Fracciones, Decimales, Redondeo

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Fracciones, Decimales, Redondeo"

Transcripción

1 Fracciones, Decimales, Carlos A. Rivera-Morales Álgebra

2 Tabla de Contenido Contenido

3 : Contenido Discutiremos: fracción aritmética

4 : Contenido Discutiremos: fracción aritmética clasificación de fracciones

5 : Contenido Discutiremos: fracción aritmética clasificación de fracciones fracciones equivalentes

6 : Contenido Discutiremos: fracción aritmética clasificación de fracciones fracciones equivalentes simplificación de fracciones

7 : Contenido Discutiremos: fracción aritmética clasificación de fracciones fracciones equivalentes simplificación de fracciones máximo común divisor

8 : Contenido Discutiremos: fracción aritmética clasificación de fracciones fracciones equivalentes simplificación de fracciones máximo común divisor forma decimal de una fracción

9 : Contenido Discutiremos: fracción aritmética clasificación de fracciones fracciones equivalentes simplificación de fracciones máximo común divisor forma decimal de una fracción operaciones con números decimales

10 : Contenido Discutiremos: fracción aritmética clasificación de fracciones fracciones equivalentes simplificación de fracciones máximo común divisor forma decimal de una fracción operaciones con números decimales redondeo

11 : Definición: Una fracción aritmética o fracción común es una expresión de la forma a, donde a y b son números enteros, b con b 0. El número a es el numerador de la fracción y b es el denominador.

12 : Definición: Una fracción aritmética o fracción común es una expresión de la forma a, donde a y b son números enteros, b con b 0. El número a es el numerador de la fracción y b es el denominador. Nota: Una fracción se puede interpretar como una:

13 : Definición: Una fracción aritmética o fracción común es una expresión de la forma a, donde a y b son números enteros, b con b 0. El número a es el numerador de la fracción y b es el denominador. Nota: Una fracción se puede interpretar como una: 1 parte de un todo

14 : Definición: Una fracción aritmética o fracción común es una expresión de la forma a, donde a y b son números enteros, b con b 0. El número a es el numerador de la fracción y b es el denominador. Nota: Una fracción se puede interpretar como una: 1 parte de un todo 2 medida

15 : Definición: Una fracción aritmética o fracción común es una expresión de la forma a, donde a y b son números enteros, b con b 0. El número a es el numerador de la fracción y b es el denominador. Nota: Una fracción se puede interpretar como una: 1 parte de un todo 2 medida 3 división entre dos números enteros( a b = a b, b 0).

16 Definiciones: 1 Una fracción positiva es propia si su numerador es menor que su denominador.

17 Definiciones: 1 Una fracción positiva es propia si su numerador es menor que su denominador. 2 Una fracción positiva es impropia si su numerador es mayor o igual que su denominador.

18 Definiciones: 1 Una fracción positiva es propia si su numerador es menor que su denominador. 2 Una fracción positiva es impropia si su numerador es mayor o igual que su denominador. Toda fracción impropia se puede expresar como un número entero o un número mixto. Un número mixto es una combinación de un número natural más una fracción propia.

19 Ejercicios: Clasifique cada una de las siguientes expresiones como un número entero, una fracción propia, una fracción impropia, un número mixto o una expresión no definida.

20 Ejercicios: Escriba cada fracción como un número mixto.

21 : Las fracciones a b y c d número racional. con equivalentes si representan el mismo

22 : Las fracciones a b y c d número racional. con equivalentes si representan el mismo Notas: Dos fracciones a b y c d a b = c d, si: son equivalentes, denotado por

23 : Las fracciones a b y c d número racional. con equivalentes si representan el mismo Notas: Dos fracciones a b y c son equivalentes, denotado por d a b = c d, si: el producto cruzado a d = b c

24 : Las fracciones a b y c d número racional. con equivalentes si representan el mismo Notas: Dos fracciones a b y c son equivalentes, denotado por d a b = c d, si: el producto cruzado a d = b c a b = c d

25 : Las fracciones a b y c d número racional. con equivalentes si representan el mismo Notas: Dos fracciones a b y c son equivalentes, denotado por d a b = c d, si: el producto cruzado a d = b c a b = c d

26 Ejercicios: Determine si las fracciones dadas son equivalentes. Use el método del producto cruzado.

27 Ejercicios: Determine si las fracciones dadas son equivalentes. Use el método de la división.

28 Nota: Se pueden construir fracciones equivalentes a una fracción dada multiplicando o dividiendo numerador y denominador por un mismo número racional 0. Métodos para construir fracciones equivalentes: a 1 Método 1: b = a c b c, c 0 2 Método 2: a b = a c b c, c 0

29 Ejercicios: Escriba, por lo menos, tres fracciones equivalentes a la fracción dada usando el método 1.

30 Ejercicios: Escriba fracciones equivalentes a la fracción dada usando el método 2.

31 Ejercicio: Escriba los números que faltan para que las fracciones sean equivalentes. Use el método número 1.

32 Ejercicio: 1. Escriba los números que faltan para que las fracciones sean equivalentes. Use el método número 2.

33 Forma más Simple o Reducida de una Fracción Definición: Una fracción está es su forma más simple o reducida si el número entero positivo mayor que divide tanto el numerador como el denominador es 1. Esto es, el numerador y el denominador son relativamente primos. Ejemplos: Las siguientes fracciones están en su forma más simple o reducida:

34 Forma más Simple o Reducida de una Fracción Definición: Una fracción está es su forma más simple o reducida si el número entero positivo mayor que divide tanto el numerador como el denominador es 1. Esto es, el numerador y el denominador son relativamente primos. Ejemplos: Las siguientes fracciones están en su forma más simple o reducida:

35 Forma más Simple o Reducida de una Fracción Definición: Una fracción está es su forma más simple o reducida si el número entero positivo mayor que divide tanto el numerador como el denominador es 1. Esto es, el numerador y el denominador son relativamente primos. Ejemplos: Las siguientes fracciones están en su forma más simple o reducida:

36 Métodos para simplificar una fracción: 1 Mediante división repetida de factores o divisores comunes del numerador y el denominador.

37 Métodos para simplificar una fracción: 1 Mediante división repetida de factores o divisores comunes del numerador y el denominador. Ejemplo:

38 Métodos para simplificar una fracción: 1 Mediante división repetida de factores o divisores comunes del numerador y el denominador. Ejemplo: 2 Dividiendo el numerador y el denominador de la fracción entre su máximo común divisor (MCD).

39 Métodos para simplificar una fracción: 1 Mediante división repetida de factores o divisores comunes del numerador y el denominador. Ejemplo: 2 Dividiendo el numerador y el denominador de la fracción entre su máximo común divisor (MCD). a b = a MCD b MCD =fracción en su forma más simple

40 Definición: El máximo común divisor (MCD) o máximo común factor (MCF) de dos o más números enteros es el número entero positivo mayor que los divide enteramente a todos.

41 Definición: El máximo común divisor (MCD) o máximo común factor (MCF) de dos o más números enteros es el número entero positivo mayor que los divide enteramente a todos.

42 Nota: Los siguientes pasos constituyen un método para determinar el máximo común divisor de dos o más numeros enteros:

43 Nota: Los siguientes pasos constituyen un método para determinar el máximo común divisor de dos o más numeros enteros: 1 Se factoriza cada uno de los números como un producto de potencias de bases primas

44 Nota: Los siguientes pasos constituyen un método para determinar el máximo común divisor de dos o más numeros enteros: 1 Se factoriza cada uno de los números como un producto de potencias de bases primas 2 El producto de las bases primas comunes en las diferentes factorizaciones elevadas al exponente menor que aparece de cada una de ellas.

45 Ejemplo: Calcular el MCD. de 6; 24 y = = = 2 5 El MCD es 2 (base prima común con el exponente menor que aparece del 2 en las diferentes factorizaciones.)

46 Ejercicios: Calcule el MCD de: 1 14 y y y y y , 26 y , 108 y , 126 y , 945 y 1575

47 Ejercicios: 1. Escriba la fracción en su forma más simple. Use el método número 1.

48 Ejercicio: 1. Escriba la fracción en su forma más simple. Use el método número 2.

49 Forma Decimal de una Fracción Común Para expresar una fracción en forma decimal se divide el numerador de la fracción entre el denominador. Si el decimal no termina y el dígito a la derecha se repite indefinidamente, entonces el decimal es uno repetitivo y el dígito se repite de forma indefinida. Esto se puede indicar escribiendo una barra encima del dígito que se repite. De forma similar, si un grupo de dígitos decimales se repiten indefinidamente, entonces esto se indica escribiendo una barra encima de los dígitos que se repiten indefinidamente.

50 Ejercicio 1: Exprese cada fracción en forma decimal decimal: Ejercicio 2: Exprese cada decimal como una fracción común:

51 Nota: En la mayoría de los casos las calculadoras han reemplazado los métodos con lápiz y papel en el cálculo de operaciones con decimales. Por tal razón, mencionaremos las operaciones con decimales de manera breve. Se recomienda se use una calculadora para realizar las operaciones con números decimales.

52 Operaciones con Números Decimales Suma: Para sumar números decimales se deben colocar unos debajo de otros. Los puntos decimales deben estar alineados verticalmente y también las unidades de igual orden (centenas con centenas, decenas con decenas, unidades con unidades, décimas con décimas, y así por el estilo). Después se suman como si se tratara de números enteros y se coloca el punto decimal en el resultado bajo la columna de los puntos decimales.

53 Operaciones con Números Decimales Resta: Para restar dos número decimales se coloca uno debajo de otro de manera que se correspondan las unidades del mismo orden y se añaden los ceros necesarios para que los dos números tengan la misma cantidad de lugares decimales.

54 Operaciones con Números Decimales Multiplicación: Para multiplicar dos números decimales se efectúa la multiplicación como en los números enteros. La cantidad de lugares decimales en el resultado es la suma de la cantidad de lugares decimales a la derecha de los puntos decimales en los factores.

55 Operaciones con Números Decimales División: Para dividir dos números decimales, mueva el punto decimal a la derecha la misma cantidad de lugares tanto el dividendo como el divisor, de manera que obtenga un número entero como divisor. Se realiza la división del mismo modo que en los enteros. El número de lugares decimales a la derecha del punto decimal, el cociente (o resultado), es el mismo que la cantidad de lugares decimales a la derecha el dividendo.

56 Ejemplo 1: Un agricultor ha recolectado 1,500 libras de trigo y 895 libras de cebada. Ha vendido el trigo a centavos la libra y la cebada a centavos la libra. Calcula: El total recibido por ambas ventas del trigo y la cebada. La diferencia entre lo que ha recibido por la venta del trigo y lo que ha recibido por la venta de la cebada.

57 Ejemplo 2: Un auto A consume 7.5 litros de gasolina por cada 100 kilómetros y otro auto B consume 8.2 litros de gasolina por cada 100 kilómetros. Calcula: La gasolina que consume cada coche en un kilómetro. El importe de la gasolina que consume cada coche en un trayecto de 540 kilómetros, si el litro de gasolina cuesta 89 centavos.

58 Ejemplo 3: Un camión transporta 3 bloques de mármol de 1.3 toneladas cada uno y 2 vigas de hierro de 0.5 toneladas cada una. Calcula: El total de toneladas que transporta el camión. El total de kilogramos que transporta el camión, si 1 tonelada es, aproximadamente, igual a 1,000 kilogramos.

59 Ejemplo 4: La yarda es una unidad de longitud inglesa que equivale a metros. Calcula: La longitud en metros de un trayecto A que mide 100 yardas y la longitud en metros de un trayecto B que mide 180 yardas. La longitud en yardas de un trayecto C que mide metros y la longitud en yardas de un trayecto D que mide 45.7 metros. La diferencia en milímetros que hay entre un metro y una yarda.

60 Ejemplo 5: En la siguiente tabla aparece el número de calorías que tiene aproximadamente 1 gramo de algunos alimentos. Alimentos Pan Queso Blanco Manzana Filete Espárragos Cal/gramo El número de calorías que tienen una hogaza de pan de 125 gramos, una manzana de 175 gramos y un filete de 150 gramos. El número de calorías que tienen 125 gramos de queso blanco, un filete de 180 gramos y 250 gramos de espárragos.

61 Ejemplo 5: Alimentos Pan Queso Blanco Manzana Filete Espárragos Cal/gramo El peso en gramos de una manzana que tiene 41.6 calorías, de un filete que tiene 525 calorías y de una hogaza de pan que tiene 1,402.5 calorías.

62 Reglas para redondear decimales Paso 1: Localice el lugar al que se redondeará el número. Paso 2: Vea el siguiente dígito a la derecha del lugar al que se redondeará el número. Paso 3A: Si este dígito es menor que 5, elimine todos los dígitos a la derecha del lugar al que se redondeará el número. No altere el dígito al que se redondeará el número. Paso 3B: Si este dígito es 5 o mayor, elimine todos los dígitos a la derecha del lugar al que será redondeado el número. Sume uno al dígito del lugar al que habrá de redondearse el número.

63 Ejercicio 1: Redondee al lugar decimal subrayado:

64 Ejercicio 2: Redondee al entero más cercano:

65 Ejercicio 3: Redondee a la décima más cercana:

Operaciones con números decimales

Operaciones con números decimales Operaciones con números decimales SUMA DE NÚMEROS DECIMALES Para sumar dos o más números decimales se colocan en columna haciendo coincidir las comas; después se suman como si fuesen números naturales

Más detalles

Capítulo 5. Los números reales y sus representaciones Pearson Education, Inc. Diapositiva 5-5-1

Capítulo 5. Los números reales y sus representaciones Pearson Education, Inc. Diapositiva 5-5-1 Capítulo 5 Los números reales y sus representaciones 2012 Pearson Education, Inc. Diapositiva 5-5-1 Capítulo 5: Los números reales y sus representaciones 5.1 Números reales, orden y valor absoluto 5.2

Más detalles

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL Mate 3041 Profa. Milena R. Salcedo Villanueva 1 FRACCIONES Una fracción tiene dos términos: numerador y denominador Denominador indica las veces que se divide

Más detalles

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS GRADO:6 O DOCENTE: Nubia E. Niño C. FECHA: 5 / 08 / 15 Guía Didáctica 3-6 Desempeños: * Resuelve operaciones y polinomios

Más detalles

Expresiones Algebraicas Racionales en los Números Reales

Expresiones Algebraicas Racionales en los Números Reales en los Números Reales Carlos A. Rivera-Morales Álgebra Tabla de Contenido Contenido cional nales Algebraica Racional ales : Contenido Discutiremos: qué es una expresión algebraica racional : Contenido

Más detalles

Preparación para Álgebra 1 de Escuela Superior

Preparación para Álgebra 1 de Escuela Superior Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

Aritmética para 6.º grado (con QuickTables)

Aritmética para 6.º grado (con QuickTables) Aritmética para 6.º grado (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

Operaciones de números racionales

Operaciones de números racionales Operaciones de números racionales Yuitza T. Humarán Martínez Adapatado por Caroline Rodriguez Departamento de Matemáticas Universidad de Puerto Rico en Arecibo El conjunto de los números racionales consiste

Más detalles

primarios = 3; 5 4 = 1; 2(3) = 6; 3. Observa todos los valores usados en

primarios = 3; 5 4 = 1; 2(3) = 6; 3. Observa todos los valores usados en Unidad 1. Conjuntos de números II. Operaciones y expresiones 1. Operaciones con números racionales. Las operaciones con números racionales las estamos realizando desde los grados 12 primarios. 1 + 2 =

Más detalles

Primaria Sexto Grado Matemáticas (con QuickTables)

Primaria Sexto Grado Matemáticas (con QuickTables) Primaria Sexto Grado Matemáticas (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios

Más detalles

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía. Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero

Más detalles

Los Conjuntos de Números

Los Conjuntos de Números Héctor W. Pagán Profesor de Matemática Mate 40 Debemos recordar.. Los conjuntos de números 2. Opuesto. Valor absoluto 4. Operaciones de números con signo Los Conjuntos de Números Conjuntos importantes

Más detalles

UNIDAD III NÚMEROS FRACCIONARIOS

UNIDAD III NÚMEROS FRACCIONARIOS UNIDAD III NÚMEROS FRACCIONARIOS COMPETENCIAS E INDICADORES DE DESEMPEÑO Identifica los números fraccionarios y realiza operaciones con ellos. Identifica los porcentajes, decimales y fraccionarios y realiza

Más detalles

Números Racionales. Repaso para la prueba. Profesora: Jennipher Ferreira Curso: 7 B

Números Racionales. Repaso para la prueba. Profesora: Jennipher Ferreira Curso: 7 B Números Racionales Repaso para la prueba Profesora: Jennipher Ferreira Curso: 7 B Tipos de Fracciones Fracciones propias: Son aquellas en las que el denominador es mayor al numerador, y su valor es menor

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA El cálculo y los problemas se irán trabajando y evaluando a lo largo de todo el año. 1ª EVALUACIÓN CONTENIDOS. o Los números de siete y

Más detalles

Conjunto de Números Racionales.

Conjunto de Números Racionales. Conjunto de Números Racionales. El conjunto de los números racionales está formado por: el conjunto de los números enteros (-2, -1, 0, 1, 2, ) y los números fraccionarios y se representan con una Q. Números

Más detalles

Matemáticas Nivel 4 (con QuickTables)

Matemáticas Nivel 4 (con QuickTables) Matemáticas Nivel 4 (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

Tema 6: Fracciones. Fracciones

Tema 6: Fracciones. Fracciones Fracciones Un quebrado o número fraccionario se expresa por dos números naturales, el denominador que indica en cuántas partes se ha dividido la unidad y el numerador, que indica cuántas partes de esta

Más detalles

Fracciones numéricas enteras

Fracciones numéricas enteras Números racionales Fracciones numéricas enteras En matemáticas, una fracción numérica entera expresa la división de un número entero en partes iguales. Una fracción numérica consta de dos términos: El

Más detalles

FRACCIONES. Las partes que tomamos ( 3 ó 5 ) se llaman numerador y las partes en que dividimos el queso ( 8 ) denominador.

FRACCIONES. Las partes que tomamos ( 3 ó 5 ) se llaman numerador y las partes en que dividimos el queso ( 8 ) denominador. FRACCIONES Una fracción, en general, es la expresión de una cantidad dividida por otra, y una fracción propia representa las partes que tomamos de un todo. El ejemplo clásico es el de un queso que partimos

Más detalles

Alfredo González. Beatriz Rodríguez Pautt. Carlos Alfaro

Alfredo González. Beatriz Rodríguez Pautt. Carlos Alfaro Alfredo González Beatriz Rodríguez Pautt Carlos Alfaro FERNANDO DAVID ANILLO 1 1. Números reales... 03 2. Transformación de un decimal a fracción 05 3. Propiedades de los números reales. 6 4. Propiedades

Más detalles

CAPÍTULO 4: VARIABLES Y RAZONES

CAPÍTULO 4: VARIABLES Y RAZONES Capítulo 4: Variables y razones CAPÍTULO 4: VARIABLES Y RAZONES Fecha: 33 2014 CPM Educational Program. All rights reserved. Core Connections en español, Curso 2 Fecha: Caja de herramientas 2014 CPM Educational

Más detalles

C Capítulo 1. Capítulo 3. Capítulo 2. Adición y sustracción: resultados hasta 18. Suma y resta de números con 2, 3 y 4 dígitos

C Capítulo 1. Capítulo 3. Capítulo 2. Adición y sustracción: resultados hasta 18. Suma y resta de números con 2, 3 y 4 dígitos C Capítulo 1 Adición y sustracción: resultados hasta 18 Adición: resultados hasta 18... 1 escoge una estrategia...2 Adición de tres o cuatro números... 3 Oraciones matemáticas - conjunto solución... 4

Más detalles

Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.

Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. 2009 Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León. mgdl 0/0/2009 INDICE: 0. UNIDADES DECIMALES: 02. DESCOMPOSICIÓN

Más detalles

TEMA 3. NÚMEROS RACIONALES.

TEMA 3. NÚMEROS RACIONALES. TEMA 3. NÚMEROS RACIONALES. Concepto de fracción Una fracción es el cociente de dos números enteros a y b, que representamos de la siguiente forma: b denominador, indica el número de partes en que se ha

Más detalles

TEMA 1 CONJUNTOS NUMÉRICOS

TEMA 1 CONJUNTOS NUMÉRICOS TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones

Más detalles

2º Se lee número que hay antes de la coma, se añade la palabra coma y luego se lee la parte decimal

2º Se lee número que hay antes de la coma, se añade la palabra coma y luego se lee la parte decimal Qué son los decimales? Los decimales son una manera distinta de escribir fracciones con denominadores como 10, 100 y 1,000. Tanto los decimales como las fracciones indican una parte de un entero. Un decimal

Más detalles

OPERACIONES CON POLINOMIOS

OPERACIONES CON POLINOMIOS 4. 1 UNIDAD 4 OPERACIONES CON POLINOMIOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques las operaciones de suma, resta, multiplicación y división de polinomios.

Más detalles

Matemáticas Nivel 6. Plan de estudios (370 temas)

Matemáticas Nivel 6. Plan de estudios (370 temas) Matemáticas Nivel 6 Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales pueden personalizar

Más detalles

NÚMEROS DECIMALES. Teoría 3 er Ciclo Primaria Colegio Romareda 2011/2012 Página 28

NÚMEROS DECIMALES. Teoría 3 er Ciclo Primaria Colegio Romareda 2011/2012 Página 28 Teoría 3 er Ciclo Primaria Colegio Romareda 20/202 Página 28 NÚMEROS DECIMALES Los números decimales nacen como una forma especial de escritura de las fracciones decimales, de manera que la coma separa

Más detalles

6to GRADO. Operaciones con decimales HOJAS DE TRABAJO

6to GRADO. Operaciones con decimales HOJAS DE TRABAJO 6to GRADO Operaciones con decimales HOJAS DE TRABAJO Multiplicar y dividir por potencias de diez Mueve el punto decimal dependiendo de la cantidad de ceros el punto decimal se mueve a la derecha el punto

Más detalles

UNIDAD DIDÁCTICA #1 CONTENIDO

UNIDAD DIDÁCTICA #1 CONTENIDO UNIDAD DIDÁCTICA #1 CONTENIDO OPERACIONES CON DECIMALES MULTIPLICACION DE DECIMALES DIVISIÓN DE DECIMALES OPERACIONES COMBINADAS CON DECIMALES POTENCIACIÓN DE DECIMALES HOJA DE EVALUACIÓN BIBLIOGRAFÍA

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas 1. Fracciones Una fracción es una expresión del tipo a b, donde a y b son números naturales llamados numerador y denominador, respectivamente. 1.1. Interpretación de una fracción a) Fracción como parte

Más detalles

OBJETIVO 1 EL CONCEPTO DE NÚMERO DECIMAL

OBJETIVO 1 EL CONCEPTO DE NÚMERO DECIMAL COMPRENDER OBJETIVO 1 EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: ECHA: SIGNIICADO DE LOS NÚMEROS DECIMALES En nuestra vida diaria medimos, calculamos, comparamos, etc. Hablamos de cantidades que no son

Más detalles

PLAN DE RECUPERACIÓN DE MATEMÁTICAS 1º ESO (Para alumnos de 2º de ESO)

PLAN DE RECUPERACIÓN DE MATEMÁTICAS 1º ESO (Para alumnos de 2º de ESO) PLAN DE RECUPERACIÓN DE MATEMÁTICAS 1º ESO (Para alumnos de 2º de ESO) 1 NOMBRE: Para aprobar las matemáticas pendientes de cursos anteriores es obligatorio realizar el plan de recuperación correspondiente

Más detalles

Créditos institucionales de la UA: 6 Material visual: Diapositivas. Unidad de competencia I Conceptos preliminares

Créditos institucionales de la UA: 6 Material visual: Diapositivas. Unidad de competencia I Conceptos preliminares UNIDAD ACADÉMICA PROFESIONAL TIANGUISTENCO PROGRAMA DE ESTUDIOS LICENCIATURA DE INGENIERÍA EN PRODUCCIÓN INDUSTRIAL UNIDAD DE APRENDIZAJE (UA): ÁLGEBRA Créditos institucionales de la UA: 6 Material visual:

Más detalles

Números fraccionarios y decimales

Números fraccionarios y decimales Unidad didáctica Números fraccionarios y decimales 1.- Las fracciones. a Una fracción es un número racional, escrito en la forma, tal que b 0 y representa una parte b de un total. El denominador (el número

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA IV : LAS FRACCIONES. OPERACIONES Los siginificados de una fracción. Fracciones propias e impropias. Equivalencias de fracciones. Amplificación y simplificación. Fracción

Más detalles

2. EXPRESIONES ALGEBRAICAS

2. EXPRESIONES ALGEBRAICAS 2. EXPRESIONES ALGEBRAICAS Tales como, 2X 2 3X + 4 ax + b Se obtienen a partir de variables como X, Y y Z, constantes como -2, 3, a, b, c, d y cobinadas utilizando la suma, resta, multiplicación, división

Más detalles

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales 1. Los números reales 2. Operaciones con números enteros y racionales 3. decimales 4. Potencias de exponente entero 5. Radicales 6. Notación científica y unidades de medida 7. Errores Índice del libro

Más detalles

TEMA 2. Números racionales. Teoría. Matemáticas

TEMA 2. Números racionales. Teoría. Matemáticas 1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden

Más detalles

El Conjunto de los Números Naturales

El Conjunto de los Números Naturales Objetivos El Conjunto de los Carlos A. Rivera-Morales Álgebra Objetivos Tabla de Contenido Objetivos 1 Propiedades de los Objetivos Objetivos: Discutiremos: el conjunto de los números naturales Objetivos

Más detalles

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones

Más detalles

3 Números decimales OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Significado de los números decimales. Representación en la recta numérica.

3 Números decimales OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Significado de los números decimales. Representación en la recta numérica. 829485 _ 024-008.qxd 12/9/07 15:10 Página 27 Números decimales INTRODUCCIÓN RESUMEN DE LA UNIDAD En esta unidad estudiamos el sistema de numeración decimal, e introducimos las denominaciones de la parte

Más detalles

Operaciones con fracciones I

Operaciones con fracciones I Matemáticas.º ESO Unidad Ficha 1 Operaciones con fracciones I La suma y resta de fracciones con igual denominador es otra fracción que tiene por: - Numerador: la suma o resta de los numeradores. - Denominador:

Más detalles

Concepto de fracción. Unidad fraccionaria. Concepto de fracción. Representación de fracciones

Concepto de fracción. Unidad fraccionaria. Concepto de fracción. Representación de fracciones Unidad fraccionaria Concepto de fracción La unidad fraccionaria es cada una de las partes que se obtienen al dividir la unidad en n partes iguales. Concepto de fracción Una fracción es el cociente de dos

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

Unidad 1 Los números de todos los días

Unidad 1 Los números de todos los días CUENTAS ÚTILES Módulo nivel intermedio. 3ra. Edición. Primaria Unidad 1 Los números de todos los días Los números naturales son aquellos que utilizamos para contar: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

Más detalles

Los números naturales sirven para numerar. Por ejemplo, decimos que una alumna es la 15º (decimoquinta) de la lista.

Los números naturales sirven para numerar. Por ejemplo, decimos que una alumna es la 15º (decimoquinta) de la lista. MATEMÁTICAS ºACT TEMA. REPASO. NÚMEROS NATURALES. Cuando contamos los alumnos y alumnas de una clase o el número de losetas que hay en el suelo, lo contamos con los números naturales. Los números naturales

Más detalles

RESUMEN ALGEBRA BÁSICA

RESUMEN ALGEBRA BÁSICA RESUMEN ALGEBRA BÁSICA TERMINO ALGEBRAICO: Es una expresión matemática que consta de un producto (o cociente) de un número con una variable elevado a un exponente (o con varias variables). TÉRMINO ALGEBRAICO

Más detalles

La unidad fraccionaria es cada una de las partes que se. Una fracción es el cociente de dos números enteros a y b,

La unidad fraccionaria es cada una de las partes que se. Una fracción es el cociente de dos números enteros a y b, Unidad fraccionaria La unidad fraccionaria es cada una de las partes que se obtienen al dividir la unidad en n partes iguales. Definición de fracción Una fracción es el cociente de dos números enteros

Más detalles

1. EXPRESIONES ALGEBRAICAS.

1. EXPRESIONES ALGEBRAICAS. TEMA 3: POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas

Más detalles

El Conjunto de los Números Naturales

El Conjunto de los Números Naturales Objetivos El Conjunto de los Carlos A. Rivera-Morales Álgebra Objetivos Tabla de Contenido Objetivos 1 Propiedades de los Objetivos Objetivos: Discutiremos: el conjunto de los números naturales Objetivos

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Monomio: Monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. 2x

Más detalles

INSTITUCION EDUCATIVA CIUDADELA DEL SUR EDUCACION BASICA CICLO DE SECUNDARIA GRADO 6 AREA: MATEMATICAS Cuarto periodo

INSTITUCION EDUCATIVA CIUDADELA DEL SUR EDUCACION BASICA CICLO DE SECUNDARIA GRADO 6 AREA: MATEMATICAS Cuarto periodo NUMEROS DECIMALES PRESABERES. Trabajo Cooperativo (escribe y responde en tu cuaderno las siguientes preguntas) Que es una fracción? Qué es una parte? Qué significa entero? Qué será decimal? 1 3. NUEVOS

Más detalles

Los números enteros y racionales

Los números enteros y racionales Los números enteros y racionales Objetivos En esta quincena aprenderás a: Representar y ordenar números enteros Operar con números enteros Aplicar los conceptos relativos a los números enteros en problemas

Más detalles

TEMA 3: NÚMEROS DECIMALES

TEMA 3: NÚMEROS DECIMALES TEMA 3: NÚMEROS DECIMALES 1. NÚMEROS DECIMALES Para expresar cantidades comprendidas entre dos números enteros, utilizamos los números decimales. Los números decimales se componen de dos partes separadas

Más detalles

UNIDAD 3: NÚMEROS DECIMALES

UNIDAD 3: NÚMEROS DECIMALES UNIDAD 3: NÚMEROS DECIMALES Si dividimos la unidad en 10 partes iguales, cada parte es una DÉCIMA. Cuando necesitamos expresar cantidades más pequeñas que la unidad, utilizamos LAS UNIDADES DECIMALES.

Más detalles

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

IES CUADERNO Nº 3 NOMBRE: FECHA: / / Números decimales

IES CUADERNO Nº 3 NOMBRE: FECHA: / / Números decimales Números decimales Contenidos 1. Números decimales Elementos de un número decimal Redondeo y truncamiento de un decimal 2. Operaciones con decimales Suma de números decimales Resta de números decimales

Más detalles

Slide 1 / 183. Decimales

Slide 1 / 183. Decimales Slide 1 / 183 Decimales Slide 2 / 183 Tabla de contenidos Definir y Revisar Vocabulario Identificar los Valores Posicionales Leyendo y Escribiendo los Decimales Comparando y Ordenando los Decimales El

Más detalles

Definir y Revisar Vocabulario

Definir y Revisar Vocabulario Slide / 8 Slide 2 / 8 Tabla de contenidos Decimales Definir y Revisar Vocabulario Identificar los Valores Posicionales Leyendo y Escribiendo los Decimales Comparando y Ordenando los Decimales El Redondeo

Más detalles

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números

Más detalles

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1 TEMA : Potencias y raíces Tema : Potencias y raíces ESQUEMA DE LA UNIDAD.- Concepto de potencia..- Potencias de exponente natural..- Potencias de exponente entero negativo..- Operaciones con potencias..-

Más detalles

2º ESO. matemáticas IES Montevil tema 3: NÚMEROS RACIONALES curso 2010/2011

2º ESO. matemáticas IES Montevil tema 3: NÚMEROS RACIONALES curso 2010/2011 º ESO. matemáticas IES Montevil tema : NÚMEROS RACIONALES curso 00/0 nombre: apellidos: números racionales El conjunto de los números racionales es el que está formado por los números que se pueden expresar

Más detalles

LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES. 28,246 = 2D + 8 U + 2d + 4 c + 6 m 28,246 = 20 + 8 + 0,2 + 0,04 + 0,006

LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES. 28,246 = 2D + 8 U + 2d + 4 c + 6 m 28,246 = 20 + 8 + 0,2 + 0,04 + 0,006 LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES Los números decimales tienen dos partes separadas por una coma. 28,246 es un número decimal. Parte entera Parte decimal 6º de E. Primaria Decenas

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

Contenido 1. Definición Tipos de fracciones Fracción igual a la unidad 9 4. Fracción propia Fracción impropia Frac

Contenido 1. Definición Tipos de fracciones Fracción igual a la unidad 9 4. Fracción propia Fracción impropia Frac FRACCIÓN Contenido 1. Definición... 3 2. Tipos de fracciones..... 8 3. Fracción igual a la unidad 9 4. Fracción propia... 10 5. Fracción impropia... 11 6. Fracciones decimales... 14 7. Fracciones equivalentes...

Más detalles

Natural por decimal Decimal por natural Decimal por decimal 2764 x 2,9 24876. 89,26 x 24 35704 2142,24

Natural por decimal Decimal por natural Decimal por decimal 2764 x 2,9 24876. 89,26 x 24 35704 2142,24 1.- SUMA Y RESTA DE NÚMEROS DECIMALES Para sumar o restar números con decimales se suman o restan siempre unidades del mismo orden. 342,51 + 8,1 + 9.627,329 350 18,436 342,51 8,1 9.629,329 9.979,939 350,000

Más detalles

TEMA 2 FRACCIONES MATEMÁTICAS 2º ESO

TEMA 2 FRACCIONES MATEMÁTICAS 2º ESO TEMA 2 FRACCIONES Criterios De Evaluación de la Unidad 1 Utilizar de forma adecuada las fracciones para recibir y producir información en actividades relacionadas con la vida cotidiana. 2 Leer, escribir,

Más detalles

2º. Representa en una recta numérica los números: (+4), (-3), (0), (+7), (-2), (+2) y luego escríbelos de forma ordenada.

2º. Representa en una recta numérica los números: (+4), (-3), (0), (+7), (-2), (+2) y luego escríbelos de forma ordenada. TEMA 01 - NÚMEROS ENTEROS 1º. Indica el número que corresponde a cada letra. º. Representa en una recta numérica los números: (+) (-) (0) (+7) (-) (+) y luego escríbelos de forma ordenada. º. En un museo

Más detalles

PROBLEMAS DE DIAMANTE 2.1.1

PROBLEMAS DE DIAMANTE 2.1.1 PROBLEMAS DE DIAMANTE 2.1.1 En cada Problema de diamante, el producto de los dos números a los lados (izquierda y derecha) es el número arriba y la suma es el número de abajo. producto ab Los Problemas

Más detalles

Capítulo. Decimales. Copyright 2013, 2010, and 2007, Pearson Education, Inc.

Capítulo. Decimales. Copyright 2013, 2010, and 2007, Pearson Education, Inc. Capítulo 7 Decimales Copyright 2013, 2010, and 2007, Pearson Education, Inc. Los decimales La palabra decimal viene del latín decem, que significa diez. El sistema decimal es un sistema basado en posiciones

Más detalles

UNIDAD 1: NÚMEROS NATURALES OBJETIVOS

UNIDAD 1: NÚMEROS NATURALES OBJETIVOS UNIDAD 1: NÚMEROS NATURALES Realizar las operaciones con números naturales (suma, resta, multiplicación y división) y operaciones combinadas de las anteriores. Diferenciar entre división exacta y entera,

Más detalles

ENCUENTRO # 4 TEMA: Operaciones con números racionales, resolución de problemas. DESARROLLO

ENCUENTRO # 4 TEMA: Operaciones con números racionales, resolución de problemas. DESARROLLO ENCUENTRO # 4 TEMA: Operaciones con números racionales, resolución de problemas. CONTENIDOS: 1. Operaciones con números fraccionarios. 2. Resolución de problemas aritméticos. DESARROLLO Ejercicio Reto

Más detalles

OBJETIVO 1 COMPRENDER EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: FECHA: Centena Decena Unidad Décima Centésima Milésima.

OBJETIVO 1 COMPRENDER EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: FECHA: Centena Decena Unidad Décima Centésima Milésima. OBJETIVO COMPRENDER EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: ECHA: El sistema de numeración decimal tiene dos características:. a Es decimal: unidades de un orden forman unidad del orden siguiente..

Más detalles

6to Grado. Cálculo Decimal. Slide 1 / 99. Slide 2 / 99. Slide 3 / 99. Cálculo Decimal Tópicos de la Unidad

6to Grado. Cálculo Decimal. Slide 1 / 99. Slide 2 / 99. Slide 3 / 99. Cálculo Decimal Tópicos de la Unidad New Jersey Center for Teaching and Learning Slide 1 / 99 Iniciativa de Matemática Progresiva Este material está disponible gratuitamente en www.njctl.org y está pensado para el uso no comercial de estudiantes

Más detalles

TEMA 4: LAS FRACCIONES

TEMA 4: LAS FRACCIONES TEMA : LAS FRACCIONES Hasta ahora has trabajado con números naturales, enteros y decimales, pero sigue habiendo situaciones que no podemos expresar con estos números, por ejemplo, cuando decimos: Medio

Más detalles

New Jersey Center for Teaching and Learning. Iniciativa de Matemática Progresiva

New Jersey Center for Teaching and Learning. Iniciativa de Matemática Progresiva Slide 1 / 99 New Jersey Center for Teaching and Learning Iniciativa de Matemática Progresiva Este material está disponible gratuitamente en www.njctl.org y está pensado para el uso no comercial de estudiantes

Más detalles

UNIDAD 6: FRACCIONES ÍNDICE. 6.1 Conocimiento de fracciones: Términos de las fracciones Representación. 6.1.

UNIDAD 6: FRACCIONES ÍNDICE. 6.1 Conocimiento de fracciones: Términos de las fracciones Representación. 6.1. UNIDAD 6: FRACCIONES ÍNDICE 6. Conocimiento de fracciones: 6.. Términos de las fracciones. 6.. Representación 6.. Interpretación 6. Lectura y escritura de fracciones. 6. Comparación de fracciones. 6..

Más detalles

ENCUENTRO # 4 TEMA: Operaciones con números racionales, resolución de problemas. DESARROLLO

ENCUENTRO # 4 TEMA: Operaciones con números racionales, resolución de problemas. DESARROLLO ENCUENTRO # TEMA: Operaciones con números racionales, resolución de problemas. CONTENIDOS:. Operaciones con números fraccionarios.. Resolución de problemas aritméticos. DESARROLLO Ejercicio Reto. Un terreno

Más detalles

TEMA 1: NÚMEROS REALES

TEMA 1: NÚMEROS REALES TEMA 1: NÚMEROS REALES 1. INTRODUCCIÓN El conjunto formado por los números racionales e irracionales es el conjunto de los números reales, se designa por Con los números reales podemos realizar todas las

Más detalles

Chapter Audio Summary for McDougal Littell Pre-Algebra

Chapter Audio Summary for McDougal Littell Pre-Algebra Chapter Audio Summary for McDougal Littell Pre-Algebra Chapter 5 Rational Numbers and Equations En el capítulo 5 aprendiste a escribir, comparar y ordenar números racionales. Después aprendiste a sumar

Más detalles

Divisibilidad I. Nombre Curso Fecha

Divisibilidad I. Nombre Curso Fecha Matemáticas 2.º ESO Unidad 1 Ficha 1 Divisibilidad I Un número b es divisor de otro número a si al dividir a entre b la división es exacta. Se dice también que a es múltiplo de b. 1. Completa con la palabra

Más detalles

Tema 1 Conjuntos numéricos

Tema 1 Conjuntos numéricos Tema 1 Conjuntos numéricos En este tema: 1.1 Números naturales. Divisibilidad 1.2 Números enteros 1.3 Números racionales 1.4 Números reales 1.5 Potencias y radicales 1.7 Logaritmos decimales 1.1 NÚMEROS

Más detalles

para la casa Actividad

para la casa Actividad Durante las próximas semanas, en la clase de matemáticas aprenderemos sobre el valor de posición, las propiedades de los números y las expresiones numéricas. Llevaré a la casa tareas con actividades para

Más detalles

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales Ámbito Científico y Tecnológico. Repaso de números enteros y racionales 1 Prioridad de las operaciones Si en una operación aparecen sumas, o restas y multiplicaciones o divisiones, el resultado varía según

Más detalles

1 CÁLCULO CON RADICALES. Nota: Para m = 2, es l raíz cuadrada y el 2 no se escribe.

1 CÁLCULO CON RADICALES. Nota: Para m = 2, es l raíz cuadrada y el 2 no se escribe. DEFINICIÓN : 1 CÁLCULO CON RADICALES ( m 2, 3, 4,.. ) Ejemplo: Nota: Para m 2, es l raíz cuadrada y el 2 no se escribe. SIMPLIFICACIÓN DE RADICALES: Se escribe el radical en forma de potencia, se simplifica

Más detalles

Número que expresa parte de un todo. Toda fracción se representa como el cociente de dos números enteros en la forma con q 0

Número que expresa parte de un todo. Toda fracción se representa como el cociente de dos números enteros en la forma con q 0 Fracciones Fracciones Número que expresa parte de un todo. Toda fracción se representa p como el cociente de dos números enteros en la forma con q 0 numerador denominador p q Propiedad fundamental de las

Más detalles

Matemáticas I. Álgebra

Matemáticas I. Álgebra Matemáticas I. Álgebra Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales pueden personalizar

Más detalles

CONJUNTO DE LOS NÚMEROS NATURALES

CONJUNTO DE LOS NÚMEROS NATURALES República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental de las Fuerzas Armadas Curso de Inducción Universitaria CIU Cátedra: Razonamiento Matemático CONJUNTO DE LOS

Más detalles

Aritmética entera. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15

Aritmética entera. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15 Aritmética entera AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15 Objetivos Al finalizar este tema tendréis que: Calcular el máximo común divisor de

Más detalles

COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA I PERÍOD DESCRIPCIÓN DE CONTENIDOS

COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA I PERÍOD DESCRIPCIÓN DE CONTENIDOS COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA I PERÍOD DESCRIPCIÓN DE CONTENIDOS GRADO: 5 ASIGNATURA: Matemática PERIODO: I PROFESOR: María Raquel Vigil. UNIDAD Nº 1 NOMBRE DE LA UNIDAD: JUGUEMOS CON

Más detalles

Lección 2: Notación exponencial

Lección 2: Notación exponencial GUÍA DE MATEMÁTICAS III Lección 2: Notación exponencial En la lección anterior hemos visto cómo trabajar con números reales y cómo para facilitar el trabajo con ellos es conveniente utilizar aproximaciones,

Más detalles

RESUMEN DE CONCEPTOS

RESUMEN DE CONCEPTOS RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo

Más detalles

Materia: Matemática de Octavo Tema: Operaciones en Q Adición de fracciones con diferente denominador

Materia: Matemática de Octavo Tema: Operaciones en Q Adición de fracciones con diferente denominador Materia: Matemática de Octavo Tema: Operaciones en Q Adición de fracciones con diferente denominador La adición de fracciones con diferente denominador la podemos definir como: Sean, entonces, donde es

Más detalles

1. El sistema de los números reales

1. El sistema de los números reales 1. El sistema de los números reales Se iniciará definiendo el conjunto de números que conforman a los números reales, en la siguiente figura se muestra la forma en la que están contenidos estos conjuntos

Más detalles

RADICALES. CONCEPTO Y OPERACIONES. Concepto de raíz. - La raíz cuadrada de un número a es otro número b, que al elevarlo al cuadrado te da a

RADICALES. CONCEPTO Y OPERACIONES. Concepto de raíz. - La raíz cuadrada de un número a es otro número b, que al elevarlo al cuadrado te da a UD : Los números reales RADICALES. CONCEPTO Y OPERACIONES. Concepto de raíz. - La raíz cuadrada de un número a es otro número b, que al elevarlo al cuadrado te da a (que es lo mismo que decir que a b si

Más detalles

Institución Educativa Distrital Madre Laura

Institución Educativa Distrital Madre Laura Una fracción algebraica es una expresión fraccionaria en la que numerador y denominador son polinomios. Son fracciones algebraicas: Las fracciones algebraicas tienen un comportamiento similar a las fracciones

Más detalles