M309: Construyendo bloques

Tamaño: px
Comenzar la demostración a partir de la página:

Download "M309: Construyendo bloques"

Transcripción

1 M309: Construyendo bloques A) PRESENTACIÓN DEL PROBLEMA A Susana le gusta construir bloques utilizando bloques pequeños como el que se muestra en el siguiente diagrama: Cubo pequeño Susana tiene muchos cubos pequeños como ese. Ella usa pegamento para unir los cubos y hacer bloques. Primero, Susana pega 8 cubos para hacer el bloque como el que se muestra en el diagrama A: Diagrama A Después Susana hace los bloques sólidos que se muestran en el Diagrama B y C: Diagrama B Diagrama C

2 B) PREGUNTAS DEL PROBLEMA Pregunta 1 Cuántos cubos pequeños necesita Susana para hacer el bloque que se muestra en el Diagrama B? Respuesta:...cubos. Pregunta 2 Cuántos cubos pequeños necesita Susana para hacer el bloque sólido que se muestra en el Diagrama C? Respuesta:...cubos. Pregunta 3 Susana se da cuenta que usó mas cubos pequeños de los que realmente necesita para hacer el bloque como el que se muestra en el Diagrama C. Ella piensa que puede haber pegado los cubos pequeños para hacerlos ver como el diagrama C, pero el bloque pudiera estar hueco por dentro. Cuál es el mínimo número de cubos pequeños que necesita usar para hacer un bloque como el del Diagrama C, pero hueco? Respuesta:...cubos. Pregunta 4 Ahora Susana quiere hacer un bloque que se vea como sólido y que tenga 6 cubos pequeños de longitud, 5 cubos pequeños de ancho y 4 cubos pequeños de altura. Ella quiere usar el mínimo número de cubos pequeños, al dejar el hueco más grande que sea posible en el interior de bloque. Cuál es el mínimo número de cubos que Susana necesita para hacer el bloque? Respuesta:...cubos.

3 C) SOLUCIÓN DIRECTA DEL PROBLEMA Pregunta 1 En el dibujo podemos ver que la figura tiene 3 bloques de largo, 2 de ancho y 2 de altura, por lo tanto: (3)(2)(2) = 12 cubos. Pregunta 2 En el dibujo podemos ver que la figura tiene 3 bloques de longitud, 3 de ancho y 3 de altura, por lo tanto: (3)(3)(3) = 27 cubos. Pregunta 3 La figura C tiene 3 cubos por cada lado, la única manera de poder dejar un hueco en medio es quitando un cubo del interior, por lo tanto: 27 1 = 26 cubos Pregunta 4 La figura tendrá 6 cubos de longitud, 5 de ancho y 4 de altura. La cantidad máxima de cubos es: (6)(5)(4) = 120. Para calcular la parte del hueco hay que considerar que la dimensión de menor magnitud (en este caso la altura) determina el número máximo de cubos que podemos quitar. Sólo podemos quitar dos cubos a la altura pues de otra manera el bloque no tendría la apariencia de ser solido. Siguiendo este razonamiento al ancho le podemos quitar dos bloques para quedar con 3 (5-2 = 3) y a la longitud le quitamos igualmente 2 para quedar con 4 (6 2 = 4).

4 Un corte a lo largo del bloque daría esto (cuadros amarillos son espacios vacios) longitud altura Un corte a lo ancho al bloque daría esto ancho altura El volumen vacio entonces tiene longitud 4, ancho 3 y altura 2: Volumen = (4)(3)(2) = 24. Por lo tanto el mínimo número de cubos que Susana necesita para hacer el bloque es: = 96 cubos D) CRITERIOS DE EVALUACIÓN DEL PROBLEMA SEGÚN LOS ESTÁNDARES DE PISA INTENCIÓN DE LA PREGUNTA 1 Encontrar el volumen de una figura tridimensional. Criterio de evaluación para la pregunta 1 Código 1: 12 cubos. Código 0: Otras respuestas. Código 9: Sin respuesta. INTENCIÓN DE LA PREGUNTA 2 Encontrar el volumen de una figura tridimensional. Criterio de evaluación para la pregunta 2 Código 1: 27 cubos. Código 0: Otras respuestas. Código 9: Sin respuesta.

5 INTENCIÓN DE LA PREGUNTA 3 Analizar el volumen de una figura tridimensional. Criterio de evaluación para la pregunta 3 Código 1: 26 cubos. Código 0: Otras respuestas. Código 9: Sin respuesta. INTENCIÓN DE LA PREGUNTA 4 Analizar el volumen de una figura tridimensional. Criterio de evaluación para la pregunta 4 Código 1: 96 cubos. Código 0: Otras respuestas. Código 9: Sin respuesta. E) SOLUCIÓN COMENTADA DEL PROBLEMA SEGÚN EL PROCESO DE MATEMATIZACIÓN EN EL MARCO PISA. Identificación de un problema matemático. Identificación de los elementos matemáticos asociados al problema, reorganización del problema en términos de las matemáticas identificadas. En este problema se plantea una situación en donde se utilizarán cubos pequeños para formar figuras tridimensionales. El problema pertenece al dominio de espacio donde el estudiante debe ser capaz de encontrar cuántos cubos se requiere para formar diferentes figuras regulares. El elemento matemático fundamental es volumen ocupado por figuras cúbicas iguales. En el problema se plantea lo siguiente: A Susana le gusta construir bloques utilizando bloques pequeños como el que se muestra en el siguiente diagrama: Cubo pequeño

6 Susana tiene muchos cubos pequeños como ese. Ella usa pegamento para unir los cubos y hacer bloques. Primero, Susana pega 8 cubos para hacer el bloque como el que se muestra en el diagrama A: Diagrama A Después Susana hace los bloques sólidos que se muestran en el Diagrama B y C: Diagrama B Diagrama C Se plantean 4 preguntas: Para la pregunta 1, Cuántos cubos pequeños necesita Susana para hacer el bloque que se muestra en el Diagrama B? En la pregunta 2, Cuántos cubos pequeños necesita Susana para hacer el bloque sólido que se muestra en el Diagrama C? La pregunta 3, Susana se da cuenta que usó mas cubos pequeños de los que realmente necesita para hacer el bloque como el que se muestra en el Diagrama C. Ella piensa que puede haber pegado los cubos pequeños para hacerlos ver como el diagrama C, pero el bloque pudiera estar hueco por dentro. Cuál es el mínimo número de cubos pequeños que necesita usar para hacer un bloque como el del Diagrama C, pero hueco? Y la pregunta 4, Ahora Susana quiere hacer un bloque que se vea como sólido y que tenga 6 cubos pequeños de longitud, 5 cubos pequeños de ancho y 4 cubos pequeños de altura. Ella quiere usar el mínimo número de cubos pequeños, al dejar el hueco más grande que sea posible en el interior de bloque. Cuál es el mínimo número de cubos que Susana necesita para hacer el

7 bloque? Abstracción matemática progresiva de la realidad En la pregunta 1, se analiza la figura en el dibujo: En el dibujo podemos ver que la figura tiene 3 bloques de largo, 2 de ancho y 2 de altura. Multiplicando el largo, ancho y la altura se puede encontrar el total de bloques. De la misma forma, para la pregunta 2: En el dibujo podemos ver que la figura tiene 3 bloques de longitud, 3 de ancho y 3 de altura. En este caso también podemos multiplicar el largo, ancho y la altura. En la pregunta 3, se puede observar que la figura C tiene 3 cubos por cada lado, la única manera de poder dejar un hueco en medio es quitando un cubo del interior. Resolución del modelo matemático En el caso de la pregunta 4, se puede obtener la cantidad máxima de cubos, ya que la figura tendrá 6 cubos de longitud, 5 de ancho y 4 de altura. Para calcular la parte del hueco, podemos restar 2 cubos a cada medida (ya que debe de haber uno en cada extremo). En la pregunta 1, se realizan las multiplicaciones y se obtiene la cantidad total de cubos: (3)(2)(2) = 12 cubos. De la misma manera para la pregunta 2 se realizan las multiplicaciones y se obtiene: (3)(3)(3) = 27 cubos. Para la pregunta 3, como tiene 3 cubos por cada lado, la única manera de poder dejar un hueco en medio es quitando un cubo del interior, por lo tanto: 27 1 = 26 cubos En la pregunta 4, la figura tendrá 6 cubos de longitud, 5 de ancho y 4 de altura. La cantidad máxima de cubos es: (6)(5)(4) = 120. Para calcular la parte del hueco,

8 PROCESOS podemos restar 2 cubos a cada medida (ya que debe de haber uno en cada extremo), por lo que restan: (4)(3)(2) = 24. Uso de la solución del modelo matemático como herramienta para interpretar el mundo real. Por lo tanto = 96 cubos. La formación de diversas figuras geométricas regulares permite al alumno desarrollar la lógica y percepción espacial. F) COMENTARIOS AL CONTEXTO Y DOMINIO DEL PROBLEMA SEGÚN EL MARCO PISA. CLASIFICACION Contexto Personal/Recreativo: se requiere construir diferentes bloques con cubos pequeños. Dominio Espacio y forma: combinar los cubos pequeños para formar los bloques solicitados. G) COMENTARIOS A LOS PROCESOS MATEMÁTICOS DOMINANTES DEL PROBLEMA SEGÚN EL MARCO PISA. Se marcan en amarillo las áreas dominantes: MACRO-PROCESOS Pensamiento y razonamiento Argumentación Comunicación, utilización de operaciones y lenguaje técnico (formal y simbólico). Construcción de modelos Planteamiento y solución de problemas Representación Uso de herramientas de apoyo. Reproducción Conexión Reflexión Analizaremos el problema desde el punto de vista de la pregunta 4 solamente, las otras tres preguntas son convencionales, es decir, principalmente reproductivas. Con respecto a la pregunta cuatro, si el alumno tuviera un modelo para realizar esto físicamente con cubos de plástico que se unen los unos a los otros, el problema es simplemente de prueba y error y tomaría poco esfuerzo dar con el resultado. Sin embargo esto no es posible y obliga al estudiante a reflexionar profundamente sobre las dimensiones del espacio vacío del bloque que obviamente sólo puede visualizar en su mente. Por ello el problema es principalmente reflexivo en la construcción de modelos y la representación del problema con los cortes a lo largo y a lo ancho según se mostró. Por otra parte la solución del problema es totalmente reproductiva pues se limita a aplicar una fórmula para el volumen.

9 H) CONEXIONES CURRICULARES DEL REACTIVO PISA CON EL PROGRAMA DE LA SEP. En el documento CurrMateSEPMaster obsérvense las siguientes conexiones curriculares. Para tener mayor detalle sobre los contenidos de cada conexión curricular véase Programa Mate SEP Este problema está relacionado directamente con conocimientos y habilidades: Forma, espacio y medida Formas geométricas Cuerpos geométricos Describir las características de diferentes figuras. Construir desarrollos planos de cubos, prismas y pirámides rectos. Anticipar diferentes vistas de un cuerpo geométrico Forma, espacio y medida Formas geométricas Cuerpos geométricos Anticipar las características de las figuras que se generan al girar o trasladar figuras.construir desarrollos planos de conos y cilindros rectos. Anticipar y reconocer las secciones que se obtienen al realizar cortes a un cilindro o a un cono recto. Determinar la variación que se da en el radio de los diversos círculos que se obtienen al hacer cortes paralelos a una esfera o un cono recto.

M465: Tanque de Agua. A) Presentación del problema

M465: Tanque de Agua. A) Presentación del problema M465: Tanque de Agua A) Presentación del problema El diagrama muestra la forma y dimensiones de un tanque de almacenamiento de agua. Al inicio el tanque está vacío. Una llave está llenando el tanque a

Más detalles

La estación espacial Mir se mantuvo en órbita 15 años y durante este tiempo dio la vuelta a la Tierra aproximadamente 86,500 veces.

La estación espacial Mir se mantuvo en órbita 15 años y durante este tiempo dio la vuelta a la Tierra aproximadamente 86,500 veces. M543: Vuelo espacial A) Presentación del problema La estación espacial Mir se mantuvo en órbita 15 años y durante este tiempo dio la vuelta a la Tierra aproximadamente 86,500 veces. El tiempo más largo

Más detalles

M513: Resultados de exámenes

M513: Resultados de exámenes 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-100 Número de estudiantes M513: Resultados de exámenes A) PRESENTACIÓN DEL PROBLEMA El diagrama que se muestra a continuación muestra los resultados

Más detalles

M523: Faro. A) Presentación del problema

M523: Faro. A) Presentación del problema M523: Faro A) Presentación del problema Los faros son torres con una luz en su parte superior. Los faros ayudan a los barcos a encontrar su camino durante la noche cuando están navegando cerca de la costa.

Más detalles

A continuación se presenta la información de la altura promedio para el año de 1998 en Holanda de hombres y mujeres jóvenes.

A continuación se presenta la información de la altura promedio para el año de 1998 en Holanda de hombres y mujeres jóvenes. M150: Creciendo A) Presentación del problema LOS JOVENES CRECEN MAS ALTO A continuación se presenta la altura promedio para el año de 1998 en Holanda de hombres y mujeres jóvenes. B) Preguntas del problema

Más detalles

Los dados son cubos con puntos en sus caras para los cuales se cumple la siguiente regla: el total de puntos para dos caras opuestas es siete.

Los dados son cubos con puntos en sus caras para los cuales se cumple la siguiente regla: el total de puntos para dos caras opuestas es siete. M555: Plantillas para Dados A) PRESENTACIÓN DEL PROBLEMA A continuación se muestra el dibujo de dos dados. Los dados son cubos con puntos en sus caras para los cuales se cumple la siguiente regla: el total

Más detalles

La siguiente tabla indica el tiempo de reacción y el tiempo final de 8 corredores en una carrera de 100 metros planos.

La siguiente tabla indica el tiempo de reacción y el tiempo final de 8 corredores en una carrera de 100 metros planos. M432: Tiempo de Reacción A) Presentación del problema En una competencia de carreras los atletas se colocan en la marca de inicio de la pista. El tiempo de reacción es el lapso de tiempo que transcurre

Más detalles

CONSTRUYENDO BLOQUES

CONSTRUYENDO BLOQUES CONSTRUYENDO BLOQUES A Susana le gusta construir bloques con cubos pequeños como el que se muestra en el siguiente gráfico: Susana tiene muchos cubos pequeños como éste. Utiliza pegamento para unir los

Más detalles

M479: Altura de los estudiantes

M479: Altura de los estudiantes M479: Altura de los estudiantes A) PRESETACIÓ DEL PROBLEMA Durante una clase de matemáticas se midió la altura de cada uno de los estudiantes. El promedio de la altura de todos los varones fue 60 cm, y

Más detalles

4 m. Sabemos que las caras de las pirámides son proporcionales. Los triángulos son equiláteros y la base es un cuadrado.

4 m. Sabemos que las caras de las pirámides son proporcionales. Los triángulos son equiláteros y la base es un cuadrado. M001 La pirámide A) PRESENTACIÓN DEL PROBLEMA En el museo de una ciudad se va a presentar una exposición del arte egipcio y como parte de la decoración han mandado fabricar un par de pirámides. Ambas pirámides

Más detalles

5to Grado - Geometría, Medidas, y Algebra Estándar Básico 3. Evaluación.

5to Grado - Geometría, Medidas, y Algebra Estándar Básico 3. Evaluación. 5to Grado - Geometría, Medidas, y Algebra Estándar Básico 3. Evaluación. 5.3.1 Identificar y clasificar triángulos de acuerdo a sus ángulos (agudo, recto, obtuso) y lados (escaleno, isósceles, equilátero).

Más detalles

14 CUERPOS GEOMÉTRICOS. VOLÚMENES

14 CUERPOS GEOMÉTRICOS. VOLÚMENES EJERCICIOS PARA ENTRENARSE Poliedros 14.33 Calcula la suma de los ángulos de las caras que concurren en un vértice de los poliedros regulares. Qué observas? TETRAEDO: En un vértice concurren tres triángulos

Más detalles

Fórmula de Superficie de Área: Si dos sólidos son similares con un factor de. escala de entonces las áreas de superficie están en una relación de.

Fórmula de Superficie de Área: Si dos sólidos son similares con un factor de. escala de entonces las áreas de superficie están en una relación de. Materia: Matemática de Séptimo Tema: Cálculo de Volumen Y si te dieran dos cubos similares y te preguntan cuál es el factor de escala de sus caras? Cómo encontrarías sus áreas de superficie y sus volúmenes?

Más detalles

ANEXO I GRADUACIÓN DE CRITERIOS DE EVALUACIÓN DEL ÁREA DE MATEMÁTICAS. BLOQUE 1: Procesos, métodos y actitudes en matemáticas CRITERIOS DE EVALUACIÓN

ANEXO I GRADUACIÓN DE CRITERIOS DE EVALUACIÓN DEL ÁREA DE MATEMÁTICAS. BLOQUE 1: Procesos, métodos y actitudes en matemáticas CRITERIOS DE EVALUACIÓN ANEXO I GRADUACIÓN DE DEL ÁREA DE MATEMÁTICAS BLOQUE 1: Procesos, métodos y actitudes en matemáticas CRITERIOS 6º CRITERIOS 5º CRITERIOS 4º CRITERIOS 3º CRITERIOS 2º CRITERIOS 1º, estableciendo conexiones

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED.

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. . G r e d o s S a n D i e g o V a l l e c a s CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMERA EVALUACIÓN El Sistema de numeración decimal El sistema de numeración decimal. Lectura y escritura

Más detalles

Rige a partir de la convocatoria

Rige a partir de la convocatoria TABLA DE ESPECIFICACIONES DE HABILIDADES Y CONOCIMIENTOS QUE SE MEDIRÁN EN LAS PRUEBAS DE CERTIFICACIÓN DEL PROGRAMA: I y II Ciclo de la Educación General Básica Abierta Este documento está elaborado con

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMARIA

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMARIA CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMARIA El cálculo y los problemas se irán trabajando y evaluando a lo largo de todo el año. 1ª EVALUACIÓN CONTENIDOS El Sistema de numeración decimal

Más detalles

Tema 2. Geometría en el espacio

Tema 2. Geometría en el espacio Tema 2. Geometría en el espacio Matemáticas I La geometría espacial o geometría en el espacio es la rama de la geometría que se ocupa de las propiedades y medidas de las figuras geométricas en el espacio

Más detalles

COLEGIO HELVETIA PROGRAMA DE MATEMATICAS GRADO OCTAVO

COLEGIO HELVETIA PROGRAMA DE MATEMATICAS GRADO OCTAVO COLEGIO HELVETIA PROGRAMA DE MATEMATICAS GRADO OCTAVO 014 015 OBJETIVO GENERAL: Identificar y utilizar herramientas propias de la matemática para modelar situaciones de contexto. OBJETIVOS ESPECIFICOS:

Más detalles

UNIDAD DIDÁCTICA: Unidades 06: Metros, Gramos y Litros De Matemáticas. (T.9 y T.10)

UNIDAD DIDÁCTICA: Unidades 06: Metros, Gramos y Litros De Matemáticas. (T.9 y T.10) UNIDAD DIDÁCTICA: Unidades 06: Metros, Gramos y Litros De Matemáticas. (T.9 y T.10) Utilizar el metro como la unidad principal de medida de longitud. Utilizar el litro y el gramo unidades de principal

Más detalles

BLOQUE I: GEOMETRÍA PLANA Y FIGURAS GEOMÉTRICAS. Ecuaciones y sistemas. 2 (20 horas) Funciones y gráficas. 2 (20 horas) Estadística y probabilidad

BLOQUE I: GEOMETRÍA PLANA Y FIGURAS GEOMÉTRICAS. Ecuaciones y sistemas. 2 (20 horas) Funciones y gráficas. 2 (20 horas) Estadística y probabilidad PROGRAMACIÓN DIDÁCTICA Materia IV Período FBPI Tramo II Ámbito Científico-Tecnológico Bloque I Geometría plana y figuras geométricas Créditos 3 (30 horas) Bloque II Créditos Ecuaciones y sistemas 2 (20

Más detalles

Descubrimos la noción de volumen realizando construcciones con material Base Diez

Descubrimos la noción de volumen realizando construcciones con material Base Diez sexto GRADO - Unidad 2 - Sesión 10 Descubrimos la noción de volumen realizando construcciones con material Base Diez En esta sesión se espera que los niños y las niñas identifiquen la noción de volumen

Más detalles

UNIDAD 6: ECUACIONES OBJETIVOS

UNIDAD 6: ECUACIONES OBJETIVOS UNIDAD 6: ECUACIONES Conocer los conceptos de ecuación, así como la terminología asociada. Identificar y clasificar los distintos tipos de ecuaciones polinómicas en función de su grado y número de incógnitas.

Más detalles

Guía para maestro. Área y volumen de un cilindro. Compartir Saberes.

Guía para maestro. Área y volumen de un cilindro. Compartir Saberes. Guía para maestro Guía realizada por Jefferson Bustos Ortiz Máster en Educación Matemática jeferortiz@gmail.com La presente guía pretende ser un recurso para el docente que desee llevar a cabo una serie

Más detalles

Programa Entrenamiento MT-22

Programa Entrenamiento MT-22 Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8

Más detalles

TAREA 1: CURSO EVALUACIÓN POR COMPETENCIAS.

TAREA 1: CURSO EVALUACIÓN POR COMPETENCIAS. CURSO EVALUACÓN POR COMPETENCAS. ALACETE. TAREA 1: CURSO EVALUACÓN POR COMPETENCAS. JUSTFCACÓN: Esta tarea consta de dos partes, la primera corresponde a una Unidad Didáctica del área de Matemáticas, CUERPOS

Más detalles

CUERPOS GEOMÉTRICOS. 2º E.S.O. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS

CUERPOS GEOMÉTRICOS. 2º E.S.O. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS CUERPOS GEOMÉTRICOS. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO 2º E.S.O. DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS Determinación de puntos: DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS Determinación de una recta:

Más detalles

Criterios de Evaluación MÍNIMOS

Criterios de Evaluación MÍNIMOS s 2º ESO / 2ºPAB Concreción : CE.1 Utilizar números enteros, fracciones, decimales y porcentajes sencillos, sus operaciones y propiedades, para recoger, transformar e intercambiar información y resolver

Más detalles

Matemáticas UNIDAD 8 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz

Matemáticas UNIDAD 8 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz CONSIDERACIONES METODOLÓGICAS Material de apoyo para el docente UNIDAD 8 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl VOLUMEN DE CUERPOS GEOMÉTRICOS 1. DESCRIPCIÓN GENERAL DE LA

Más detalles

Matemáticas Currículum Universal

Matemáticas Currículum Universal Matemáticas Currículum Universal Índice de contenidos 08-11 años 2013-2014 Matemáticas 08-11 años USOS DE LOS NÚMEROS NATURALES Reconocer la utilidad de los números naturales para contar y ordenar elementos.

Más detalles

Descubrimos la noción de volumen realizando construcciones con material Base Diez

Descubrimos la noción de volumen realizando construcciones con material Base Diez sexto GRADO - Unidad 2 - Sesión 10 Descubrimos la noción de volumen realizando construcciones con material Base Diez En esta sesión se espera que los niños y las niñas identifiquen la noción de volumen

Más detalles

ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS REGULARES ESFERA

ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS REGULARES ESFERA ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS POLIEDROS REGULARES Tetraedro ( 4 triángulos equiláteros) Hexaedro o cubo( 6 cuadrados) Octaedro( 8 triángulos equiláteros) Dodecaedro ( 12

Más detalles

MATEMÁTICAS 6 GRADO. Código de Contenido El alumno empleará la lectura, escritura y comparación de diferentes cantidades de cifras numéricas.

MATEMÁTICAS 6 GRADO. Código de Contenido El alumno empleará la lectura, escritura y comparación de diferentes cantidades de cifras numéricas. MATEMÁTICAS 6 GRADO Código Materia: Matemáticas (Español) = MSP Eje 1= Sentido numérico y pensamiento algebraico. Eje 2= Forma, espacio y medida. Eje 3= Manejo de la información. Código: Materia. Grado.

Más detalles

Analizar familias de figuras geométricas para apreciar regularidades y simetrías y establecer criterios de clasificación.

Analizar familias de figuras geométricas para apreciar regularidades y simetrías y establecer criterios de clasificación. Matemáticas 8 Básico Eje temático: Geometría Introducción La prueba del subsector de Educación Matemática evalúa el logro de los OF- CMO establecidos en el marco curricular del segundo ciclo de Educación

Más detalles

Anexo 2. Dificultad y porcentaje de aciertos de habilidades y conocimientos evaluados por el Excale 06 de Matemáticas

Anexo 2. Dificultad y porcentaje de aciertos de habilidades y conocimientos evaluados por el Excale 06 de Matemáticas Anexo 2 Dificultad y porcentaje de aciertos de habilidades y conocimientos evaluados por el Excale 06 de Matemáticas Anexo 2: Dificultad y porcentaje de aciertos de habilidades y conocimientos evaluados

Más detalles

Remedial Unidad N 3 Matemática Octavo Básico 2017

Remedial Unidad N 3 Matemática Octavo Básico 2017 Remedial Unidad N 3 Matemática Octavo Básico 2017 GUÍA DE TRABAJO REMEDIAL N 1 UNIDAD N 3 Nombre Curso 8 año básico Fecha Objetivo Comprender el Teorema de Pitágoras y lo aplica en la resolución de problemas

Más detalles

MÉTODO SINGAPUR. Para la enseñanza de Matemáticas

MÉTODO SINGAPUR. Para la enseñanza de Matemáticas MÉTODO SINGAPUR Para la enseñanza de Matemáticas ÍNDICE Introducción El marco del currículo Conceptos Habilidades Procesos Metacognición Actitudes Más Información INTRODUCCIÓN El método Singapur es una

Más detalles

II. Área(s) matemáticas y periodo lectivo a la que corresponden las habilidades desarrolladas.

II. Área(s) matemáticas y periodo lectivo a la que corresponden las habilidades desarrolladas. Registro de la observación de lecciones de Matemáticas en los centros educativos de la DREA (Elaborado por Yadira Barrantes Bogantes, Asesora Regional de Matemática) Institución: Circuito: Director(a):

Más detalles

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO 9 TALLER Nº 4 SEMESTRE 2 VOLUMENES Reseña Histórica (Tales de Mileto) Nació Mileto, actual Turquía, 624 a.c., 548 a.c.) Filósofo

Más detalles

FIGURAS DEL ESPACIO. ÁREAS Y VOLÚMENES

FIGURAS DEL ESPACIO. ÁREAS Y VOLÚMENES POLIEDROS : Cuerpo sólido limitado por polígonos, llamados caras; en la que algunas de las caras confluyen en líneas rectas, llamadas aristas; y algunas de las aristas confluyen en puntos,llamados vértices.

Más detalles

CONTENIDOS MÍNIMOS BLOQUE 2. NÚMEROS

CONTENIDOS MÍNIMOS BLOQUE 2. NÚMEROS CONTENIDOS Y CRITERIOS DE EVALUACIÓN DE MATEMÁTICAS 1º DE ESO. Bloque 1: Contenidos Comunes Este bloque de contenidos será desarrollado junto con los otros bloques a lo largo de todas y cada una de las

Más detalles

COMPETENCIA S Y OBJETIVOS DE M A T E M ÁTICAS DE SEXTO

COMPETENCIA S Y OBJETIVOS DE M A T E M ÁTICAS DE SEXTO 1 CONSEJERÍA DE EDUCACIÓN CEIP EL ZARGAL C/ Zargal s/n; 18190 CENES DE LA VEGA Telfs. 958893177-78 ; FAX 958893179 18001792.averroes@juntadeandalucia.es COMPETENCIA S Y DE M A T E M ÁTICAS DE SEXTO ÍNDICE

Más detalles

6. FORMAS Y SUPERFICIES

6. FORMAS Y SUPERFICIES 6. FORMAS Y SUPERFICIES Figuras planas: los polígonos Las figuras planas limitadas sólo por líneas rectas se llaman polígonos. Las figuras planas limitadas por curvas o por rectas y curvas, no son polígonos.

Más detalles

MATEMÁTICAS 2º DE ESO LOE

MATEMÁTICAS 2º DE ESO LOE MATEMÁTICAS º DE ESO LOE TEMA XII: POLIEDROS Y CUERPOS REDONDOS Poliedros: o Elementos. o Tipos. Poliedros regulares. Cubos. Prismas: elementos, clases. Pirámides: elementos, clases. Áreas laterales y

Más detalles

PRUEBA EXTAORDINAORIA DE SEPTIEMBRE DE 2014 CONTENIDOS MÍNIMOS DE MATEMÁTICAS

PRUEBA EXTAORDINAORIA DE SEPTIEMBRE DE 2014 CONTENIDOS MÍNIMOS DE MATEMÁTICAS IES SAN BENITO PRUEBA EXTAORDINAORIA DE SEPTIEMBRE DE 2014 CONTENIDOS MÍNIMOS DE MATEMÁTICAS MATEMÁTICAS 1º ESO *SISTEMA DE NUMERACIÓN DECIMAL. N OS NATURALES. POTENCIAS Y RAICES Ordenación de los números

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1 GUÍ DE EJERCITCIÓN VNZD Cuerpos geométricos Programa Entrenamiento Desafío GUICEN02MT22-16V1 Matemática Una semiesfera tiene un área total de 4π cm 2. Si se corta por la mitad, de manera de formar dos

Más detalles

Aplicarán conocimientos básicos de probabilidad

Aplicarán conocimientos básicos de probabilidad Materia: MATEMÁTICA Año: 10º AÑO DE EDUCACIÓN BÁSICA BREVE DESCRIPCIÓN DE LA CLASE: Formar entre el profesor y los alumnos una comunidad de trabajo por medio de la creatividad y estructura de los conocimientos

Más detalles

ELEMENTOS DE UN POLIEDRO. PRINCIPALES POLIEDROS REGULARES

ELEMENTOS DE UN POLIEDRO. PRINCIPALES POLIEDROS REGULARES OBJETIVO 1 ELEMENTOS DE UN POLIEDRO. PRINCIPALES POLIEDROS REGULARES NOMBRE: CURSO: ECHA: CONCEPTO DE POLIEDRO Vértice Arista Cara Un poliedro es un cuerpo geométrico cuyas caras son polígonos. Los elementos

Más detalles

Materia: Matemáticas Curso: Octavo de Básica

Materia: Matemáticas Curso: Octavo de Básica Materia: Matemáticas Curso: Octavo de Básica BREVE DESCRIPCIÓN DE LA CLASE: Formar entre el profesor y el estudiante/es una comunidad de trabajo por medio de la creatividad y estructura de los conocimientos

Más detalles

Colegio Juan de la Cierva. PROGRAMACIÓN DIDÁCTICA Asignatura: MATEMÁTICAS Curso: 6º Etapa: PRIMARIA Curso académico:

Colegio Juan de la Cierva. PROGRAMACIÓN DIDÁCTICA Asignatura: MATEMÁTICAS Curso: 6º Etapa: PRIMARIA Curso académico: Colegio Juan de la Cierva PROGRAMACIÓN DIDÁCTICA Asignatura: MATEMÁTICAS Curso: 6º Etapa: PRIMARIA Curso académico: 2016-2017 Estadística y probabilidad Geometría Magnitudes y medidas 1º TRIMESTRE OBJETIVOS

Más detalles

Distribución de ítems para la prueba nacional Matemática Modalidad Técnica Convocatorias 2016

Distribución de ítems para la prueba nacional Matemática Modalidad Técnica Convocatorias 2016 ESTIMADO DOCENTE: Ministerio de Educación Pública Distribución de ítems para la prueba nacional Matemática Modalidad Técnica Convocatorias 2016 En la modalidad de colegios técnicos, la Prueba de Bachillerato

Más detalles

1. Los números racionales. 2. Operaciones con racionales. 3. Clasificación de los decimales. 4. Irracionales. (representación, orden).

1. Los números racionales. 2. Operaciones con racionales. 3. Clasificación de los decimales. 4. Irracionales. (representación, orden). EJES ARTICULADORES Y PRODUCTIVOS DEL AREA SISTEMA DE CONOCIMIENTOS GRADO: 8 9 1. Los números racionales. 2. Operaciones con racionales. 3. Clasificación de los decimales. 1. Los números reales. 2. Notación

Más detalles

PROGRAMACIÓN DE MATEMÁTICA KLASSEN 9 ( )

PROGRAMACIÓN DE MATEMÁTICA KLASSEN 9 ( ) PROGRAMACIÓN DE MATEMÁTICA KLASSEN 9 (2015 2016) Justificación y Logros Generales Justificación Las matemáticas son una creación de la mente humana y constituye una herramienta del ser para entender el

Más detalles

Ministerio de Educación Pública Dirección de Gestión y Evaluación de la Calidad Departamento de Evaluación Académica y Certificación.

Ministerio de Educación Pública Dirección de Gestión y Evaluación de la Calidad Departamento de Evaluación Académica y Certificación. Matemáticas Distribución de ítems para la prueba nacional Modalidad Académica (Diurnos Nocturnos) Convocatorias 016 ESTIMADO DOCENTE: En la modalidad de colegios académico, la Prueba de Bachillerato 016

Más detalles

Matemáticas Grado 4 Relacionar figuras bidimensionales y tridimensionales

Matemáticas Grado 4 Relacionar figuras bidimensionales y tridimensionales Matemáticas Grado 4 Relacionar figuras bidimensionales y tridimensionales Estimado padre o tutor legal: Actualmente su hijo/a está aprendiendo a relacionar figuras bidimensionales a objetos tridimensionales.

Más detalles

UNIDAD 7. SISTEMA MÉTRICO DECIMAL

UNIDAD 7. SISTEMA MÉTRICO DECIMAL UNIDAD 7. SISTEMA MÉTRICO DECIMAL Reconocer la necesidad de medir, apreciar la utilidad de los instrumentos de medida y conocer los más importantes. Definir el metro como la unidad principal de longitud,

Más detalles

PROGRAMACIÓN DE MATEMÁTICA KLASSEN 7 ( )

PROGRAMACIÓN DE MATEMÁTICA KLASSEN 7 ( ) PROGRAMACIÓN DE MATEMÁTICA KLASSEN 7 (2015 2016) Justificación y Logros Generales Justificación Las matemáticas son una creación de la mente humana y constituye una herramienta del ser para entender el

Más detalles

Colegio Decroly Americano Matemática 7th Core, Contenidos I Período

Colegio Decroly Americano Matemática 7th Core, Contenidos I Período Matemática 7th Core, 2015-2016 Contenidos I Período 1. Sentido Numérico a. Identificar y escribir patrones. b. Escribir números en forma de exponentes. c. Escribir cantidades en notación científica. d.

Más detalles

Criterios de evaluación Suma o resta dos enteros Calcula expresiones con sumas y restas de varios

Criterios de evaluación Suma o resta dos enteros Calcula expresiones con sumas y restas de varios 1Números enteros Objetivos 1. Sumar y restar números enteros. 2. Multiplicar y dividir números enteros. 3. Resolver expresiones con operaciones combinadas y paréntesis. Criterios de evaluación 1.1. Suma

Más detalles

Un poliedro es un cuerpo geométrico que tiene todas sus caras planas y formadas por polígonos.

Un poliedro es un cuerpo geométrico que tiene todas sus caras planas y formadas por polígonos. CUERPOS GEOMÉTRICOS Los cuerpos geométricos son figuras geométricas tridimensionales (tienen alto, ancho y largo) que ocupan un lugar en el espacio. 1. POLIEDROS. 1.1. DEFINICIÓN. Un poliedro es un cuerpo

Más detalles

VINCULACIÓN DE LAS COMPETENCIAS BÁSICAS CON LOS CRITERIOS DE EVALUACIÓN Y LOS CONTENIDOS

VINCULACIÓN DE LAS COMPETENCIAS BÁSICAS CON LOS CRITERIOS DE EVALUACIÓN Y LOS CONTENIDOS VINCULACIÓN DE LAS COMPETENCIAS BÁSICAS CON LOS CRITERIOS DE EVALUACIÓN Y LOS MATERIA DE EDUCACIÓN PLÁSTICA Y VISUAL CURSO 1.º A 3.º DE LA ESO N.º 1. COMPETENCIA EN COMUNICACIÓN LINGÜÍSTICA 4.- Explotación

Más detalles

DISTRIBUCIÓN SEGÚN HABILIDADES GENERALES Y ESPECÍFICAS Prueba 2. El desarrollo de estos temas los puede encontrar oprimiendo el siguiente botón.

DISTRIBUCIÓN SEGÚN HABILIDADES GENERALES Y ESPECÍFICAS Prueba 2. El desarrollo de estos temas los puede encontrar oprimiendo el siguiente botón. DISTRIBUCIÓN SEGÚN HABILIDADES GENERALES Y ESPECÍFICAS Prueba 2 El desarrollo de estos temas los puede encontrar oprimiendo el siguiente botón. http://www.costarica.elmaestroencasa.com/e-books/elmec/bach-a-tu-medida-2/matematica-a-tu-medida-02-2017.pdf

Más detalles

Materia: Matemáticas Curso: Noveno de Básica BREVE DESCRIPCIÓN DE LA CLASE:

Materia: Matemáticas Curso: Noveno de Básica BREVE DESCRIPCIÓN DE LA CLASE: Materia: Matemáticas Curso: Noveno de Básica BREVE DESCRIPCIÓN DE LA CLASE: Durante este curso se contribuirá al desarrollo del pensamiento lógico, reflexivo y crítico de los estudiantes, es por ello,

Más detalles

Recursos. Temas. Tiempo. Evaluación. Competencias:

Recursos. Temas. Tiempo. Evaluación. Competencias: Lic. José Antonio Martínez y Martínez @jamm2014 Competencias: Utiliza formas geométricas, símbolos, signos y señales para el desarrollo de sus actividades cotidianas. Aplica el pensamiento lógico, reflexivo,

Más detalles

PROGRAMA DE REFUERZO 3º Evaluación

PROGRAMA DE REFUERZO 3º Evaluación COLEGIO INTERNACIONAL SEK EL CASTILLO DEPARTAMENTO DE MATEMÁTICAS PROGRAMA DE REFUERZO 3º Evaluación MATEMÁTICAS 3º de E.S.O. ALUMNO: Ref E3.doc3 Página 1 Matemáticas 3º ESO MATEMÁTICAS 3º E.S.O. (010/011)

Más detalles

UNIDAD 1: DIVISIBILIDAD Y NÚMEROS ENTEROS

UNIDAD 1: DIVISIBILIDAD Y NÚMEROS ENTEROS UNIDAD 1: DIVISIBILIDAD Y NÚMEROS ENTEROS 1. *Representar números enteros sobre la recta numérica, compararlos y ordenarlos. 2. *Sumar y restar números enteros teniendo en cuenta el signo que presentan.

Más detalles

PROGRAMA DE ASIGNATURA

PROGRAMA DE ASIGNATURA PROGRAMA DE ASIGNATURA ASIGNATURA : PENSAMIENTO GEOMÉTRICO Clave : EBA 215 Créditos :3 Horas: 4 Pre- requisitos : EBA 150 I. COMPETENCIAS QUE PROMUEVE En esta asignatura se promueve(n) la(s) siguiente(s)

Más detalles

bloque i ejes aprendizajes esperados sentido numérico y PensaMiento algebraico forma, espacio y Medida Manejo de la información Patrones y ecuaciones

bloque i ejes aprendizajes esperados sentido numérico y PensaMiento algebraico forma, espacio y Medida Manejo de la información Patrones y ecuaciones TERCER GRADO bloque i Explica la diferencia entre eventos complementarios, mutuamente excluyentes e independientes. Resolución de problemas que impliquen el uso de ecuaciones cuadráticas sencillas, utilizando

Más detalles

CENTRO UNIVERSITARIO MONTEJO A. C. Temario de Matemáticas 3. Bloque I

CENTRO UNIVERSITARIO MONTEJO A. C. Temario de Matemáticas 3. Bloque I Bloque I Explica la diferencia entre eventos complementarios, mutuamente excluyentes e independientes. Resolución de problemas que impliquen el uso de ecuaciones cuadráticas sencillas, utilizando procedimientos

Más detalles

La fotografía muestra una banda transportadora que se utiliza en un aeropuerto.

La fotografía muestra una banda transportadora que se utiliza en un aeropuerto. M703: Banda transportadora A) Presentación del problema La fotografía muestra una banda transportadora que se utiliza en un aeropuerto. Para trasladarse de una sala a otra en el aeropuerto las personas

Más detalles

New Jersey Center for Teaching and Learning. Iniciativa de Matemática Progresiva

New Jersey Center for Teaching and Learning. Iniciativa de Matemática Progresiva Slide 1 / 232 New Jersey Center for Teaching and Learning Iniciativa de Matemática Progresiva Este material está disponible gratuitamente en www.njctl.org y está pensado para el uso no comercial de estudiantes

Más detalles

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides.

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. a) b) c) Prisma es un poliedro que tiene por caras dos bases

Más detalles

1. Calcula el área y volumen de los siguientes cuerpos geométricos:

1. Calcula el área y volumen de los siguientes cuerpos geométricos: 1. Calcula el área y volumen de los siguientes cuerpos geométricos: 2.- Dibuja los siguientes cuerpos geométricos y calcula su área. a) Prisma de altura 24 cm y cuya base es un rombo de diagonales 18 y

Más detalles

DISTRIBUCIÓN SEGÚN HABILIDADES GENERALES Y ESPECÍFICAS Prueba 1. El desarrollo de estos temas los puede encontrar oprimiendo el siguiente botón.

DISTRIBUCIÓN SEGÚN HABILIDADES GENERALES Y ESPECÍFICAS Prueba 1. El desarrollo de estos temas los puede encontrar oprimiendo el siguiente botón. DISTRIBUCIÓN SEGÚN HABILIDADES GENERALES Y ESPECÍFICAS Prueba 1 El desarrollo de estos temas los puede encontrar oprimiendo el siguiente botón. Enlace: http://costarica.elmaestroencasa.com/e-books/elmec/bach-a-tu-medida/matematica-a-tu-medida.pdf

Más detalles

PLANES CURRICULARES GRADO9º/ 01 PERIODO

PLANES CURRICULARES GRADO9º/ 01 PERIODO PLANES CURRICULARES GRADO9º/ 01 PERIODO Grado: 9º Periodo: 01 PRIMERO Aprobado por: G. Watson - Jefe Sección Asignatura: MATEMATICAS Profesor: Gloria rueda y Jesús Vargas ESTANDARES P.A.I. I.B. A. Conocimiento

Más detalles

CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio.

CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio. CUERPOS GEOMÉTRICOS 07 Comprende que son los cuerpos geométricos e identifica las partes que los componen. En Presentación de Contenidos recuerdan qué son los polígonos para comprender cómo se forman los

Más detalles

GEOMETRIA DEL ESPACIO. Geometría del espacio, rama de la geometría que se ocupa de las. propiedades y medidas de figuras geométricas en el espacio

GEOMETRIA DEL ESPACIO. Geometría del espacio, rama de la geometría que se ocupa de las. propiedades y medidas de figuras geométricas en el espacio GEOMETRIA DEL ESPACIO Geometría del espacio, rama de la geometría que se ocupa de las propiedades y medidas de figuras geométricas en el espacio tridimensional. Entre estas figuras, también llamadas sólidos,

Más detalles

Primer grado. Slide 2 / 232. Slide 1 / 232. Slide 3 / 232. Slide 4 / 232. Slide 6 / 232. Slide 5 / 232. Geometría. Formas 2-D

Primer grado. Slide 2 / 232. Slide 1 / 232. Slide 3 / 232. Slide 4 / 232. Slide 6 / 232. Slide 5 / 232. Geometría. Formas 2-D Slide 1 / 232 Slide 2 / 232 New Jersey Center for Teaching and Learning Iniciativa de Matemática Progresiva Este material está disponible gratuitamente en www.njctl.org y está pensado para el uso no comercial

Más detalles

NIVEL: 2º ÁREA: MATEMÁTICAS PRIMER TRIMESTRE CONCRECIÓN DE LOS OBJETIVOS AL CURSO CRITERIOS DE EVALUACIÓN

NIVEL: 2º ÁREA: MATEMÁTICAS PRIMER TRIMESTRE CONCRECIÓN DE LOS OBJETIVOS AL CURSO CRITERIOS DE EVALUACIÓN NIVEL: 2º ÁREA: MATEMÁTICAS PRIMER TRIMESTRE CONCRECIÓN DE LOS OBJETIVOS AL CURSO a) Conocer y utilizar de manera apropiada la lengua castellana, desarrollar hábitos de lectura y escritura y adquirir la

Más detalles

Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 9 Eje temático: F. E. y M.

Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 9 Eje temático: F. E. y M. Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 9 Eje temático: F. E. y M. Contenido: 9.4.2 Análisis de las características de los cuerpos que se generan al girar sobre un eje, un triángulo

Más detalles

TABLA DE CONTENIDOS MATEMÁTICAS QUINTO GRADO EDUCACIÓN PRIMARIA

TABLA DE CONTENIDOS MATEMÁTICAS QUINTO GRADO EDUCACIÓN PRIMARIA TABLA DE ESPECIFICACIONES PARA CONSTRUIR REACTIOS I aditivos Resolución de problemas que impliquen sumar o restar fracciones cuyos denomina dores son múltiplos uno de otro. A partir de un planteamiento

Más detalles

2 Calcula la superficie total de cada cuerpo:

2 Calcula la superficie total de cada cuerpo: 8 Pág. Calcula la superficie total de cada cuerpo: A cm B C D cm A Área lateral πrh π,5 5π Área bases (πr ) π,5,5π Área total 5π +,5π 7,5π 86, B Área lateral πrg π 5 5π Área base πr π 9π Área total 5π

Más detalles

VOLUMENES DE CUERPOS GEOMETRICOS

VOLUMENES DE CUERPOS GEOMETRICOS PreUnAB VOLUMENES DE CUERPOS GEOMETRICOS Clase # 20 Octubre 2014 CONCEPTOS PREVIOS Volumen: El volumen es una magnitud definida como la extensión en tres dimensiones de un cuerpo en el espacio. Es, por

Más detalles

ÍNDICE RECUPERACIÓN DE MATEMÁTICAS 1º ESO..1 RECUPERACIÓN DE MATEMÁTICAS 2º ESO..4 RECUPERACIÓN DE MATEMÁTICAS 3º ESO..8

ÍNDICE RECUPERACIÓN DE MATEMÁTICAS 1º ESO..1 RECUPERACIÓN DE MATEMÁTICAS 2º ESO..4 RECUPERACIÓN DE MATEMÁTICAS 3º ESO..8 ÍNDICE RECUPERACIÓN DE MATEMÁTICAS 1º ESO..1 RECUPERACIÓN DE MATEMÁTICAS 2º ESO..4 RECUPERACIÓN DE MATEMÁTICAS 3º ESO..8 RECUPERACIÓN DE MATEMÁTICAS 1º ESO CONTENIDOS Números, medidas y operaciones Números

Más detalles

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA 1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.

Más detalles

TEMARIOS EXAMEN DE ADMISIÓN 2018 ASIGNATURA MATEMÁTICA. Emplear los números para: Identificar Contar Clasificar Sumar y restar Resolución de problemas

TEMARIOS EXAMEN DE ADMISIÓN 2018 ASIGNATURA MATEMÁTICA. Emplear los números para: Identificar Contar Clasificar Sumar y restar Resolución de problemas TEMARIOS EXAMEN DE ADMISIÓN 2018 ASIGNATURA MATEMÁTICA 1 Básico Números y operaciones Ámbito 0 al 10 /Habilidad Emplear los números para: Identificar Contar Clasificar Sumar y restar Resolución de problemas

Más detalles

ÁREA DE MATEMÁTICAS 2º CURSO DE LA E.S.O.

ÁREA DE MATEMÁTICAS 2º CURSO DE LA E.S.O. 2. Reconocer y plantear situaciones susceptibles de ser formuladas en términos matemáticos, elaborar y utilizar diferentes estrategias para abordarlas y analizar los resultados utilizando los recursos

Más detalles

Ámbito científico tecnológico

Ámbito científico tecnológico Dirección Xeral de Educación, Formación Profesional e Innovación Educativa Educación secundaria para personas adultas Ámbito científico tecnológico Educación a distancia semipresencial Módulo Unidad didáctica

Más detalles

Rige a partir de la convocatoria

Rige a partir de la convocatoria TABLA DE ESPECIFICACIONES DE HABILIDADES Y CONOCIMIENTOS QUE SE MEDIRÁN EN LAS PRUEBAS DE CERTIFICACIÓN DE LOS PROGRAMAS: BACHILLERATO POR MADUREZ SUFICIENTE BACHILLERATO DE EDUCACIÓN DIVERSIFICADA A DISTANCIA

Más detalles

NÚMERO Y OPERACIONES (Aritmética y Estadística)

NÚMERO Y OPERACIONES (Aritmética y Estadística) NÚMERO Y OPERACIONES (Aritmética y Estadística) que implican la construcción del significado y el uso de los números y sus operaciones empleando diversas estrategias de solución, justificando y valorando

Más detalles

Recursos. Temas. Evaluación. Tiempo. Competencias: Indicadores de Logro. Actividades Sugeridas

Recursos. Temas. Evaluación. Tiempo. Competencias: Indicadores de Logro. Actividades Sugeridas Lic. José Antonio Martínez y Martínez @jamm2014 Competencias: Produce información acerca de la utilización de figuras geométricas, símbolos, signos y señales de fenómenos naturales, sociales y culturales

Más detalles

TEMARIOS EXAMEN DE ADMISIÓN 2017 EDUCACIÓN BÁSICA Y MEDIA: MATEMÁTICA. Contenido

TEMARIOS EXAMEN DE ADMISIÓN 2017 EDUCACIÓN BÁSICA Y MEDIA: MATEMÁTICA. Contenido TEMARIOS EXAMEN DE ADMISIÓN 2017 1 Básico 1.- Reconocimiento izquierda derecha 2.- Figuras geométricas 3.- Cuerpos geométricos 4.- Establecer patrones 5.- Secuencias temporales 6.- ordinales 7.- Reconocimiento

Más detalles

PLANEACIÓN PERIÓDICA DE ÁREA GRADOS 4 A 11 AÑO ESCOLAR: PERÍODO: 16/01/ /03/2014

PLANEACIÓN PERIÓDICA DE ÁREA GRADOS 4 A 11 AÑO ESCOLAR: PERÍODO: 16/01/ /03/2014 Página 1 de 5 AREA: Matemáticas OBJETIVO: GRADO: Noveno OBJETIVOS: Reconocer las características y formas de representación de algunas funciones de variable real, las cuales, mediante razonamientos matemáticos

Más detalles

congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida

congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida COLEGIO COLMBO BRITÁNICO DEPARTAMENTO DE MATEMÁTICAS GEOMETRÍA NOVENO GRADO PROFESORES: RAÚL MARTÍNEZ, JAVIER MURILLO Y JESÚS VARGAS CONGRUENCIA Y SEMEJANZA Cuando tenemos dos segmentos escribimos AB CD

Más detalles

Introducción a la geometría

Introducción a la geometría Introducción a la geometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares. Plan de estudios (217 temas)

Más detalles

1. Laura y Rosa están mirando un tarro con forma de cilindro. Lo que ven está representado en la figura.

1. Laura y Rosa están mirando un tarro con forma de cilindro. Lo que ven está representado en la figura. Sector y Nivel: Matemática 4 Básico Eje: Geometría 1. Laura y Rosa están mirando un tarro con forma de cilindro. Lo que ven está representado en la figura. Desde dónde es posible que estén observando el

Más detalles

COLEGIO ALEXANDER DUL

COLEGIO ALEXANDER DUL PRIMER BIMESTRE CICLO ESCOLAR 2016 2017 MATEMÁTICAS ESTRUCTURA DEL APRENDIZAJES ESPERADOS PROGRAMA REALIZACIÓN 1-8 TEMA 1 2. Tema: Problemas aditivos. Tema: Problemas multiplicativos. impliquen sumar o

Más detalles