economía Aplcada. Unversdad de Granada. España Efectos fjos o aleatoros: test de especfcacón Roberto

Más detalles

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas.

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas. MATRICES Las matrces se utlzan en el cálculo numérco, en la resolucón de sstemas de ecuacones lneales, de las ecuacones dferencales y de las dervadas parcales. Además de su utldad para el estudo de sstemas

Más detalles

LA NUEVA TEORÍA DEL COMERCIO INTERNACIONAL

LA NUEVA TEORÍA DEL COMERCIO INTERNACIONAL LA NUEVA TEORÍA DEL COMERCIO INTERNACIONAL* I. INTRODUCCIÓN Felx Jmenez Erck Lahura ** La teoría económca nos dce que exsten dos razones por las que puede surgr el comerco entre países: la prmera razón

Más detalles

FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN

FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN 1 CÁLCULO DE LOS FLUJOS NETOS DE CAJA Y TOMA DE DECISIONES DE INVERSIÓN PRODUCTIVA Peculardades

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

Tema 9: SOLICITACIONES COMBINADAS

Tema 9: SOLICITACIONES COMBINADAS Tema 9: SOTONES ONDS V T N V Problemas resueltos Prof.: Jame Santo Domngo Santllana E.P.S.-Zamora (U.S.) - 8 9..-En la vga de la fgura calcular por el Teorema de los Trabajos Vrtuales: ) Flecha en ) Gro

Más detalles

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales CAPÍTULO 3 METODOLOGÍA En el sguente capítulo se presenta al nco, defncones de algunos conceptos actuarales que se utlzan para la elaboracón de las bases técncas del Producto de Salud al gual que la metodología

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

Continua: Corriente cuyo valor es siempre constante (no varía con el tiempo). Se denota como c.c.

Continua: Corriente cuyo valor es siempre constante (no varía con el tiempo). Se denota como c.c. .. TIPOS DE CORRIENTES Y DE ELEMENTOS DE CIRCUITOS Contnua: Corrente cuyo valor es sempre constante (no varía con el tempo). Se denota como c.c. t Alterna: Corrente que varía snusodalmente en el tempo.

Más detalles

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1 NÚMEROS COMPLEJOS 1. Qué es un número complejo? Defncones. La ecuacón x + 1 = 0 no tene solucón en el campo real puesto que s ntentamos resolverla tendremos que x = ± 1 y sabemos que no podemos calcular

Más detalles

ESTRUCTURA DE MERCADO DEL SISTEMA BANCARIO BOLIVIANO

ESTRUCTURA DE MERCADO DEL SISTEMA BANCARIO BOLIVIANO ESTRUCTURA DE MERCADO DEL SISTEMA BANCARIO BOLIVIANO OSCAR A. DIAZ QUEVEDO * * El análss y conclusones del presente trabajo son de exclusva responsabldad del autor y no reflejan necesaramente la opnón

Más detalles

T. 9 El modelo de regresión lineal

T. 9 El modelo de regresión lineal 1 T. 9 El modelo de regresón lneal 1. Conceptos báscos sobre el análss de regresón lneal. Ajuste de la recta de regresón 3. Bondad de ajuste del modelo de regresón Modelos predctvos o de regresón: la representacón

Más detalles

1. Actividad y Coeficientes de actividad

1. Actividad y Coeficientes de actividad ermodnámca. ema Dsolucones Reales. Actvdad y Coecentes de actvdad Se dene el coecente de actvdad,, de manera que: ( ( ln Actvdad ( Esta epresón es análoga a la de las dsolucones deales. Sn embargo, es

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

TÉCNICAS AUXILIARES DE LABORATORIO

TÉCNICAS AUXILIARES DE LABORATORIO TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar

Más detalles

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos Bloque 5. Probabldad y Estadístca Tema. Estadístca descrptva Ejerccos resueltos 5.-1 Dada la sguente tabla de ngresos mensuales, calcular la meda, la medana y el ntervalo modal. Ingresos Frecuenca Menos

Más detalles

q c q m R 2 q 1+q 2 =q m

q c q m R 2 q 1+q 2 =q m REPASO OLIGOPOLIO Y COMPORTAMIENTO ESTRATÉGICO MODELOS DE OLIGOPOLIO 1. Modelos de comportamiento Estratégico (NO LOS VAMOS A HACER). - Modelo de Empresa Dominante Generalizaciones a partir de competencia

Más detalles